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Abstract. An expansion graph of a directed weighted graph G0 is obtained fromG0 by replacing

some edges by disjoint chains. The adjacency matrix of an expansion graph is a partial linearization of
a matrix polynomial with nonnegative coefficients. The spectral radii for different expansion graphs
of G0 and correspondingly the spectral radii of matrix polynomials with nonnegative coefficients,
which sum up to a fixed matrix, are compared. A limiting formula is proved for the sequence of the
spectral radii of a sequence of expansion graphs of G0 when the lengths of all chains replacing some
original edges tend to infinity. It is shown that for all expansion graphs of G0 the adjacency matrices
have the same level characteristic, but they can have different height characteristics as examples
show.
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1. Introduction. In [7] S. Friedland and H. Schneider defined the concept of
expansion graph for an unweighted directed graph, which is obtained from the given
graph by replacing certain edges by (exactly) one chain; they studied the effect of
graph expansions on the spectrum (of the adjacency matrix) of the graph. In [6]
we generalized this concept to weighted graphs by replacing certain edges of the
given graph by possibly several disjoint chains of different lengths. One essential
observation was that the nonzero spectrum of the adjacency matrix of an expansion
graph coincides with the nonzero spectrum of a matrix polynomial with nonnegative
coefficients [6, Prop. 1, Th. 6]. We used this fact to study the peripheral spectrum if
the given graph is connected. In this article we consider arbitrary weighted digraphs
and study especially the influence of graph expansions on the spectral radius of the
adjacency matrix.

The paper contains four further sections. In the next section we give the defini-
tions and collect results by different authors used in the later sections. In section 3 we
compare the spectral radii of the adjacency matrices of different expansion graphs of
a given graph or equivalently we compare the spectral radii of different matrix poly-
nomials with constant sum of their coefficients. In section 4 we consider a sequence of
expansion graphs of a given graph. We prove that the sequence of the corresponding
spectral radii converges if the lengths of all chains replacing the original edges in a
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certain subset F of the set of all original edges tend to infinity, and the graphs of the
sequence coincide on the complement of F with a fixed expansion graph. In section
5 we study the connections between the reduced graph of a graph expansion and the
reduced graph of the expanded graph. We show that the level characteristics (for the
spectral radius) of all expansion graphs of a given graph with spectral radius one are
identical, but we give examples of graph expansions of a given graph with different
height characteristics (for the spectral radius).

2. Results on expansion graphs and matrix polynomials. Our work relies
heavily on the work of [6], [7] and of other authors so in this section we set the notation
and we describe known results on expansion graphs needed for the next sections.

Let S be a nonnegative n×n matrix and let G(S) be the directed weighted graph
with adjacency matrix S, i.e., with 〈n〉 = {1, . . . , n},

G(S) = (V (S), E(S))
= (〈n〉, {(i, j) ∈ 〈n〉 × 〈n〉 : S(i, j) �= 0}),

and the edge (i, j) ∈ E(S) has weight S(i, j); therefore the “edge” (i, j) ∈ 〈n〉×
〈n〉\E(S) has weight zero as usual. Here S(i, j) denotes the element in the ith row
and the jth column of the matrix S.

Let A0, . . . , Al be nonnegative n × n matrices with A0 + . . . + Al = S. The
expansion graph G(A0, . . . , Al) of G(S) with respect to (A0, . . . , Al) is the directed,
weighted graph defined as follows. The set V (A0, . . . , Al) of its vertices is given by
the following procedure: For each triple (i, j, k) ∈ 〈n〉× < n > ×{0, 1, . . . , l} with
Ak(i, j) �= 0 add l − k “additional” vertices to 〈n〉, labeled by

(i, j, k, p), p = 1, 2, . . . , l − k;

further, define (i, j, k, 0) = i and (i, j, k, l − k + 1) = j. The set E(A0, . . . , Al) of its
edges is given by

((i, j, k, p), (̂ı, ̂, k̂, p̂)) ∈ E(A0, . . . , Al) if and only if

(̂ı, ̂, k̂, p̂) = (i, j, k, p+ 1) in case p �= 0 and p̂ �= l − k̂ + 1;

(i, (̂ı, ̂, k̂, p̂)) ∈ E(A0, . . . , Al) if and only if

Ak̂(i, ̂) �= 0, i = ı̂ = (̂ı, ̂, k̂, 0)), and p̂ = 1;

((i, j, k, p), ̂) ∈ E(A0, . . . , Al) if and only if

Ak(i, j) �= 0, ̂ = j = (i, j, k, l − k + 1), and p = l − k.
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The weights of the edges of G(A0, . . . , Al) will be chosen so that

l−k∏
p=0

w((i, j, k, p), (i, j, k, p+ 1)) = Ak(i, j)

for (i, j, k) ∈ 〈n〉 × 〈n〉 × {0, . . . , l}.

