

HOMEOMORPHIC IMAGES OF ORTHOGONAL BASES*

M. KEBRYAEE † AND M. RADJABALIPOUR †

Abstract. Necessary and sufficient conditions are obtained for a sequence $\{x_j : j \in J\}$ in a Hilbert space to be, up to the elimination of a finite subset of J, the linear homeomorphic image of an orthogonal basis of some Hilbert space K. This extends a similar result for orthonormal bases due to Holub [J.R. Holub. Pre-frame operators, Besselian frames, and near-Riesz bases in Hilbert spaces. *Proc. Amer. Math. Soc.*, 122(3):779–785, 1994]. The proofs given here are based on simple linear algebra techniques.

 ${\bf Key}$ words. Separable Hilbert space, Riesz basis, Orthogonal basis, Analysis operator, Cofinite-rank operator.

AMS subject classifications. 15A03, 46A35, 40A05.

1. Introduction. Throughout the paper, let H be a fixed separable Hilbert space and, to avoid triviality, assume without loss of generality that $\dim(H) \neq 0$. The class of all bounded linear operators from a Banach space X into a Banach space Y is denoted by B(X, Y) and by B(X) in case X = Y. In the present paper, we study (finite or infinite) sequences $\{x_j\}_{j\in \mathbb{J}}$ in H which generate H and are (linear) homeomorphic images of orthogonal bases; more precisely, there exists a bijective Hilbert space operator $U \in B(K, H)$ such that

(1.1)
$$UK = H, \ x_j = U\phi_j, \ \langle \phi_i, \phi_j \rangle = \delta_{ij} ||\phi_j||^2, \ \forall i, j \in \mathbb{J}, \text{ and} \\ K = \overline{\operatorname{span}} \{\phi_i : \ j \in \mathbb{J} \}.$$

(By $\overline{\operatorname{span}}(\Delta)$, we mean the closure of the linear subspace spanned by the subset Δ of a given Banach space.) If $\{\phi_j\}_{j\in\mathbb{J}}$ is orthonormal, then $\{x_j\}_{j\in\mathbb{J}}$ is called a Riesz basis. We may and shall assume without loss of generality that $\mathbb{J} = \mathbb{N}$ or $\mathbb{J} = \{1, 2, \ldots, n\}$ with $n = \dim(K)$.

J.R. Holub [4] shows that, for a sequence $\{x_j\}_{j\in\mathbb{J}}$ in H, the following assertions (a)-(c) are equivalent.

(a) A cofinite subset of $\{x_j\}_{j \in \mathbb{J}}$ is a Riesz basis for H.

^{*}Received by the editors on June 12, 2016. Accepted for publication on June 30, 2016. Handling Editor: Harm Bart.

[†]Department of Mathematics and Kerman Science and Research Branch, Islamic Azad University, Kerman, Iran (mradjabalipour@gmail.com). The research is supported by Allameh Tabatabaee's grant from Iranian National Elite Foundation.

M. Kebryaee and M. Radjabalipour

- (b) $0 < \inf_{||x||=1} \sum_{j \in \mathbb{J}} |\langle x, x_j \rangle|^2 \le \sup_{||x||=1} \sum_{j \in \mathbb{J}} |\langle x, x_j \rangle|^2 < \infty$; moreover, if $\sum_{j \in \mathbb{J}} c_j x_j$ is a convergent series in H, then $(c_j)_{j \in \mathbb{J}} \in \ell^2(\mathbb{J})$. (c) $0 < \inf_{||x||=1} \sum_{j \in \mathbb{J}} |\langle x, x_j \rangle|^2 \le \sup_{||x||=1} \sum_{j \in \mathbb{J}} |\langle x, x_j \rangle|^2 < \infty$; moreover, the closure of the set $\mathfrak{R} := (\langle x, x_j \rangle)_{j \in \mathbb{J}} : x \in H$ is a cofinite-dimensional subspace of $\ell^2(\mathbb{J})$.

