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A NEW ERROR BOUND FOR LINEAR COMPLEMENTARITY

PROBLEMS FOR B-MATRICES∗
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Abstract. A new error bound for the linear complementarity problem is given when the involved

matrix is a B-matrix. It is shown that this bound improves the corresponding result in [M. Garćıa-

Esnaola and J.M. Peña. Error bounds for linear complementarity problems for B-matrices. Appl.

Math. Lett., 22:1071–1075, 2009.] in some cases, and that it is sharper than that in [C.Q. Li and

Y.T. Li. Note on error bounds for linear complementarity problems for B-matrices. Appl. Math.

Lett., 57:108–113, 2016.].
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1. Introduction. A linear complementarity problem LCP(M, q) tries to find a

vector x ∈ Rn such that

x ≥ 0, Mx+ q ≥ 0, (Mx+ q)Tx = 0,(1.1)

where M = [mij ] ∈ Rn×n and q ∈ Rn. The LCP (M, q) has various applications

in the Nash equilibrium point of a bimatrix game, the contact problem and the free

boundary problem for journal bearing; for details, see [4, 5, 17].

It is well-known that the LCP(M, q) has a unique solution for any q ∈ Rn if and

only if M is a P -matrix [5]. Here, a matrix M ∈ Rn×n is called a P -matrix if all

its principal minors are positive [6]. In [3], Chen and Xiang gave the following error

bound of the LCP(M, q) when M is a P -matrix:

||x− x∗||∞ ≤ max
d∈[0,1]n

||(I −D +DM)−1||∞||r(x)||∞,

where x∗ is the solution of the LCP(M, q), r(x) = min{x,Mx + q}, D = diag(di)

with 0 ≤ di ≤ 1, and the min operator r(x) denotes the componentwise minimum of

two vectors. If M satisfies certain structure, then some bounds of max
d∈[0,1]n

||(I −D +

DM)−1||∞ can be derived; for details, see [2, 7, 8, 10, 14] and references therein.
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When M is a B-matrix introduced by Peña in [6] as a subclass of P -matrices,

Garćıa-Esnaola and Peña in [10] presented the following upper bound which is only

related with the entries of M . Here a real matrix M = [mij ] ∈ Rn×n is called a

B-matrix [6] if for each i ∈ N = {1, 2, . . . , n},

∑

k∈N

mik > 0, and
1

n

(

∑

k∈N

mik

)

> mij for any j ∈ N and j 6= i.(1.2)

Theorem 1.1. [10, Theorem 2.2] Let M = [mij ] ∈ Rn×n be a B-matrix with the

form

M = B+ + C,(1.3)

where

B+ = [bij ] =







m11 − r+1 · · · m1n − r+1
...

...

mn1 − r+n · · · mnn − r+n






,(1.4)

and r+i = max{0,mij |j 6= i}. Then

max
d∈[0,1]n

||(I −D +DM)−1||∞ ≤
n− 1

min{β, 1}
,(1.5)

where β = min
i∈N

{βi} and βi = bii −
∑

j 6=i

|bij |.

As shown in [15], if the diagonal dominance of B+ is weak, i.e.,

β = min
i∈N

{βi} = min
i∈N







bii −
∑

j 6=i

|bij |







is small, then the bound (1.5) may be very large when M is a B-matrix, which leads to

that the estimate in (1.5) is always inaccurate, for details, see [15, 16]. To improve the

bound (1.5), Li and Li [15] gave the following bound for max
d∈[0,1]n

||(I −D+DM)−1||∞

when M is a B-matrix.

Theorem 1.2. [15, Theorem 4] Let M = [mij ] ∈ Rn×n be a B-matrix with the

form M = B+ + C, where B+ = [bij ] is the matrix of (1.4). Then

max
d∈[0,1]n

||(I −D +DM)−1||∞ ≤
n
∑

i=1

n− 1

min
{

β̄i, 1
}

i−1
∏

j=1



1 +
1

β̄j

n
∑

k=j+1

|bjk|



 ,(1.6)
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where β̄i = bii −
n
∑

j=i+1

|bij |li(B
+), lk(B

+) = max
k≤i≤n







1
|bii|

n
∑

j=k,

j 6=i

|bij |







and

i−1
∏

j=1



1 +
1

β̄j

n
∑

k=j+1

|bjk|



 = 1 if i = 1.