It follows that

V (A0, . . . , Al) = 〈n〉 ∪
l−1⋃
k=0

{(i, j, k, p) : Ak(i, j) �= 0, p = 1, . . . , l − k}.

The adjacency matrix A of G(A0, . . . , Al) is a partial linearization of the monic
matrix polynomial L of degree l + 1 given by

L(z) = zl+1 − zlAl − . . .− zA1 −A0;

see [6, Th. 6]. With L we associate the rational matrix function

SL(z) = Al + z−1Al−1 + . . .+ z−lA0 for z �= 0.

Then we have L(z) = zl(z − SL(z)) for z �= 0 and SL(1) = S.
S. Friedland and H. Schneider considered in [7] the special case that all Ak and

S are unimodular matrices; with their terminology we have

l = max{w(i, j) : (i, j) ∈ E(S)}, and for (i, j) ∈ E(S) :

Ak(i, j) = 1 if w(i, j) = l − k, and Ak(i, j) = 0 if w(i, j) �= l − k,

and

Ak(i, j) = 0 for all k = 0, 1, . . . , l if (i, j) ∈ 〈n〉 × 〈n〉E(S).

The auxiliary matrix Aw in [7, Def. 2.1] is identical with SL above.
As usual, the spectrum of a square matrix A is the set of its eigenvalues, and

is denoted by spec(A). The spectral radius of A is the largest absolute value of its
eigenvalues, and is denoted by r(A). For a monic matrix polynomial L its spectrum
spec(L) is the set {z ∈ C : L(z) is singular} and its spectral radius r(L) is the largest
absolute value of the elements of spec(L). If A is the adjacency matrix of a graph G
we write sometimes spec(A) as spec(G) and r(A) as r(G).

In the following theorem we collect known results on expansion graphs and on
spectral properties of monic matrix polynomials with nonnegative coefficients.

Theorem 2.1. Let A0, . . . Al be nonnegative n × n matrices and set S = A0 +
. . .+Al. With the notations from above we have:

(i) [6, Th. 6] The adjacency matrix A of the expansion graph G(A0, . . . , Al) is
cogredient to a block matrix[
N H
G Al

]
with N l = 0 and Ak−1 = GN l−kH for all k = 1, . . . , l.
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(ii) [6, Prop. 1] spec(A)\{0} = spec(L)\{0}, especially r(A) = r(G(A0, . . . , Al))
= r(L).

(iii) If z �= 0, then ker(L(z)) = ker(z − SL(z)), therefore z ∈ spec(L) and z ∈
spec(SL(z)) are equivalent.

(iv) [10, Prop. 2.1] The function ]0,∞[→ R+, t → r(SL(t)) is nonincreasing and
continuous. If r(SL(t)) > 0 for some t ∈]0,∞[, then r(SL(t)) > 0 for all
t ∈]0,∞[, and there exists at most one t ∈]0,∞[ with r(SL(t)) = t.

(v) [3, Theorem] and [10, Prop. 2.1] If t > 0, then r(L) = t and r(SL(t)) = t are
equivalent.

(vi) [10, Prop. 2.1] The assertions r(S) = 0, r(L) = 0 and r(SL(t)) = 0 for all
t ∈]0,∞[ are equivalent.

Special cases of these results can be found in [7].

3. Comparison of the spectral radii of matrix polynomials and of the
adjacency matrices of expansion graphs. Throughout this section we assume
that the assumptions of section 1 hold and we use the notations of section 1. First
we investigate the relation of the spectral radii r(A) = r(L) and r(S). We extend
slightly the assertions of [3, Prop. 1.1].