Note that each of the conditions (a) - (c) imply that $H = \overline{\text{span}}\{x_j : j \in \mathbb{J}\}$ and $x_j \neq 0$ for all but finitely many $j \in \mathbb{J}$. If $\mathbb{J}_1 = \{j \in \mathbb{J} : x_j \neq 0\}$, then $\ell^2(\mathbb{J}) = \ell^2(\mathbb{J}_1) \oplus \ell^2(\mathbb{J} \setminus \mathbb{J}_1)$, where for our purposes the second summand is completely useless. For these reasons, we assume without loss of generality that

(1.2)
$$H = \overline{\operatorname{span}}\{x_j: j \in \mathbb{J}\}, \text{ and } x_j \neq 0, \forall j \in \mathbb{J}.$$

Also, the part $0 < \inf_{||x||=1} \sum_{j \in \mathbb{J}} |\langle x, x_j \rangle|^2 \le \sup_{||x||=1} \sum_{j \in \mathbb{J}} |\langle x, x_j \rangle|^2 < \infty$ of Conditions (b) - (c) implies that the so-called analysis mapping $x \mapsto (\langle x, x_i \rangle)$ is a continuous linear transformation with domain \mathfrak{D} and range \mathfrak{R} satisfying

(1.3)
$$\mathfrak{D} = H \text{ and } \mathfrak{R} = \overline{\mathfrak{R}} \subset \ell^2(\mathbb{J}).$$

We will, thus, make use of these weaker conditions in our generalizations of Holub's result to be explained below.

Let $\ell^2(w_j)$ denote the Hilbert space $L^2(\mathbb{J}, 2^{\mathbb{J}}, \mu)$ in which μ is a positive measure defined by $\mu(\{j\}) = w_i > 0$ for all $j \in \mathbb{J}$; if $0 < \inf_j w_j \leq \sup w_j < \infty$, then $\ell^2(\mathbb{J}) \equiv \ell^2(w_i)$. The analysis operator corresponding to a general sequence $\{x_i\}$ in H is defined as the linear transformation $T: H \to \mathbb{C}^{\mathbb{J}}$ by $Tx = (\langle x, x_i \rangle)_i$.

As we mentioned earlier, Condition (1.2) makes T injective and makes it possible to define $\mathfrak{R} := (TH) \cap \ell^2(||x_j||^{-2})$ equipped with the norm inherited from $\ell^2(||x_j||^{-2})$ and to define $\mathfrak{D} := T^{-1}(\mathfrak{R})$. The first part of Condition (1.2) is an immediate consequence of each of (1.1), (a), (b) or (c); the second part is imposed to avoid redundant vectors which can occur at most finitely many times under Conditions (a) - (c). The restriction $T|_{\mathfrak{D}}$ of the analysis operator T is said to be bounded if

(1.4)
$$||Tx||^{2} = \sum_{j \in \mathbb{J}} |\langle x, x_{j} \rangle|^{2} ||x_{j}||^{-2} \le b||x||^{2}, \ \forall x \in \mathfrak{D}.$$

We tried to mimic Holub's proof to extend his results to the case that $\{x_i\}_{i \in \mathbb{J}}$ has a cofinite subset which is a homeomorphic image of a general orthogonal basis $\{\phi_i\}_{i\in\mathbb{J}}$. However, we ended up with a new proof for the original results as well as their extensions which seems to be of interest to linear algebraists. The proof involves a kind of row echelon form techniques in the infinite dimensions; for this reason, we avoid the terminologies from frame theory or wavelets.

486

Homeomorphic Images of Orthogonal Bases

2. Main results. The following is the main result of the paper.

THEOREM 2.1. Let $\{x_j\}_{j\in\mathbb{J}}$ be a sequence in H satisfying (1.2). If $T|_{\mathfrak{D}}$ is bounded, then $\mathfrak{D} = \overline{\mathfrak{D}}$. Moreover, the following assertions (a') - (c') are equivalent.

