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Abstract. Necessary and sufficient conditions are obtained for a sequence {xj : j ∈ J} in a

Hilbert space to be, up to the elimination of a finite subset of J, the linear homeomorphic image of

an orthogonal basis of some Hilbert space K. This extends a similar result for orthonormal bases

due to Holub [J.R. Holub. Pre-frame operators, Besselian frames, and near-Riesz bases in Hilbert

spaces. Proc. Amer. Math. Soc., 122(3):779–785, 1994]. The proofs given here are based on simple

linear algebra techniques.
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1. Introduction. Throughout the paper, let H be a fixed separable Hilbert

space and, to avoid triviality, assume without loss of generality that dim(H) 6= 0.

The class of all bounded linear operators from a Banach space X into a Banach space

Y is denoted by B(X,Y ) and by B(X) in case X = Y . In the present paper, we

study (finite or infinite) sequences {xj}j∈J in H which generate H and are (linear)

homeomorphic images of orthogonal bases; more precisely, there exists a bijective

Hilbert space operator U ∈ B(K,H) such that

UK = H, xj = Uφj , 〈φi, φj〉 = δij ||φj ||
2, ∀ i, j ∈ J, and(1.1)

K = span{φj : j ∈ J}.

(By span(∆), we mean the closure of the linear subspace spanned by the subset ∆ of

a given Banach space.) If {φj}j∈J is orthonormal, then {xj}j∈J is called a Riesz basis.

We may and shall assume without loss of generality that J = N or J = {1, 2, . . . , n}

with n = dim(K).

J.R. Holub [4] shows that, for a sequence {xj}j∈J in H , the following assertions

(a)-(c) are equivalent.

(a) A cofinite subset of {xj}j∈J is a Riesz basis for H .
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(b) 0 < inf ||x||=1

∑

j∈J
|〈x, xj〉|

2 ≤ sup||x||=1

∑

j∈J
|〈x, xj〉|

2 < ∞; moreover, if
∑

j∈J
cjxj is a convergent series in H , then (cj)j∈J ∈ ℓ2(J).

(c) 0 < inf ||x||=1

∑

j∈J
|〈x, xj〉|

2 ≤ sup||x||=1

∑

j∈J
|〈x, xj〉|

2 < ∞; moreover, the

closure of the set R := (〈x, xj〉)j∈J : x ∈ H} is a cofinite-dimensional sub-

space of ℓ2(J).

Note that each of the conditions (a) − (c) imply that H = span{xj : j ∈ J}

and xj 6= 0 for all but finitely many j ∈ J. If J1 = {j ∈ J : xj 6= 0}, then

ℓ2(J) = ℓ2(J1)⊕ ℓ2(J\J1), where for our purposes the second summand is completely

useless. For these reasons, we assume without loss of generality that

H = span{xj : j ∈ J}, and xj 6= 0, ∀ j ∈ J.(1.2)

Also, the part 0 < inf ||x||=1

∑

j∈J
|〈x, xj〉|

2 ≤ sup||x||=1

∑

j∈J
|〈x, xj〉|

2 < ∞ of

Conditions (b) − (c) implies that the so-called analysis mapping x 7→ (〈x, xj〉) is a

continuous linear transformation with domain D and range R satisfying

D = H and R = R ⊂ ℓ2(J).(1.3)

We will, thus, make use of these weaker conditions in our generalizations of Holub’s

result to be explained below.

Let ℓ2(wj) denote the Hilbert space L2(J, 2J, µ) in which µ is a positive measure

defined by µ({j}) = wj > 0 for all j ∈ J; if 0 < infj wj ≤ supwj < ∞, then

ℓ2(J) ≡ ℓ2(wj). The analysis operator corresponding to a general sequence {xj} in H

is defined as the linear transformation T : H → CJ by Tx = (〈x, xj〉)j .

As we mentioned earlier, Condition (1.2) makes T injective and makes it possible

to define R := (TH)∩ ℓ2(||xj ||
−2) equipped with the norm inherited from ℓ2(||xj ||

−2)

and to define D := T−1(R). The first part of Condition (1.2) is an immediate conse-

quence of each of (1.1), (a), (b) or (c); the second part is imposed to avoid redundant

vectors which can occur at most finitely many times under Conditions (a)− (c). The

restriction T |D of the analysis operator T is said to be bounded if

||Tx||2 =
∑

j∈J

|〈x, xj〉|
2||xj ||

−2 ≤ b||x||2, ∀x ∈ D.(1.4)

We tried to mimic Holub’s proof to extend his results to the case that {xj}j∈J

has a cofinite subset which is a homeomorphic image of a general orthogonal basis

{φj}j∈J. However, we ended up with a new proof for the original results as well as

their extensions which seems to be of interest to linear algebraists. The proof involves

a kind of row echelon form techniques in the infinite dimensions; for this reason, we

avoid the terminologies from frame theory or wavelets.
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2. Main results. The following is the main result of the paper.