Proposition 3.1. Let A0, . . . , Al be nonnegative square matrices and let S =
A0 + . . .+Al. Then

1 ≤ r(S) ⇒ r(S)1/(l+1) ≤ r(L) ≤ r(S),

and

r(S) ≤ 1 ⇒ r(S) ≤ r(L) ≤ r(S)1/(l+1).

If r(S) > 0, then the reverse implications hold in both cases.
Proof. Theorem 2.1 (v) and (vi) show that in the cases r(S) = 0 and r(S) = 1

there is nothing to prove.
Let r(S) > 1. Then by Theorem 2.1 (v)

r(SL(t)) ≥ r(S) > 1 ≥ t, 0 < t ≤ 1.

By Theorem 2.1 (iv) and (v) we obtain r(L) > 1. It is easy to show (see the proof of
[10, Prop. 2.1]) that for 0 < t1 ≤ t2

0 ≤
(
t1
t2

)l

SL(t1) ≤ SL(t2) ≤ SL(t1) ≤
(
t2
t1

)l

SL(t2) (3.1)

holds. These inequalities imply

(
t1
t2

)l

r(SL(t1)) ≤ r(SL(t2)) ≤ r(SL(t1)) ≤
(
t2
t1

)l

r(SL(t2)). (3.2)

Set t1 = 1 and t2 = r(L). Then by Theorem 2.1 (v) we obtain r(S) ≤ r(L)l+1

and r(L) ≤ r(S).
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The second implication is proved similarly. The last assertion is trivial.
Remark 3.2. Using Theorem 2.1 (ii) we see that Proposition 3.1 generalizes the

first part of [7, Th. 3.5] for expansion graphs. The second part of [7, Th. 3.6] will be
generalized in the last proposition of this section.

Proposition 3.3. Let l be a nonnegative integer and S ≥ 0.Then for all t in the
closed interval

[
min

{
r(S), r(S)1/(l+1)

}
,max

{
r(S), r(S)1/(l+1)

}]

there exist nonnegative square matrices A0, . . . , Al such that S = A0 + . . . + Al and
r(L) = t.
Proof. For 0 ≤ a ≤ 1 set La(z) = zl+1 − zlaS− (1−a)S. Then r(L0) = r(S)1/l+1

and r(L1) = r(S). The function [0, 1] → R+ with a −→ r(La) is continuous. Apply
the intermediate value theorem to obtain the assertion.

Proposition 3.4. Let S ≥ 0. Then for all t in the half-open interval

]
min{1, r(S)},max{1, r(S)} [ ∪ {r(S)}

there exists a nonnegative integer l and nonnegative square matrices A0, . . . Al such
that S = A0 + . . .+Al and r(L) = t.
Proof. Let t = r(S). Then choose l = 0 and A0 = S. If r(S) > 1 and t ∈]1, r(S)[,

then choose l such that r(S)1/(l+1) ≤ t and apply Proposition 3.2. The remaining
case r(S) < 1 can be proved similarly.

Theorem 3.5. Let S ≥ 0 and let l and m be nonnegative integers with l ≤ m.
Further let A0, A1, . . . , Al and B0, B1, . . . , Bm be nonnegative matrices with A0+A1+
. . .+Al = S = B0 +B1 + . . .+Bm. Set

L(z) = zl+1 − zlAl − . . .− zA1 −A0, and

M(z) = zm+1 − zmBm − . . .− zB1 −B0,

and assume that

k∑
h=0

Ah ≤
k+m−l∑

h=0

Bh for all k = 0, . . . , l− 1 (3.3)

hold. Then

1 ≤ r(S) ⇒ 1 ≤ r(M) ≤ r(L), and

r(S) ≤ 1 ⇒ r(L) ≤ r(M) ≤ 1.

Proof. Let L̃(z) = zm−lL(z). Then SL̃ = SL and r(L̃) = r(L). Apply [2, Lemma
3] to L̃ and M to obtain the result. For the convenience of the reader we indicate a
proof [5, Cor. 3.5].
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Let z �= 0. Then

SM (z) = S +
(
1
z
− 1

)
(Bm−1 + . . .+B0) + . . .

+
(
1
zl

− 1
zl−1

)
(Bm−l + . . .+B0) + . . .+

(
1
zm

− 1
zm−1

)
B0.