- (a') Up to a reordering of \mathbb{J} , there exists $N \in \mathbb{N}$ such that (1.1) holds with \mathbb{J} replaced by $\{j \in \mathbb{J} : j \geq N\}$.
- (b') $\mathfrak{D} = H$, $T|_{\mathfrak{D}}$ is bounded, $\mathfrak{R} = \overline{\mathfrak{R}}$ and, if $\sum_{j \in \mathbb{J}} c_j x_j$ is a convergent series in H, then $(c_j||x_j||)_{j \in \mathbb{J}} \in \ell^2(\mathbb{J})$.
- (c') $\mathfrak{D} = H, T|_{\mathfrak{D}}$ is bounded and $\mathfrak{R} = \overline{\mathfrak{R}}$ with $\dim(\mathfrak{R}^{\perp}) = m$ for some integer m.

Proof. The proof of $\mathfrak{D} = \overline{\mathfrak{D}}$ follows from the closability of T proven by Antonie and Balasz [1]; however, to avoid the inconveniency of the superficial differences, we brief the proof here. Let $y_n \in \mathfrak{D}$ converge to $y \in \overline{\mathfrak{D}}$. Then $(\langle y_n, x_j \rangle)_j$ converges to $Ty = (c_j)_j \in \ell^2(||x_j||^{-2})$ as $n \to \infty$. Hence, for each $j \in \mathbb{J}$, $\langle y_n, x_j \rangle \to c_j$ as $n \to \infty$. Thus, $c_j = \langle y, x_j \rangle \ \forall j \in \mathbb{J}$, and $y \in \mathfrak{D}$. This establishes the first part of the theorem. Now, we continue the proof in three steps.

 $(a') \Rightarrow (b')$: It is sufficient to prove (b') for $J = \mathbb{J} \cap \{N, N+1, N+2, \ldots\}$. Since $||x_j|| \leq ||U|| ||\phi_j|| \leq ||U|| ||U^{-1}|| ||x_j||$ for all $j \in J$, it follows that, for any unit vector $x \in H$,

$$\begin{aligned} 0 &< ||U^{-1}||^{-2} ||U||^{-2} \leq ||U||^{-2} ||U^*x||^2 = ||U||^{-2} \sum_{j \in J} |\langle U^*x, \phi_j / ||\phi_j|| \rangle|^2 \\ &\leq ||Tx||^2 = \sum_{j \in J} |\langle x, x_j \rangle|^2 ||x_j||^{-2} = \sum_{j \in J} |\langle U^*x, \phi_j / ||\phi_j|| \rangle|^2 (||\phi_j|| / ||x_j||)^2 \\ &\leq \sum_{j \in J} |\langle U^*x, \phi_j / ||\phi_j|| \rangle|^2 = ||U^{-1}||^2 ||U^*x||^2 \leq ||U^{-1}||^2 ||U||^2 < \infty. \end{aligned}$$

This shows that $\mathfrak{D} = H$, the linear transformations $T_{\mathfrak{D}} : H \to \mathfrak{R}$ and $T_{\mathfrak{D}}^{-1} : \mathfrak{R} \to H$ are bounded and, hence, the subspace \mathfrak{R} is closed.

Next, assume $\sum_{j \in \mathbb{J}} c_j x_j$ is a convergent series in H for some sequence of complex numbers $(c_j)_{j \in \mathbb{J}}$. Then $\sum_{j \in \mathbb{J} \setminus J} |c_j|^2 ||x_j||^2 < \infty$ and

$$||U||^{-2} \sum_{j \in J} |c_j|^2 ||x_j||^2 \le \sum_{j \in J} |c_j|^2 ||\phi_j||^2 = ||\sum_{j \in J} c_j \phi_j||^2 = ||U^{-1} \sum_{j \in J} c_j x_j||^2 < \infty.$$