Very recently, when M is a weakly chained diagonally dominant B-matrix, Li

and Li [16] gave a bound for max
d∈[0,1]n

||(I − D + DM)−1||∞. This bound holds true

for the case that M is a B-matrix because a B-matrix is a weakly chained diagonally

dominant B-matrix [16].

Theorem 1.3. [16, Corollary 1] Let M = [mij ] ∈ Rn×n be a B-matrix with the

form M = B+ + C, where B+ = [bij ] is the matrix of (1.4). Then

max
d∈[0,1]n

||(I −D +DM)−1||∞ ≤

n
∑

i=1





n− 1

min{β̃i, 1}

i−1
∏

j=1

bjj

β̃j



 ,

where β̃i = bii −
n
∑

j=i+1

|bij | > 0 and
i−1
∏

j=1

bjj

β̃j

= 1 if i = 1.

In this paper, we also focus on the error bound for the LCP(M, q), and gave a

new bound for max
d∈[0,1]n

||(I −D+DM)−1||∞ when M is a B-matrix. It is shown that

this bound is more effective to estimate max
d∈[0,1]n

||(I − D + DM)−1||∞ than that in

Theorem 1.1, and sharper than those in Theorems 1.2 and 1.3.

2. Main results. We first recall some definitions. A matrix A = [aij ] ∈ Cn×n is

called a strictly diagonally dominant (SDD) matrix if for each i ∈ N , |aii| >
n
∑

j=1,

j 6=i

|aij |.

It is well-known that an SDD matrix is nonsingular [1]. A matrix A = [aij ] is called

a Z-matrix if aij ≤ 0 for any i 6= j, and a nonsingular M -matrix if A is a Z-matrix

with A−1 being nonnegative [1]. Next, several lemmas which will be used later are

given.

Lemma 2.1. [18, Theorem 3.2] Let A = [aij ] ∈ Rn×n be an SDD M -matrix.

Then

||A−1||∞ ≤
n
∑

i=1





1

aii(1− ui(A)li(A))

i−1
∏

j=1

1

1− uj(A)lj(A)



 ,
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where ui(A) =
1

|aii|

n
∑

j=i+1

|aij |, lk(A) = max
k≤i≤n







1
|aii|

n
∑

j=k,

j 6=i

|aij |







and

i−1
∏

j=1

1

1− uj(A)lj(A)
= 1 if i = 1.

Lemma 2.2. [15, Lemma 3] Let γ > 0 and η ≥ 0. Then for any x ∈ [0, 1],

1

1− x+ γx
≤

1

min{γ, 1}
(2.1)

and

ηx

1− x+ γx
≤

η

γ
.(2.2)

Lemma 2.3. [16, Lemma 5] Let A = [aij ] ∈ Rn×n with

aii >

n
∑

j=i+1

|aij | for each i ∈ N.

Then for any xi ∈ [0, 1], i ∈ N ,

1− xi + aiixi

1− xi + aiixi −
n
∑

j=i+1

|aij |xi

≤
aii

aii −
n
∑

j=i+1

|aij |
.

Theorem 2.4. Let M = [mij ] ∈ Rn×n be a B-matrix with the form M = B++C,

where B+ = [bij ] is the matrix of (1.4). Then

max
d∈[0,1]n

||(I −D +DM)−1||∞ ≤

n
∑

i=1

n− 1

min
{

β̄i, 1
}

i−1
∏

j=1

bjj

β̄j

,(2.3)

where β̄i is defined in Theorem 1.2 and
i−1
∏

j=1

bjj

β̄j
= 1 if i = 1.