A similar expression for SL(z) and the inequalities (3.3) show that SM (t) ≤ SL(t)
for t ≥ 1. Assume r(S) ≥ 1. Then r(L) ≥ 1 and r(M) ≥ 1 by Proposition 3.1.
From Theorem 2.1 (iv) and (v) we obtain r(SM (r(L))) ≤ r(SL(r(L))) = r(L) and
r(M) ≤ r(L).

The proof of the second implication is similar.
Remark 3.6. In the case of [7] it follows easily that the set of the inequalities

(3.3) is equivalent to w ≤ w′, where w induces the expansion graph G(A0, . . . , Al)
and w′ induces the expansion graph G(B0, . . . Bm) of G(S), respectively. Therefore
the theorem above generalizes [7, Th. 3.6].

From the theorem above we obtain the following extension of Proposition 3.1.
Corollary 3.7. Let L(z) = zl+1 − zl−pAl−p − . . . − zqAq, where p and q are

integers with 0 ≤ q ≤ l − p ≤ l, i.e., A0 = . . . = Aq−1 = Al−p+1 = . . . = Al = 0.
Then

1 ≤ r(S) ⇒ 1 ≤ r(S)
1

l−q+1 ≤ r(L) ≤ r(S)
1

p+1

r(S) ≤ 1 ⇒ r(S)
1

p+1 ≤ r(L) ≤ r(S)
1

l−q+1 ≤ 1.

Proof. Apply the theorem first to M̃ = L and L̃, where L̃(z) = zl+1 − zl−qS and
secondly to L and M , where M(z) = zl+1 − zqS.

Remark 3.8. The condition

A0 = . . . = Aq−1 = 0 = Al−p+1 = . . . = Al = 0

is equivalent to: For all (i, j) ∈ E(S) the lengths of all paths from i to j in the
expansion graph G(A0, . . . , Al) are less than l − q and greater than p. Therefore the
corollary generalizes [7, Cor. 3.7].

Corollary 3.9. If S is irreducible, r(S) �= 0 and at least one of the inequalities
in (3) is proper, then r(L) �= r(M).
Proof. The assumptions imply r(S) > 0; for r(S) = 0 and S is irreducible imply

that S is the 1× 1 zero matrix. Then all Ai and all Bj are the 1× 1 zero matrix, and
we have equality in (3.3) for all k = 0, . . . , l− 1. For all t > 0 the matrices SL(t) and
SM (t) are irreducible (cf. (3.1)), SL(t) � SM (t) for all t ∈]0, 1[ and SM (t) � SL(t) for
all t ∈]1,∞[ (cf. proof of Theorem 4). By [9, Th.2.2] this implies r(L) �= r(M).

Proposition 3.10. Let S be irreducible. Then r(L) = r(S) if and only if S = Al

or r(S) = 1.
Proof. It is clear that each of the conditions S = Al or r(S) = 1 implies r(L) =

r(S); see Proposition 3.1.
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If r(S) = 0 then S and Al are the 1 × 1 zero matrix. Let 0 < r = r(S). We
will prove that S �= Al and r(L) = r(S) �= 1 lead to a contradiction. Since S is
irreducible there exists a strictly positive eigenvector x of S to r. The adjacency
matrix A =

[
N H
G Al

]
of G(A0, . . . , Al) is irreducible and r(A) = r(L); see [6, Prop. 3

and 8]. Define

u =
[
(r −N)−1Hx

x

]
.

Then

0 � u and Au =
[
r(r −N)−1Hx

SL(r)x

]
.

Let 0 < r = r(S) < 1 and S �= Al. Then SL(r)x � Sx = rx and therefore Au �
ru. But this is false; A is irreducible and r = r(L) = r(A), therefore the range of
r−A does not contain nonzero nonnegative and nonzero nonpositive vectors; see the
considerations on p.12 in [9].

Let 1 < r = r(S) and S �= Al. Then SL(r)x � Sx = rx and therefore Au � ru.
Again this is false for the same reason.

Remark 3.11. For expansion graphs this proposition means: Let G(S) be con-
nected. Then for every expansion graph ofG(S) with adjacency matrixA, r(A) = r(S)
is equivalent to the statement that the expansion graph coincides with G(S) or
r(S) = 1.