 $(b') \Rightarrow (c')$: Trivially, $\mathfrak{D} = H, T|_{\mathfrak{D}}$ is bounded and $\mathfrak{R} = \overline{\mathfrak{R}}$. Assume, if possible, dim $(\mathfrak{R}^{\perp}) = \infty$; in this case, $\mathbb{J} = \mathbb{N}$. Let $\{\psi_1, \psi_2, \ldots, \psi_n, \ldots\}$ be any infinite sequence of linearly independent vectors in ker (T^*) . Let $\{e_j : j \in \mathbb{J}\}$ be the standard $\{0, 1\}$ basis of $\ell^2(||x_j||^{-2})$. Define $\xi_j = ||x_j||e_j$ for all $j \in \mathbb{N}$ and observe that $\{\xi_j : j \in \mathbb{N}\}$ is an orthonormal basis of $\ell^2(||x_j||^{-2})$. Write $\psi_n = \sum_{j=1}^{\infty} c_{nj}\xi_j$ for $n \in \mathbb{N}$. Applying the row echelon form techniques to infinite square arrays, we can restrict ourselves to

487

488

M. Kebryaee and M. Radjabalipour

an infinite subsequence of $\{\psi_n\}_{n\in\mathbb{N}}$ to assume without loss of generality that

(2.1)
$$||\psi_n|| = 1, \ \psi_n = \sum_{j=k_n}^{\infty} c_{nj}\xi_j \text{ and } c_{n,k_n} \neq 0$$

for all $n \in \mathbb{N}$ and for some positive integers $k_1 < k_2 < k_3 < \cdots$. Since $T^*\psi_n = 0$ $\forall n \in \mathbb{N}$, we can proceed by induction on n to replace the sequence k_1, k_2, k_3, \ldots by a subsequence to assume without loss of generality that

$$||T^*(\sum_{j=k_n}^m c_{nj}\xi_j)|| < 2^{-n} \text{ and } 1 - 2^{-n} \le \sum_{j=k_n}^m |c_{nj}|^2 \le 1 \ \forall m \ge k_n.$$

It is easy to see that $T^*\xi_j = ||x_j||^{-1}x_j$ for all $j \in \mathbb{N}$ and, letting $m_n = k_{n+1} - 1$, the series

$$\sum_{n=1}^{\infty} n^{-1/2} \sum_{j=k_n}^{m_n} (c_{nj} ||x_j||^{-1}) x_j \quad \left(\text{or } T^* \sum_{n=1}^{\infty} n^{-1/2} \sum_{j=k_n}^{m_n} c_{nj} \xi_j \right)$$

converges. On the other hand, the series

$$\sum_{n=1}^{\infty} n^{-1} \sum_{j=k_n}^{m_n} |(c_{nj}||x_j||^{-1})|^2 ||x_j||^2$$

diverges; a contradiction.

 $(c') \Rightarrow (a')$: Let $\xi_j = ||x_j||e_j$ be as in the proof of $(b') \Rightarrow (c')$ and recall that $T^*e_j = ||x_j||^{-2}x_j$ for all $j \in \mathbb{J}$. The proof will be complete if we can eliminate a finite subset of \mathbb{J} to arrive at a subset J such that the restriction of T^* to $K := \overline{\operatorname{span}}\{e_j : j \in J\}$ is a homeomorphism onto H. Let $m = \dim(\mathfrak{R}^{\perp})$. If $m \geq 1$, choose a (not necessarily orthogonal) basis $\{\psi_1, \psi_2, \ldots, \psi_m\}$ for $\ker(T^*) = \mathfrak{R}^{\perp}$ and write $\psi_i = \sum_{j \in \mathbb{J}} c_{ij}\xi_j$ $(j \in \mathbb{J}, i = 1, 2, \ldots, m)$. Applying the row echelon form and relabeling a finite number of ξ_j 's, one can assume without loss of generality that