Proof. Let MD = I −D +DM . Then

MD = I −D +DM = I −D +D(B+ + C) = B+
D + CD,

where B+
D = I − D + DB+ = [bij ]. Similarly to the proof of Theorem 2.2 in [10],

we can obtain that B+
D is an SDD M -matrix with positive diagonal elements and

CD = DC, and that

||M−1
D ||∞ ≤ ||(I + (B+

D)−1CD)−1||∞||(B+
D)−1||∞ ≤ (n− 1)||(B+

D)−1||∞.(2.4)
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By Lemma 2.1,

||(B+
D)−1||∞ ≤

n
∑

i=1

(

1

(1− di + biidi)
(

1− ui(B
+
D)li(B

+
D)
)(2.5)

×

i−1
∏

j=1

1

1− uj(B
+
D)lj(B

+
D)



 ,

where

ui(B
+
D) =

n
∑

j=i+1

|bij |di

1− di + biidi
, and lk(B

+
D) = max

k≤i≤n























n
∑

j=k,

j 6=i

|bij |di

1− di + biidi























.

By Lemma 2.2, we can easily get that for each k ∈ N ,

lk(B
+
D) ≤ max

k≤i≤n











1

bii

n
∑

j=k,

j 6=i

|bij |











= lk(B
+) < 1,(2.6)

and that for each i ∈ N ,

1

(1− di + biidi)
(

1− ui(B
+
D)li(B

+
D)
) =

1

1− di + biidi −
n
∑

j=i+1

|bij |dili(B
+
D)

≤
1

min

{

bii −
n
∑

j=i+1

|bij |li(B+), 1

}

=
1

min
{

β̄i, 1
} .(2.7)

Furthermore, by Lemma 2.3,

1

1− ui(B
+
D)li(B

+
D)

=
1− di + biidi

1− di + biidi −
n
∑

j=i+1

|bij |dili(B
+
D)

≤
bii

β̄i

.(2.8)

By (2.5), (2.6), (2.7) and (2.8), we have

||(B+
D)−1||∞ ≤

1

min
{

β̄1, 1
} +

n
∑

i=2

1

min
{

β̄i, 1
}

i−1
∏

j=1

bjj

β̄j

.(2.9)

The conclusion follows from (2.4) and (2.9).
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The comparisons of the bounds in Theorems 1.2, 1.3 and 2.4 are established as

follows.

Theorem 2.5. Let M = [mij ] ∈ Rn×n be a B-matrix with the form M = B++C,

where B+ = [bij ] is the matrix of (1.4). Let β̄i and β̃i be defined in Theorems 1.2 and

1.3 respectively. Then

n
∑

i=1

n− 1

min
{

β̄i, 1
}

i−1
∏

j=1

bjj

β̄j

≤

n
∑

i=1

n− 1

min
{

β̄i, 1
}

i−1
∏

j=1



1 +
1

β̄j

n
∑

k=j+1

|bjk|





≤

n
∑

i=1





n− 1

min{β̃i, 1}

i−1
∏

j=1

bjj

β̃j



 .

Proof. Note that

β̃i = bii −

n
∑

j=i+1

|bij |, β̄i = bii −

n
∑

j=i+1

|bij |li(B
+)

and lk(B
+) = max

k≤i≤n







1
|bii|

n
∑

j=k,

j 6=i

|bij |







< 1. Hence, for each i ∈ N , β̃i ≤ β̄i and

1

min{β̃i, 1}
≥

1

min{β̄i, 1}
.(2.10)

Meantime, for j = 1, 2, . . . , n− 1,

1 +
1

β̄j

n
∑

k=j+1

|bjk| ≤ 1 +
1

β̃j

n
∑

k=j+1

|bjk| =
1

β̃j



β̃j +

n
∑

k=j+1

|bjk|



 =
bjj

β̃j

.(2.11)

By (2.10) and (2.11), we have

n
∑

i=1

n− 1

min
{

β̄i, 1
}

i−1
∏

j=1



1 +
1

β̄j

n
∑

k=j+1

|bjk|



 ≤
n
∑

i=1





n− 1

min{β̃i, 1}

i−1
∏

j=1

bjj

β̃j



 .(2.12)