Theorem 2.1. Let {xj}j∈J be a sequence in H satisfying (1.2). If T |D is bounded,

then D = D. Moreover, the following assertions (a′)− (c′) are equivalent.

(a’) Up to a reordering of J, there exists N ∈ N such that (1.1) holds with J

replaced by {j ∈ J : j ≥ N}.

(b’) D = H, T |D is bounded, R = R and, if
∑

j∈J
cjxj is a convergent series in

H, then (cj ||xj ||)j∈J ∈ ℓ2(J).

(c’) D = H, T |D is bounded and R = R with dim(R⊥) = m for some integer m.

Proof. The proof of D = D follows from the closability of T proven by Antonie

and Balasz [1]; however, to avoid the inconveniency of the superficial differences, we

brief the proof here. Let yn ∈ D converge to y ∈ D. Then (〈yn, xj〉)j converges to

Ty = (cj)j ∈ ℓ2(||xj ||
−2) as n→ ∞. Hence, for each j ∈ J, 〈yn, xj〉 → cj as n→ ∞.

Thus, cj = 〈y, xj〉 ∀j ∈ J, and y ∈ D. This establishes the first part of the theorem.

Now, we continue the proof in three steps.

(a′) ⇒ (b′): It is sufficient to prove (b′) for J = J ∩ {N,N + 1, N + 2, . . .}. Since

||xj || ≤ ||U || ||φj || ≤ ||U || ||U−1|| ||xj || for all j ∈ J , it follows that, for any unit

vector x ∈ H ,

0 < ||U−1||−2||U ||−2 ≤ ||U ||−2||U∗x||2 = ||U ||−2
∑

j∈J

|〈U∗x, φj/||φj ||〉|
2

≤ ||Tx||2 =
∑

j∈J

|〈x, xj〉|
2||xj ||

−2 =
∑

j∈J

|〈U∗x, φj/||φj ||〉|
2(||φj ||/||xj ||)

2

≤
∑

j∈J

|〈U∗x, φj/||φj ||〉|
2 = ||U−1||2||U∗x||2 ≤ ||U−1||2||U ||2 <∞.

This shows that D = H , the linear transformations TD : H → R and T−1

D
: R → H

are bounded and, hence, the subspace R is closed.

Next, assume
∑

j∈J
cjxj is a convergent series in H for some sequence of complex

numbers (cj)j∈J. Then
∑

j∈J\J |cj |
2||xj ||

2 <∞ and

||U ||−2
∑

j∈J

|cj |
2||xj ||

2 ≤
∑

j∈J

|cj |
2||φj ||

2 = ||
∑

j∈J

cjφj ||
2 = ||U−1

∑

j∈J

cjxj ||
2 <∞.

(b′) ⇒ (c′): Trivially, D = H , T |D is bounded and R = R. Assume, if possible,

dim(R⊥) = ∞; in this case, J = N. Let {ψ1, ψ2, . . . , ψn, . . .} be any infinite sequence

of linearly independent vectors in ker(T ∗). Let {ej : j ∈ J} be the standard {0, 1}-

basis of ℓ2(||xj ||
−2). Define ξj = ||xj ||ej for all j ∈ N and observe that {ξj : j ∈ N}

is an orthonormal basis of ℓ2(||xj ||
−2). Write ψn =

∑∞
j=1

cnjξj for n ∈ N. Applying

the row echelon form techniques to infinite square arrays, we can restrict ourselves to

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 485-491, July 2016

http:/repository.uwyo.edu/ela



ELA

488 M. Kebryaee and M. Radjabalipour

an infinite subsequence of {ψn}n∈N to assume without loss of generality that

||ψn|| = 1, ψn =

∞
∑

j=kn

cnjξj and c
n,kn

6= 0(2.1)

for all n ∈ N and for some positive integers k1 < k2 < k3 < · · ·. Since T ∗ψn = 0

∀n ∈ N, we can procede by induction on n to replace the sequence k1, k2, k3, . . . by a

subsequence to assume without loss of generality that

||T ∗(

m
∑

j=kn

cnjξj)|| < 2−n and 1− 2−n ≤

m
∑

j=kn

|cnj |
2 ≤ 1 ∀m ≥ kn.