(2.2)

$$\psi_{1} = \xi_{1} + c_{1,m+1}\xi_{m+1} + c_{1,m+2}\xi_{m+2} + \cdots$$

$$\psi_{2} = \xi_{2} + c_{2,m+1}\xi_{m+1} + c_{2,m+2}\xi_{m+2} + \cdots$$

$$\psi_{3} = \xi_{3} + c_{3,m+1}\xi_{m+1} + c_{3,m+2}\xi_{m+2} + \cdots$$

$$\vdots$$

$$\psi_{m} = \xi_{m} + c_{m,m+1}\xi_{m+1} + c_{m,m+2}\xi_{m+2} + \cdots$$

The desired J and K can be now defined as $J = \mathbb{J} \cap \{m+1, m+2, \ldots\}$ and $K := \overline{\operatorname{span}}(\{e_j : j \in J\})$. Define $U \in B(K, H)$ by $U = T^*|_K$. Then $Ue_j = ||x_j||^{-2}x_j$ or, equivalently, $U\xi_j = ||x_j||^{-1}x_j$ for all $j \in J$. Let Ux = 0 for some $x \in K$ and write

Homeomorphic Images of Orthogonal Bases

 $x = u \oplus v$ with $u \in \mathfrak{R}$ and $v \in \ker(T^*) = \mathfrak{R}^{\perp}$. Then $T^*u = T^*v = 0$ and, hence, u = 0. Consequently, $x \in \ker(T^*)$ and

$$x = \alpha_1 \psi_1 + \dots + \alpha_m \psi_m = \alpha_1 \xi_1 + \dots + \alpha_m \xi_m + \sum_{j \in J} \alpha_j \xi_j \in K$$

for some complex numbers α_i , $i \in \mathbb{J}$. Thus, $\alpha_1 = \alpha_2 = \cdots = \alpha_m = 0$ and, hence, x = 0. Thus, $U : K \to H$ is a bounded injective operator and it remains to show that it is surjective.

Consider $T: H \to \Re \oplus \Re^{\perp}$ and $T^*: \Re \oplus \Re^{\perp} \to H$ with the following block matrix representations:

$$T = \begin{bmatrix} S \\ 0 \end{bmatrix}$$
 and $T^* = \begin{bmatrix} S^* & 0 \end{bmatrix}$,

in which $S : H \to \mathfrak{R}$ and $S^* : \mathfrak{R} \to H$ are linear homeomorphisms. For arbitrary $y \in H$, choose $z \in \mathfrak{R}$ such that $y = S^*z = T^*z$. There exist complex numbers c_j such that

$$z = \sum_{j \in \mathbb{J}} c_j \xi_j = \sum_{j=1}^m c_j \xi_j + \sum_{j \in J} c_j \xi_j = \sum_{j=1}^m c_j \psi_j + x,$$

where $x = -\sum_{j=1}^{m} c_j \sum_{i \in J} c_{ji} \xi_i + \sum_{j \in J} c_j \xi_j \in K$ and $Ux = T^*x = T^*z = y$. Thus, $U: K \to H$ is a linear homeomorphism mapping the orthogonal basis $\{||x_j||^2 e_j\}_{j \in J}$ onto the sequence $\{x_j\}_{j \in J}$. \square

COROLLARY 2.2. If N and m make (a') and (c') equivalent, it follows necessarily that m = N.

Proof. Note that $m = \dim(\mathfrak{R}^{\perp})$ is unique and, in view of the proof of $(c') \Rightarrow (a')$, the integer N = m establishes (a'). It remains to show that N is unique, too. For each i = 1, 2, let J_i be a cofinite subset of \mathbb{J} such that $x_j = U_i \phi_{ji}$ for $j \in J_i$ for some linear homeomorphism $U_i \in B(K_i, H)$ and some orthogonal basis $\{\phi_{ji}\}$ of a Hilbert space K_i . Let $J = J_1 \cap J_2$ and define $H_0 = \overline{\operatorname{span}}(\{x_j : j \in J\})$. Let y_j be the projection of x_j on H_0^{\perp} . Since $\{x_j/||\phi_{ji}||: j \in J_i\}$ is a Riesz basis for H, it follows that $\{y_j/||\phi_{ji}||: j \in J_i \setminus J\}$ is a basis for the finite dimensional space H_0^{\perp} for i = 1, 2. Thus, the sets $J_1 \setminus J$ and $J_2 \setminus J$ have the same cardinality and so do the sets $\mathbb{J} \setminus J_1$ and $\mathbb{J} \setminus J_2$. \square