4. Limiting cases. From Proposition 3.3 it follows that the spectral radii (of
the adjacency matrices) of all expansion graphs of G(S) lie in a bounded interval. In
this section we will give conditions for a sequence of expansion graphs of G(S) which
imply that the sequence of their spectral radii converges.

Definition 4.1. Let S be a nonnegative n×n matrix and G(S) = (V (S), E(S))
be the graph induced by S. Let (Gm)∞m=1 = (G(Am,0, . . . , Am,lm))∞m=1 be an infinite
sequence of expansion graphs of G(S). Let F ⊂ E(S). We say that (Gm)∞m=1 tends
to infinity on F if for all (i, j) ∈ F the lengths of all paths from i to j in Gm tend to
infinity if m tends to infinity, i.e.,

lim
m→∞min{h : 0 ≤ h ≤ lm, Am,lm−h(i, j) �= 0} = ∞ for all (i, j) ∈ F.

This concept generalizes immediately [7, Def. 4.2.(ii)].
Proposition 4.2. Let S be a nonnegative square matrix with r(S) > 0. Let

(Gm)∞m=1 be an infinite sequence of expansion graphs of G(S) tending to infinity on
E(S). Then lim

m→∞ r(Gm) = 1.

Proof. Let Gm = G(Am,0, . . . Am,lm) for all m = 1, 2, . . . Define

pm = min{min{h : 0 ≤ h ≤ lm, Am,h(i, j) �= 0} : (i, j) ∈ E(S)}.
Then lim

m→∞ pm = ∞. From Corollary 3.5 we obtain |1 − r(Lm)| ≤ |1 − r(S)
1

pm+1 |,
where Lm(z) = zlm+1 − zlmAm,lm − . . . − Am,0. Since r(Lm) = r(Gm) by Theorem
2.1(ii), lim

m→∞ r(Gm) = 1 follows.
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Definition 4.3. Let S be a nonnegative square matrix. Let G(A0, . . . , Al)
and G(B0, . . . , Bm) be expansion graphs of G(S). Let F ⊂ E(S). We say that
G(A0, . . . , Al) and G(B0, . . . , Bm) coincide on F if

Al−h(i, j) = Bm−h(i, j) for all h = 0, . . . ,min{l,m} and all (i, j) ∈ F.

This definition is a direct generalization of [7, Def. 4.2. (i)]. G(S) and its expansion
graph G(A0, . . . , Al) coincide on E(S) if and only of Al = S (and then Al−1 = . . . =
A0 = 0). The following theorem generalizes [7, Th. 4.3, Cor. 4.4].

Theorem 4.4. Let S be a nonnegative n× n matrix with r(S) ≥ 1. Let G be an
expansion graph of G(S) and let (Gm)∞m=1 be an infinite sequence of expansion graphs
of G(S). Let F ⊂ E(S). Assume that (Gm)∞m=1 tends to infinity on F , and G and
Gm coincide on F ′ = E(S)\F for all m = 1, 2, . . . For h = 0 . . . , l let the nonnegative
n× n matrices A′

h be given by

A′
h(i, j) =

{
Ah(i, j) if (i, j) ∈ F ′ = E(S)\F
0 otherwise.

Let G′ be the expansion graph G(A′
0 . . . , A

′
l) of G(S

′) where S′ = A′
0 + . . .+A′

l. Then
(i) r(G′) ≤ 1 implies lim

m→∞ r(Gm) = 1;

(ii) r(G′) ≥ 1 implies lim
m→∞ r(Gm) = r(G′).

Proof. Let G = G(A0, . . . , Al) and Gm = G(Am,0, . . . , Am,lm) for all m = 1, 2, . . .
and let L and Lm be the corresponding monic matrix polynomials of degree l+1 and
lm + 1, respectively.

From Theorem 2.1 (ii) and Proposition 3.1 we obtain 1 ≤ r(Gm) = r(Lm) ≤ r(S)
for all m = 1, 2 . . .

Next we show that r(G′) ≤ r(Gm) for all m = 1, 2, . . . Set L′(z) = zl+1 − zlA′
l −

. . .−A′
0. For all t > 0, all (i, j) ∈ 〈n〉 × 〈n〉 and all m = 1, 2, . . . we have

SL′(t)(i, j) = SL(t)(i, j) = SLm(t)(i, j) if (i, j) ∈ F ′, and

SL′(t)(i, j) = 0 ≤ SLm(t)(i, j) if (i, j) /∈ F ′.

