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KEMENY’S CONSTANT AND AN ANALOGUE

OF BRAESS’ PARADOX FOR TREES∗

STEVE KIRKLAND† AND ZE ZENG‡

Abstract. Given an irreducible stochastic matrix M, Kemeny’s constant K(M) measures the

expected time for the corresponding Markov chain to transition from any given initial state to a

randomly chosen final state. A combinatorially based expression for K(M) is provided in terms of

the weights of certain directed forests in a directed graph associated with M , yielding a particularly

simple expression in the special case that M is the transition matrix for a random walk on a tree.

An analogue of Braess’ paradox is investigated, whereby inserting an edge into an undirected graph

can increase the value of Kemeny’s constant for the corresponding random walk. It is shown in

particular that for almost all trees, there is an edge whose insertion increases the corresponding

value of Kemeny’s constant. Finally, it is proven that for any m ∈ N, almost every tree T has the

property that there are at least m trees, none of which are isomorphic to T , such that the values of

Kemeny’s constant for the corresponding random walks coincide with the value of Kemeny’s constant

for the random walk on T . Several illustrative examples are included.
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1. Introduction. An n× n entrywise nonnegative matrix M is stochastic pro-

vided that each of its row sums is 1. Stochastic matrices are central to the study

of discrete time, time-homogeneous, finite state space Markov chains. In particular,

it is well-known that if the stochastic matrix M is irreducible – i.e., for each pair of

distinct vertices u, v in the directed graph associated with M there is a directed path

from u to v – then M has a unique stationary distribution, that is, a positive vector

w whose entries sum to 1 such that w⊤M = w⊤ (see [15], for example). Evidently

1 is an eigenvalue of M, and when M is irreducible, the Perron-Frobenius theorem

yields the fact that necessarily 1 is algebraically simple. For each j = 1, . . . , n, wj can

be interpreted as the long-term probability the Markov chain is in state j; thus, the

stationary vector captures long-term information about the Markov chain.

One way to quantify the short-term properties of a Markov chain is via the stan-
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dard notion ofmean first passage times: for each i, j = 1, . . . , n, the mean first passage

time ei,j is the expected number of steps needed for the Markov chain to enter state

j for the first time, given that the chain started in state i. Denoting the mean first

passage matrix by E = [ei,j]
n

i,j=1 , the all-ones vector by 1, and the eigenvalues of M

by 1, λ2, . . . , λn, we have the following remarkable result (see [8]):

Ew =



1 +

n∑

j=2

1

1− λj



1.

In other words, the quantity
∑n

j=1 ei,jwj , which is the expected number of steps

required to arrive at a random state (chosen according to the stationary distribution

w) starting from state i, is independent of i. The quantity K(M) ≡ ∑n

j=2
1

1−λj
is

known as Kemeny’s constant for the Markov chain with transition matrix M , and it

has been the subject of some research in recent years; see, for example [7], [9], [10],

[11] and [13]. In particular, in a model for vehicle traffic networks based on Markov

chains, Kemeny’s constant has been used to measure the average travel time in the

network [6]. In the present paper, Kemeny’s constant is our main focus.

One of the most accessible families of Markov chains is the collection of random

walks on undirected graphs: given a connected graph G with (0, 1) adjacency matrix A,

the transition matrix of the random walk on G is given byD−1A, whereD = diag(A1).

It is readily verified that the stationary distribution for such a random walk is given

by 1
d⊤1

d, where d is the degree vector for G (equivalently, d = A1). Intuitively, one

might expect that inserting an edge to a graph would necessarily decrease the value of

Kemeny’s constant for the corresponding random walk, but as we shall see in Section

3, there are examples of graphs where, surprisingly, inserting an edge can increase

the value of Kemeny’s constant. This is reminiscent of Braess’ paradox for traffic

networks, which we now briefly describe. In [1] (or see [2] for an English translation),

Braess analyses a certain model for vehicle traffic on a road network, and presents

an example in which the introduction of a road in the network actually increases the

travel times for vehicles in the network. In view of the analogue between travel times

on a road network and Kemeny’s constant for a random walk on a graph, we make

the following definition. Suppose that G is a connected non-complete graph, and that

e is an edge not in G. We say that e is a Braess edge for G if the value of Kemeny’s

constant for the random walk on G ∪ e exceeds that for the random walk on G. We

pursue this notion more deeply in Section 3.