REMARK. It is interesting to extend Theorem 2.1 when the sequence x_j is replaced by a function x(t) with values in H as t runs in a measure space \mathfrak{T} equipped with an arbitrary positive measure τ . The analysis operator $T : H \to \mathbb{C}^{\mathfrak{T}}$ is defined as $(Tx)(t) = \langle x, x(t) \rangle$ for $t \in \mathfrak{T}$. Here, again, we define $\mathfrak{R} := (TH) \cap L^2(\tau)$ and $\mathfrak{D} = T^{-1}(\mathfrak{R})$. Again, here, if $T|_{\mathfrak{D}}$ is continuous and if y_n is a sequence in \mathfrak{D} converging

489

490

M. Kebryaee and M. Radjabalipour

to $\overline{\mathfrak{D}}$, it follows that Ty_n converges pointwise to some $f \in L^2(\tau)$ such that $f(t) = \langle y, x(t) \rangle$ a.e. $[\tau]$. Therefore, we can assume without loss of generality that f = Ty and, hence, $y \in \mathfrak{D}$. Thus, \mathfrak{D} is closed. Since H is separable, we have no counterpart of Condition (a'). Regarding the counterpart of (b'), we run into difficulty with the type of convergence of the integral of the vector-valued functions. However, Condition (c') can be easily interpreted as Condition (c'') given below.

(c") $\mathfrak{D} = H, T|_{\mathfrak{D}}$ is bounded and \mathfrak{R} is a cofinite-dimensional closed subspace of $L^2(\tau)$.

Strange to say, it turns out that the measure space \mathfrak{T} of Condition (c") is necessarily a countable union of atoms of τ and, hence, x(t) is essentially a sequence. This can be deduced from results obtained by Askari-Hemmat, Dehghan and Radjabalipour [2] and Giv and Radjabalipour [3]. Here, we present a clear short proof of it.

Let $m = \dim(\mathfrak{R}^{\perp})$ and define $K = H \oplus \mathbb{C}^m$. Let g_1, g_2, \ldots, g_m be an orthonormal set in \mathfrak{R}^{\perp} and assume they are defined everywhere on \mathfrak{T} . Define $y(t) = x(t) \oplus [\bar{g}_1(t)\phi_1 + \cdots + \bar{g}_m(t)\phi_m]$, where $\{\phi_1, \phi_2, \ldots, \phi_m\}$ is the standard $\{0, 1\}$ -basis of \mathbb{C}^m . Now, if $t \in \mathfrak{T}$ and $k = h \oplus [c_1\phi_1 + \cdots + c_m\phi_m] \in K$ is arbitrary, then $y(t) \in K$, $||k||^2 = ||h||^2 + \sum_i |c_i|^2$ and $\langle k, y(\cdot) \rangle = \langle h, x(\cdot) \rangle + c_1g_1(\cdot) + c_2g_2(\cdot) + \cdots + c_mg_m(\cdot) \in L^2(\tau)$. Thus, letting T_y , \mathfrak{R}_y and \mathfrak{D}_y denote the analysis operator and the other associated parameters of y(t), it follows that $||T_yk||^2 = ||T_xh||^2 + |c_1|^2 + \cdots + |c_m|^2 \leq (||T_x||^2 + 1)||k||^2$. Therefore, (c^r) holds when $x(t) \in H$ is replaced by $y(t) \in K$ and, in this case, $\mathfrak{R}_y \supset \mathfrak{R}_x \cup \{g_1 = T_y\phi_1, g_2 = T_y\phi_2, \ldots, g_m = T_y\phi_m\}$; i.e., $\mathfrak{R}_y = L^2(\tau)$.