This implies SL′(t) ≤ SLm(t) for all t > 0 and m = 1, 2, . . .. By Theorem 2.1 (ii), (iv)
and (v), we obtain r(G′) = r(L′) ≤ r(Lm) = r(Gm) for all m = 1, 2, . . .

Now it is clear that the implications (i) and (ii) are true if lim
m→∞ sup r(Gm) = 1.

We will show below that

lim
m→∞ sup r(Gm) > 1 implies lim

m→∞ sup r(Gm) ≤ r(G′);

this implication completes the proof of the theorem.
For all t > 1, all (i, j) ∈ F and all m = 1, 2, . . . we obtain
0 ≤ SLm(t)(i, j) = t−pmAm,lm−pm(i, j) + . . .+ t−lmAm,0(i, j) ≤ t−pmS(i, j),

where pm = min{min{h : 0 ≤ h ≤ lm, Aln,lm−h(i, j) �= 0} : (i, j) ∈ F}.
This implies lim

m→∞SLm(t) = SL′(t) for t > 1. Therefore lim
m→∞ r(SLm(t)) =

r(SL′(t)) for t > 1.
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Let r = lim
m→∞ sup r(Gm) > 1 and q ∈]1, r[. There exists a subsequence

(r(Gm(k)))∞k=1 of (r(Gm))∞m=1

such that q ≤ r(Gm(k)) = r(Lm(k)) for all k = 1, 2, . . . By Theorem 2.1 (iv) and
(v), we get q ≤ r(SLm(k)(q)) for all k = 1, 2 . . . Therefore q ≤ r(SL′ (q)) and then
q ≤ r(L′) = r(G′) by Theorem 2.1 (ii), (iv) and (v). If q tends to r we obtain
lim

m→∞ sup r(Gm) = r ≤ r(G′).

5. Level and height characteristics for graph expansions. Let G = G(S)
= (V,E) be a weighted digraph with adjacency matrix S. The reduced graph R(G) =
R(S) of G(S) is defined to be the digraph with the components of G (i.e., the maximal
connected subgraphs of G) as vertices, and there is an edge from one component γ
to another component δ in R(G) if there exist vertices i ∈ γ and j ∈ δ such that
(i, j) ∈ E. R(G) is unweighted. Let i and j be two vertices in a graph G = (V,E).
We say that i has access to j in G, if there exists a path in G starting in i and
terminating in j; i.e., there exists an integer k ≥ 1 and i0, i1, . . . , ik in V such that
i0 = i, ik = j and (im−1, im) ∈ E for m = 1, . . . , k.

Proposition 5.1. Let Gexp = G(A0, . . . , Al) = (Vexp, Eexp) be an expansion
graph of G = G(S) = (V,E). Then the following holds:

(i) For a component Γ of Gexp the following two assertions are equivalent:
(a) Γ ∩ V = ∅,
(b) Γ = {(i, j, k, p)} for some i, j, k and p with (i, j) ∈ E, 0 ≤ k ≤ l, Ak(i, j)

�= 0, 0 < p ≤ l − k and j has no access to i in G.
(ii) Let Γ be a component of Gexp with Γ∩ V �= ∅. Then Γ∩V is a component of

G, and it coincides with any component of G which has nonempty intersection
with Γ.

(iii) Let γ be a component of G. Then γ ∪ {(i, j, k, p) ∈ Vexp : i, j ∈ γ, 0 ≤ k ≤
l, Ak(i, j) �= 0, 0 < p ≤ l − k} is a component of Gexp, and it coincides with
any component of Gexp which has a nonempty intersection with γ.

(iv) Let γ and δ be components of G and let Γ and ∆ be the uniquely determined
components of Gexp with γ ⊂ Γ and δ ⊂ ∆, respectively. Then γ has access
to δ in the reduced graph R(G) if and only if Γ has access to ∆ in the reduced
graph R(Gexp).