Our work in Sections 3 and 4 focuses specifically on random walks on trees. This

is a natural class of Markov chains to consider, partly because trees are the family of

minimally connected graphs, and partly because in that setting, the graph-theoretic

expression for Kemeny’s constant (given in Theorem 3.1) is particularly transparent.

By investigating Kemeny’s constant for random walks on trees as a case study, we
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hope to stimulate further research in the area.

Throughout the paper, we assume familiarity with basic material on directed and

undirected graphs, stochastic matrices, and Markov chains. We refer the reader to

[4], [8] and [15] for the necessary background.

2. Preliminaries. In this section, we present a few preliminary results that will

assist us later. As noted in Section 1, we will focus on trees in Sections 3 and 4, and

we recall the following terminology from [14]. Given a tree T , recall that a branch

at a vertex v of T is a maximal subtree containing v as a pendent vertex. A limb at

v is the union of one or more branches at v. Given a rooted tree R we say that a

tree T has R as a limb if there is a vertex v of T and limb L at v such that i) L is

isomorphic to R, and ii) the isomorphism from L to R maps v to the root of R. In

Sections 3 and 4, we will use the following remarkable result due to Schwenk, which

appears as Theorem 7 in [14].

Proposition 2.1. Let L be any rooted tree. Then almost all trees have L as a

limb.

We pause here to clarify the phrase ‘almost all’ in Proposition 2.1: Letting tn

denote the number of trees on n vertices, and rn denote the number of trees on n

vertices that do not have L as a limb, then the content of Proposition 2.1 is that

limn→∞
rn
tn

= 0. We adopt similar phrasing in Theorems 3.6 and 4.2 below.

Next we introduce some useful terminology and notation. For an n × n matrix

B, for each j = 1, . . . , n, we let B(j) denote the submatrix of order n− 1 formed by

deleting the j-th row and column. Similarly, for distinct indices j, k with 1 ≤ j, k ≤ n

we let B(j,k) denote the submatrix of order n−2 formed by deleting the j-th and k-th

rows and columns. Given a stochastic matrix M of order n, we define its loop-free

directed graph to be the directed graph on vertices 1, . . . , n such that for each pair of

distinct indices j, k with 1 ≤ j, k ≤ n, we include the directed arc j → k if and only

if mj,k > 0. For any directed forest F in the loop-free directed graph of M , we define

the weight of F , w(F), to be the product of the entries in M that correspond to the

arcs in F ; here we take the convention that if a tree consists of a single vertex, then

its weight is 1. In the special case that we have a directed tree T having a vertex v

such that for any vertex u 6= v of T there is a directed path from u to v, we refer to v

as a sink for T . (Such a directed tree is sometimes known as an in-tree with root v.)

With this notation and terminology in place, we present the following result,

which is an immediate consequence of the all-minors matrix tree theorem. We refer

the interested reader to [3] for a proof of that theorem.
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Lemma 2.2. Let M be an irreducible stochastic matrix of order n ≥ 3.

a) For each j = 1, . . . , n, det(I −M(j)) =
∑

T ∈Sj
w(T ), where Sj denotes the set

of all spanning directed trees in the loop-free directed graph of M having vertex j as

a sink.

b) For each j, k = 1, . . . , n with j 6= k, det(I − M(j,k)) =
∑

F∈Sj,k
w(F), where

Sj,k is the set of all spanning directed forests in the loop-free directed graph of M such

that each forest contains exactly two trees, one of which contains vertex j as a sink,

and the other of which contains vertex k as a sink.

Lemma 2.2 is instrumental in the proof of the following result, which provides a

combinatorial expression for Kemeny’s constant. We note that a similar approach to

individual mean first passage times appears in [5].