Next, replace y(t) by z(t) = y(t)/||y(t)|| and $d\tau$ by $d\nu = ||y(t)||^2 d\tau$. Again, here,

$$||T_z w||^2 = \int |\langle w, z(t) \rangle|^2 d\nu = \int |\langle w, y(t) \rangle|^2 d\tau = ||T_y w||^2 \le ||T_y||^2 ||w||^2 < \infty \ \forall w \in K$$

which implies that $\mathfrak{D}_z = K$ and T_z is bounded. Moreover, the mapping $W : L^2(\tau) \to L^2(\nu)$ defined by $(Wg)(t) = g(t)||y(t)||^{-1}$ is a unitary operator with inverse $(W^{-1}h)(t) = h(t)||y(t)||$ for all $g \in L^2(\tau)$ and all $h \in L^2(\nu)$. In particular, $W(T_yw) = T_zw$ for all $w \in K$, which implies that $\mathfrak{R}_z = W\mathfrak{R}_y = L^2(\nu)$. Therefore, (c") holds for z(t) with the extra conditions that $||z(t)|| \equiv 1$ and $\mathfrak{R}_z = L^2(\nu)$.

Finally, let E be an arbitrary set of positive ν -measure. Then, for all $t \in E$,

$$\nu(E)^{-1/2} = \nu(E)^{-1/2} \chi_E(t) = \langle T_z^{-1}(\nu(E)^{-1/2} \chi_E), z(t) \rangle$$

$$\leq ||T_z^{-1}|| \cdot ||\nu(E)^{-1/2} \chi_E|| \cdot ||z(t)|| = ||T_z^{-1}|| < \infty,$$

and, hence,

(2.3)
$$\nu(E) \ge ||T_z^{-1}||^{-2} > 0.$$

491

Homeomorphic Images of Orthogonal Bases

This shows that ν and, consequently, τ are supported on the union $\bigcup_{j \in \mathbb{J}} E_j$ of atomic sets. Now, identifying E_j as $\{j\}$ reveals that F is a *w*-frame.

Summing up, we have proven the following corollary.

COROLLARY 2.3. Let $x: \mathfrak{T} \to H$ and define $T: H \to \mathbb{C}^{\mathfrak{T}}$ by $Ty = (\langle y, x(t) \rangle)$ for $t \in \mathfrak{T}$, where \mathfrak{T} is a set equipped with a positive measure τ . Let $\mathfrak{R} = (TH) \cap L^2(\tau)$ and let $\mathfrak{D} = T^{-1}(\mathfrak{R})$. Assume $T|_{\mathfrak{D}}$ is a bounded linear transformation. Then $\overline{\mathfrak{D}} = \mathfrak{D}$. Moreover, if $\mathfrak{D} = H$ and \mathfrak{R} is a cofinite-dimensional closed subspace of $L^2(\tau)$, then \mathfrak{T} is the disjoint union of τ -atoms $\{E_j: j \in \mathbb{J}\}$ for some countable set \mathbb{J} . Identifying E_j with $\{j\}$ yields a sequence $\{x_j\}$ satisfying (c'), where $x_j = x(t)$ for almost all $t \in E_j$.

REFERENCES

- J.-P. Antonie and P. Balasz. Frames, semi-frames and Hilbert scales. Numer. Funct. Anal. Optimiz., 33:1–34, 2012.
- [2] A. Askari-Hemmat, M.A. Dehghan, and M. Radjabalipour. Generalized frames and their redudancy. Proc. Amer. Math. Soc., 129(4):1143–1147, 2000.
- [3] H.H. Giv and M. Radjabalipour. On the structure and properties of lower bounded analytic frames. Iran. J. Sci. Technol. (IJST), 37(3):227–230, 2013.
- [4] J.R. Holub. Pre-frame operators, Besselian frames, and near-Riesz bases in Hilbert spaces. Proc. Amer. Math. Soc., 122(3):779–785, 1994.