It is easy to see that T ∗ξj = ||xj ||
−1xj for all j ∈ N and, letting mn = kn+1 − 1, the

series

∞
∑

n=1

n−1/2
mn
∑

j=kn

(cnj ||xj ||
−1)xj



or T ∗
∞
∑

n=1

n−1/2
mn
∑

j=kn

cnjξj





converges. On the other hand, the series

∞
∑

n=1

n−1

mn
∑

j=kn

|(cnj ||xj ||
−1)|2||xj ||

2

diverges; a contradiction.

(c′) ⇒ (a′): Let ξj = ||xj ||ej be as in the proof of (b′) ⇒ (c′) and recall that

T ∗ej = ||xj ||
−2xj for all j ∈ J. The proof will be complete if we can eliminate a

finite subset of J to arrive at a subset J such that the restriction of T ∗ to K :=

span{ej : j ∈ J} is a homeomorphism onto H . Let m = dim(R⊥). If m ≥ 1,

choose a (not necessarily orthogonal) basis {ψ1, ψ2, . . . , ψm} for ker(T ∗) = R⊥ and

write ψi =
∑

j∈J
cijξj (j ∈ J, i = 1, 2, . . . ,m). Applying the row echelon form and

relabeling a finite number of ξj ’s, one can assume without loss of generality that

ψ1 = ξ1 + c1,m+1ξm+1 + c1,m+2ξm+2 + · · ·

ψ2 = ξ2 + c2,m+1ξm+1 + c2,m+2ξm+2 + · · ·

ψ3 = ξ3 + c3,m+1ξm+1 + c3,m+2ξm+2 + · · ·(2.2)

...
...

ψm = ξm + cm,m+1ξm+1 + cm,m+2ξm+2 + · · · .

The desired J and K can be now defined as J = J ∩ {m + 1,m + 2, . . .} and K :=

span({ej : j ∈ J}. Define U ∈ B(K,H) by U = T ∗|K . Then Uej = ||xj ||
−2xj or,

equivalently, Uξj = ||xj ||
−1xj for all j ∈ J . Let Ux = 0 for some x ∈ K and write
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x = u ⊕ v with u ∈ R and v ∈ ker(T ∗) = R⊥. Then T ∗u = T ∗v = 0 and, hence,

u = 0. Consequently, x ∈ ker(T ∗) and

x = α1ψ1 + · · ·+ αmψm = α1ξ1 + · · ·+ αmξm +
∑

j∈J

αjξj ∈ K

for some complex numbers αi, i ∈ J. Thus, α1 = α2 = · · · = αm = 0 and, hence,

x = 0. Thus, U : K → H is a bounded injective operator and it remains to show that

it is surjective.

Consider T : H → R⊕R⊥ and T ∗ : R⊕R⊥ → H with the following block matrix

representations:

T =

[

S

0

]

and T ∗ =
[

S∗ 0
]

,

in which S : H → R and S∗ : R → H are linear homeomorphisms. For arbitrary

y ∈ H , choose z ∈ R such that y = S∗z = T ∗z. There exist complex numbers cj such

that

z =
∑

j∈J

cjξj =

m
∑

j=1

cjξj +
∑

j∈J

cjξj =

m
∑

j=1

cjψj + x,

where x = −
∑m

j=1
cj

∑

i∈J cjiξi +
∑

j∈J cjξj ∈ K and Ux = T ∗x = T ∗z = y. Thus,

U : K → H is a linear homeomorphism mapping the orthogonal basis {||xj ||
2ej}j∈J

onto the sequence {xj}j∈J .

Corollary 2.2. If N and m make (a′) and (c′) equivalent, it follows necessarily

that m = N .

Proof. Note that m = dim(R⊥) is unique and, in view of the proof of (c′) ⇒ (a′),

the integer N = m establishes (a′). It remains to show that N is unique, too. For

each i = 1, 2, let Ji be a cofinite subset of J such that xj = Uiφji for j ∈ Ji for some

linear homeomorphism Ui ∈ B(Ki, H) and some orthogonal basis {φji} of a Hilbert

space Ki. Let J = J1 ∩ J2 and define H0 = span({xj : j ∈ J}). Let yj be the

projection of xj on H⊥
0 . Since {xj/||φji|| : j ∈ Ji} is a Riesz basis for H , it follows

that {yj/||φji|| : j ∈ Ji\J} is a basis for the finite dimensional space H⊥
0 for i = 1, 2.

Thus, the sets J1\J and J2\J have the same cardinality and so do the sets J\J1 and

J\J2.