Theorem 2.3. Let M be an irreducible stochastic matrix of order n ≥ 3, F1

be the set of all spanning directed trees in the loop-free directed graph of M, each of

which has a vertex that is a sink, and F2 be the set of all spanning directed forests in

the loop-free directed graph of M such that each forest consists of two trees, each of

which has a vertex that is a sink. Then

K(M) =

∑

F∈F2
w(F)

∑

T ∈F1
w(T )

.(2.1)

Proof. Denote the eigenvalues of M by 1, λ2, . . . , λn, and write the characteristic

polynomial of I −M as f(x) = det(xI − I +M) ≡ ∑n−1
j=0 fjx

n−j . Evidently fn−1 =

(−1)n−1(1− λ2) · · · (1− λn), and

fn−2 = (−1)n−2
n∑

l=2

(1− λ2) · · · (1− λn)

(1− λl)
= −fn−1

n∑

l=2

1

(1 − λl)
.

We thus deduce that K(M) = − fn−2

fn−1

.

Next we recall that

fn−1 = (−1)n−1
n∑

j=1

det(I −M(j)) and fn−2 = (−1)n−2
∑

1≤j<k≤n

det(I −M(j,k)).

Hence,

K(M) =

∑

1≤j<k≤n det(I −M(j,k))
∑n

j=1 det(I −M(j))
,

and (2.1) now follows readily from Lemma 2.2 .
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If our stochastic matrix M is sparse (or nicely structured), then the sets F1 and

F2 may be readily analysed in order to produce K(M) via Theorem 2.3. The following

example illustrates.

✙✙✙✙

1 2 3 n− 1 n

✉ ✉ ✉ . . . ✉ ✉✲ ✲ ✲

Fig. 2.1. Loop-free directed graph for a stochastic companion matrix.

Example 2.1. Here we consider a stochastic companion matrix C given by

C =













0 1 0 · · · 0 0

0 0 1 0 · · · 0
...

. . .
. . .

...

0 0 · · · 0 1 0

0 0 · · · 0 0 1

c1 c2 c3 · · · cn−1 cn













,

where c1 > 0 (in order to ensure irreducibility), cj ≥ 0, j = 2, . . . , n and
∑n

j=1 cj = 1.

Figure 2.1 illustrates the general form of the loop-free directed graph associated with

C. (Note that for a particular given C, some of the arcs n → j in Figure 2.1 may be

absent, depending on which of the cjs are positive.) Our goal is to find K(C) by using

Theorem 2.3.

First we consider the directed trees in F1 in that theorem. For each j = 1, . . . , n−
1, the directed trees in F1 with vertex j as a sink are of the form j + 1 → j + 2 →
· · · → n → l ∪ 1 → 2 → · · · → j, where 1 ≤ l ≤ j; observe that such a directed tree

has weight cl. There is just one directed tree in F1 having vertex n as a sink, namely

1 → 2 → · · · → n, which has weight 1. Consequently we find that
∑

T ∈F1
w(T ) =

∑n

j=1

∑j

l=1 cl =
∑n

k=1(n− k + 1)ck.

Next we consider the directed forests in F2 in Theorem 2.3. Fix a pair of distinct

vertices i, j where without loss of generality i < j. The directed forests in F2 with

vertices i and j as sinks are of two types:

i) for each vertex l with 1 ≤ l ≤ i, the directed forest T1 ∪ T2 where T1 is

j + 1 → j + 2 → · · · → n → l → l + 1 → · · · → i ∪ 1 → 2 → · · · → l and

T2 = i+ 1 → i+ 2 → · · · → j; and

ii) for each vertex l with i + 1 ≤ l ≤ j, the directed forest T1 ∪ T2 where T1 is
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j + 1 → j + 2 → · · · → n → l → l + 1 → · · · → j ∪ i + 1 → 2 → · · · → l and

T2 = 1 → 2 → · · · → i.