Proof. We recall that V ⊂ Vexp, and that (i, j, k, p) ∈ Vexp if and only if (i, j) ∈
E, 0 ≤ k ≤ l, Ak(i, j) �= 0 and 0 ≤ p ≤ l − k + 1. The statements in (iii), (a) - (c)
before Theorem 6 in Section 3 of [6] imply the following three statements: Let i, j, ı̂
and ̂ be contained in V, then

(a) i and j are contained in one component of G if and only if they are contained
in one component of Gexp.

(b) Let (i, j, k, p) ∈ Vexp with 0 < p ≤ l − k and let ı̂ ∈ V . Then these vertices
are contained in a component Γ of Gexp if and only if i, j and ı̂ are contained
in Γ. This holds if and only if i, j and ı̂ are contained in one component of G
(which is Γ ∩ V ).

(c) Let (i, j, k, p) and (̂ı, ̂, k̂, p̂) be different vertices of Gexp with 0 < p ≤ l−k and
0 < p̂ ≤ l− k̂, respectively. Then these vertices are contained in a component
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Γ of Gexp if and only if i, j, ı̂, ̂ are contained in Γ. This holds if and only if
i, j, ı̂, ̂ are contained in one component of G (which is V ∩ Γ).

From these statements the first 3 statements of the proposition follow immediately.
Two components of a graph have access in the corresponding reduced graph if and
only if there are vertices in the components which have access in the graph itself; now
(iv) is clear.

Let A be a nonnegative n × n matrix and let γ ⊂ 〈n〉. By A[γ] we denote the
principal submatrix of A lying in the rows and columns indexed by γ. It is well known
that γ ⊂ G(A) is connected in G(A) if and only if A[γ] is irreducible (see [8, 4.2]).

Let G = (V,E) be a graph and γ ⊂ V . By sG(γ,G) we denote the subgraph of
G induced by γ, i.e.

sG(γ,G) = (γ,E(γ,G) = {(i, j) ∈ E : i, j ∈ γ}).

It follows that Adj(sG(γ,G)) = Adj(G)[γ].
Proposition 5.2. Let Gexp = G(A0, . . . , Al) be an expansion graph of G =

G(S) = (〈n〉, E) for some n ∈ N. Let γ be a component of G and Γ the corre-
sponding component of Gexp with γ ⊂ Γ (see Proposition 5.1). Then sG(γ,G) =
G(S[γ]), sG(Γ, Gexp) is an expansion graph of sG(γ,G) and sG(Γ, Gexp) =
G(A0[γ], . . . , Al[γ]).

The proof of this proposition is straightforward.
Let A be a nonnegative n × n matrix. A vertex γ of the reduced graph R(A) is

called a basic vertex for A if r(A[γ]) = r(A); see [11]. Sometimes such a vertex is also
called an r(A)−vertex for A; see [12].

For the next proposition note that for a matrix polynomial L with nonnegative
coefficients the reduced graph R(SL(t)) is independent of t ∈]0,∞[; see (3.1).

Proposition 5.3. Let Gexp = G(A0, . . . , Al) be an expansion graph of G(S) and
let L(z) = zl+1 − zlAl − . . .− A0. Assume r = r(Gexp) = r(SL(r)) = r(L) > 0. Let
γ be a vertex in R(SL(r)) = R(S) and let Γ be the corresponding vertex in R(Gexp)
with γ ⊂ Γ (see Proposition 5.1). Then γ is a basic vertex for SL(r) if and only if Γ
is a basic vertex for Adj(Gexp).
Proof. Let γ be a basic vertex for SL(r). Then

r(Adj(Gexp)) = r(L) = r = r(SL(r)) by Theorem 2.1
= r(SL(r)[γ]) by assumption
= r(SL[γ](r)) = r(L[γ]) by definition of L[γ]
= r(G(A0[γ], . . . , Al[γ]) by Theorem 2.1
= r(sG(Γ, Gexp)) by Proposition 5.2
= r(Adj(Gexp)[Γ]).