Remark. It is interesting to extend Theorem 2.1 when the sequence xj is replaced

by a function x(t) with values in H as t runs in a measure space T equipped with

an arbitrary positive measure τ . The analysis operator T : H → CT is defined

as (Tx)(t) = 〈x, x(t)〉 for t ∈ T. Here, again, we define R := (TH) ∩ L2(τ) and

D = T−1(R). Again, here, if T |D is continuous and if yn is a sequence in D converging
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to D, it follows that Tyn converges pointwise to some f ∈ L2(τ) such that f(t) =

〈y, x(t)〉 a.e.[τ ]. Therefore, we can assume without loss of generality that f = Ty and,

hence, y ∈ D. Thus, D is closed. Since H is separable, we have no counterpart of

Condition (a′). Regarding the counterpart of (b′), we run into difficulty with the type

of convergence of the integral of the vector-valued functions. However, Condition (c′)

can be easily interpreted as Condition (c”) given below.

(c”) D = H , T |D is bounded and R is a cofinite-dimensional closed subspace of

L2(τ).

Strange to say, it turns out that the measure space T of Condition (c”) is nec-

essarily a countable union of atoms of τ and, hence, x(t) is essentially a sequence.

This can be deduced from results obtained by Askari-Hemmat, Dehghan and Radja-

balipour [2] and Giv and Radjabalipour [3]. Here, we present a clear short proof of

it.

Let m = dim(R⊥) and define K = H⊕Cm. Let g1, g2, . . . , gm be an orthonormal

set in R⊥ and assume they are defined everywhere on T. Define y(t) = x(t) ⊕

[ḡ1(t)φ1 + · · ·+ ḡm(t)φm], where {φ1, φ2, . . . , φm} is the standard {0, 1}-basis of Cm.

Now, if t ∈ T and k = h ⊕ [c1φ1 + · · · + cmφm] ∈ K is arbitrary, then y(t) ∈ K,

||k||2 = ||h||2 +
∑

i |ci|
2 and 〈k, y(·)〉 = 〈h, x(·)〉 + c1g1(·) + c2g2(·) + · · ·+ cmgm(·) ∈

L2(τ). Thus, letting Ty, Ry and Dy denote the analysis operator and the other

associated parameters of y(t), it follows that ||Tyk||
2 = ||Txh||

2 + |c1|
2 + · · ·+ |cm|2 ≤

(||Tx||
2 + 1)||k||2. Therefore, (c”) holds when x(t) ∈ H is replaced by y(t) ∈ K and,

in this case, Ry ⊃ Rx ∪ {g1 = Tyφ1, g2 = Tyφ2, . . . , gm = Tyφm}; i.e., Ry = L2(τ).

Next, replace y(t) by z(t) = y(t)/||y(t)|| and dτ by dν = ||y(t)||2dτ . Again, here,

||Tzw||
2 =

∫

|〈w, z(t)〉|2dν =

∫

|〈w, y(t)〉|2dτ = ||Tyw||
2 ≤ ||Ty||

2||w||2 <∞ ∀w ∈ K

which implies that Dz = K and Tz is bounded. Moreover, the mapping W :

L2(τ) → L2(ν) defined by (Wg)(t) = g(t)||y(t)||−1 is a unitary operator with in-

verse (W−1h)(t) = h(t)||y(t)|| for all g ∈ L2(τ) and all h ∈ L2(ν). In particular,

W (Tyw) = Tzw for all w ∈ K, which implies that Rz = WRy = L2(ν). Therefore,

(c”) holds for z(t) with the extra conditions that ||z(t)|| ≡ 1 and Rz = L2(ν).

Finally, let E be an arbitrary set of positive ν-measure. Then, for all t ∈ E,

ν(E)−1/2 = ν(E)−1/2χE(t) = 〈T−1
z (ν(E)−1/2χE), z(t)〉

≤ ||T−1
z || · ||ν(E)−1/2χE || · ||z(t)|| = ||T−1

z || <∞,

and, hence,

ν(E) ≥ ||T−1
z ||−2 > 0.(2.3)
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This shows that ν and, consequently, τ are supported on the union ∪j∈JEj of atomic

sets. Now, identifying Ej as {j} reveals that F is a w-frame.

Summing up, we have proven the following corollary.

Corollary 2.3. Let x : T → H and define T : H → CT by Ty = (〈y, x(t)〉) for

t ∈ T, where T is a set equipped with a positive measure τ . Let R = (TH) ∩ L2(τ)

and let D = T−1(R). Assume T |D is a bounded linear transformation. Then D = D.

Moreover, if D = H and R is a cofinite-dimensional closed subspace of L2(τ), then T

is the disjoint union of τ-atoms {Ej : j ∈ J} for some countable set J. Identifying Ej

with {j} yields a sequence {xj} satisfying (c′), where xj = x(t) for almost all t ∈ Ej .
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