Moreover, for j = 1, 2, . . . , n− 1,

bjj

β̄j

=

i−1
∏

j=1

bjj −
n
∑

k=j+1

|bjk|lj(B
+) +

n
∑

k=j+1

|bjk|lj(B
+)

β̄j

=

β̄j +
n
∑

k=j+1

|bjk|lj(B
+)

β̄j
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= 1+

n
∑

k=j+1

|bjk|lj(B
+)

β̄j

≤ 1 +

n
∑

k=j+1

|bjk|

β̄j

,

this implies

n
∑

i=1

n− 1

min
{

β̄i, 1
}

i−1
∏

j=1

bjj

β̄j

≤

n
∑

i=1

n− 1

min
{

β̄i, 1
}

i−1
∏

j=1



1 +
1

β̄j

n
∑

k=j+1

|bjk|



 .(2.13)

The conclusion follows from (2.12)and (2.13).

Example 2.6. Consider the family of B-matrices in [15]:

Mk =











1.5 0.5 0.4 0.5

−0.1 1.7 0.7 0.6

0.8 −0.1 k
k+1 1.8 0.7

0 0.7 0.8 1.8











,

where k ≥ 1. Then Mk = B+
k + Ck, where

B+
k =











1 0 −0.1 0

−0.8 1 0 −0.1

0 −0.1 k
k+1 − 0.8 1 −0.1

−0.8 −0.1 0 1











.

By Theorem 1.1 (Theorem 2.2 in [10]), we have

max
d∈[0,1]4

||(I −D +DMk)
−1||∞ ≤

4− 1

min{β, 1}
= 30(k + 1).

It is obvious that

30(k + 1) → +∞ when k → +∞.

By Theorem 1.3, we have

max
d∈[0,1]4

||(I −D +DMk)
−1||∞ ≤

4
∑

i=1





3

min{β̃i, 1}

i−1
∏

j=1

bjj

β̃j



 ≈ 15.2675.

By Theorem 1.2, we have

max
d∈[0,1]4

||(I −D +DMk)
−1||∞ ≤

2.97(90k+ 91)(190k+ 192) + 6.24(100k+ 101)2

0.99 (90k + 91)2
,
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and

2.97(90k+ 91)(190k+ 192) + 6.24(100k+ 101)2

0.99 (90k + 91)
2 < 15.2675, for any k ≥ 1.

By Theorem 2.4, we have

max
d∈[0,1]4

||(I −D +DMk)
−1||∞ ≤

2.97(90k+ 91)(190k+ 191) + 5.97(100k+ 100)2

0.99 (90k + 91)2
,

and

2.97(90k + 91)(190k+ 191) + 5.97(100k+ 100)2

0.99 (90k + 91)
2

<
2.97(90k + 91)(190k+ 192) + 6.24(100k+ 101)2

0.99 (90k + 91)
2 .

In particular, when k = 1,

2.97(90k+ 91)(190k+ 191) + 5.97(100k+ 100)2

0.99 (90k + 91)
2 ≈ 13.6777,

and

2.97(90k+ 91)(190k+ 192) + 6.24(100k+ 101)2

0.99 (90k + 91)
2 ≈ 14.1044.

When k = 2,

2.97(90k+ 91)(190k+ 191) + 5.97(100k+ 100)2

0.99 (90k + 91)
2 ≈ 13.7110,

and

2.97(90k+ 91)(190k+ 192) + 6.24(100k+ 101)2

0.99 (90k + 91)
2 ≈ 14.1079.

In these two cases, the bounds in (1.5) are equal to 60 (k = 1) and 90 (k = 2),

respectively. This example shows that the bound in Theorem 2.4 is sharper than

those in Theorems 1.1, 1.2 and 1.3.

3. Conclusions. In this paper, we give a new bound for max
d∈[0,1]n

||(I − D +

DM)−1||∞ when M is a B-matrix, and show that it improves the bound of The-

orem 2.2 of [10] in some cases, and that it is always sharper than those of Theorem 4

of [15] and of Corollary 1 of [16].
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