The reverse implication follows by a similar argument.
Let A be a nonnegative square matrix. The level of a basic vertex γ in the reduced

graph R(A) is the maximum of the numbers of basic vertices on a path in R(A) that
terminates in γ. Let m be the maximal level of the basic vertices in R(A). The level
characteristic λ(A) of A is defined to be the sequence (λ1, . . . , λm), where λk is the
number of basic vertices of R(A) of level k.
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We summarize our considerations from above in the following theorem.
Theorem 5.4. Let S be a nonnegative square matrix with positive spectral radius

r(S) and let r ∈] min{1, r(S)},max{1, r(S)}[∪{r(S)} (see Proposition 3.3). Then for
every finite sequence (A0, . . . , Al) of nonnegative matrices with A0 + . . .+Al = S and
r = r(L) = r(SL(r)) = r(Gexp) the matrices SL(r) and Adj(Gexp) have the same level
characteristics; here L denotes the monic polynomical L(z) = zl+1 − zlAl − . . .−A0

and Gexp denotes the expansion graph G(A0, . . . , Al) of G(S).
In particular: The level characteristics of the adjacency matrices of all expansion

graphs of a given weighted digraph with spectral radius 1 are identical.
For a nonnegative square matrix A let p be the maximal positive integer such that

dimker((r(A)−A)p) > dimker((r(A)−A)p−1). This number is called the index of A
or the ascent or the descent of A to its spectral radius r(A). It is equal to maximum
of the lengths of the nontrivial Jordan chains of A to r(A), to the maximum of the
orders of the Jordan blocks of A to r(A) and to the order of the pole r(A) of the
resolvent of A.

The height characteristic η(A) of A is defined to be the sequence (η1, . . . , ηp),
where ηk = dimker((r(A) −A)k)− dimker((r(A) −A)k−1). η(A) is nonincreasing.

From the Nonnegative Basis Theorem in [11, Th. 3.1] and other results see [8, p.
181] it follows that the level and the height characteristics of a nonnegative matrix
have the same lengths and η(A) majorizes λ(A), i.e., λ̂1 + . . . + λ̂k ≤ η1 + . . . + ηk

for all k ≤ p and equality for k = p, where λ̂(A) = (λ̂1, . . . , λ̂p) denotes the sequence
λ(A) reordered in a nonincreasing order; see [8, Th. 4.2].

Let the assumptions of Theorem 5.4 hold so that λ(SL(r)) = λ(Adj(Gexp)). From
[6, Cor. 2.2] and Theorem 2.1(iii) we obtain

η1(SL(r)) = dimker(r − SL(r))
= dimker(L(r))
= dimker(r −Adj(Gexp))
= η1(Adj(Gexp)).

¿From [3, Theorem 4] we obtain

η1(SL(r)) + . . .+ ηp(SL(r)) = dim ker((r − SL(r)p)
= dimK(L, r)
= dim ker(r −Adj(Gexp)p)
= η1(Adj(Gexp)) + . . .+ ηp(Adj(Gexp)).

Here K(L, r) denotes the space

{x ∈ Cn : there exists a Jordan chain x0, . . . , xm = x of L to r};

see [3, (0.3)], [6, Prop. 7]. But we can have η(SL(r)) �= η(Adj(Gexp)) as the following
example shows.
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Example 5.5. Let

A1 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1/2 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 5 2 1/2 0 0 0 0 0
0 0 0 0 0 0 3 4 1 2 0 0 0 0 0 0
0 0 0 0 0 0 2 5 4 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0




and

A0 =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 7 0 0 0 1/2 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 5 5 6 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 7 3 6 1/2 0 0 0 0 0
0 0 0 0 0 0 5 4 7 6 0 1 0 0 0 0
0 0 0 0 0 0 6 3 4 7 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1




Then S = A0 +A1 has spectral radius 1, λ(S) = (3, 3, 1, 3, 3), η(S) = (4, 4, 2, 2, 1)
and η(Adj(G(A0, A1)) = (4, 3, 3, 2, 1). Note that dimker((1 − Adj(G(A0, A1)))m) =
dimker((1 − CL)m) for m = 0, 1, 2, . . . , where CL is the companion matrix of the
matrix polynomial L(z) = z2 − zA1 −A0; see [6, Prop. 7]. This remark may help to
check the example.

Question 5.6. Let η be a finite nonincreasing sequence of positive integers.
Does there exist a nonnegative square matrix S and an integer l ≥ 1 such that for
all finite sequences λ with the same number of elements, positive integers as elements
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and which is majorized by η in the sense mentioned above there exist nonnegative
matrices A0, . . . , Al with

S = A0 + . . .+ Al and λ(Adj(G(A0, . . . , Al)) = λ ?
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