Observe that the weight of each such directed forest is cl. It now follows that

the sum of the weights of the directed forests in F2 with vertices i and j as sinks is
∑j

l=1 cl. Hence,
∑

F∈F2
w(F) =

∑

1≤i<j≤n

∑j

l=1 cl =
∑n

k=1
(n−k+1)(n+k−2)

2 ck.

Applying Theorem 2.3, it now follows that

K(C) =

∑n

k=1
(n−k+1)(n+k−2)

2 ck
∑n

k=1(n− k + 1)ck
.

In particular we see that K(C) is a weighted average of the numbers n−1
2 , n

2 ,
n+1
2 , . . . ,

2n−2
2 . We thus deduce that for any stochastic companion matrix C of order n, we

have

n− 1

2
≤ K(C) ≤ n− 1.(2.2)

The lower bound in (2.2) is attained when c1 = 1, while the upper bound in (2.2) can

be approached arbitrarily closely by taking each cj , j = 1, . . . , n− 1 sufficiently close

to 0.

For the special case of a random walk on an undirected graph, we have the

following consequence of Theorem 2.3.

Corollary 2.4. Suppose that G is a connected, undirected graph on n vertices

with degree sequence d1, . . . , dn. For each j, k = 1, . . . , n with j 6= k, let σj,k denote the

number of spanning forests consisting of two trees, one of which contains vertex j and

the other of which contains vertex k; set σj,j = 0, j = 1, . . . , n. Let τ be the number

of spanning trees in G, m denote the number of edges in G, and let Σ be the matrix

given by Σ = [σj,k]
n

j,k=1. Finally, let M be the transition matrix for the random walk

on G. Then

K(M) =
d⊤Σd

4mτ
.

Proof. Let Sj and Sj,k be as in Lemma 2.2. Fix an index j = 1, . . . , n and observe

that any directed tree in Sj is formed by taking an undirected spanning tree in G and

orienting every arc so that j is a sink, and vice-versa. Further, for each directed tree

T ∈ Sj , w(T ) =
dj∏
n
l=1

dl
. It now follows that

n∑

j=1

∑

T ∈Sj

w(T ) =
1

∏n

l=1 dl

n∑

j=1

djτ =
2mτ

∏n

l=1 dl
.
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Similarly, note that whenever j, k = 1, . . . , n with j 6= k, each directed forest in

Sj,k is formed by taking a spanning forest in G consisting of two trees, one of which

contains j and the other containing k, and orienting the arcs so that j and k are sinks

in their respective trees. Each such forest has weight
djdk∏
n
l=1

dl
, and it follows that

∑

1≤j<k≤n

∑

F∈Sj,k

w(F) =
1

∏n

l=1 dl

∑

1≤j<k≤n

djdk|Sj,k| =
d⊤Σd

2
∏n

l=1 dl
.

The conclusion now follows from Theorem 2.3.

3. Almost all trees have a Braess edge. In this section, we focus on random

walks on undirected trees. The section’s key result, Theorem 3.5, shows that for

any tree with a pair of twin pendent vertices – i.e., pendent vertices with a common

neighbour – then inserting the edge between the twin pendent vertices increases the

value of Kemeny’s constant for the corresponding random walk. Given an undirected

graph G, we abuse notation slightly by using K(G) to denote Kemeny’s constant for

the transition matrix of the random walk on G.

The following result applies Corollary 2.4 to produce a particularly simple ex-

pression for K(T ) when T is a tree.

Theorem 3.1. Suppose that T is a tree on vertices 1, . . . , n with degree sequence

d1, . . . , dn and distance matrix ∆ =
[
δi,j

]n

i,j=1
. Then K(T ) = d⊤∆d

4(n−1) .

Proof. Referring to Corollary 2.4, it suffices to show that δj,k = σj,k whenever

j 6= k. Observe that each spanning forest in T consisting of two trees is formed from

T by deleting precisely one edge. Evidently such a forest F has vertex j in one tree

and vertex k in the other if and only if the edge deleted to form F is on the path

between j and k in T . It now follows that δj,k = σj,k whenever j 6= k.

The following trio of technical results will assist in the proof of Theorem 3.5. As

usual ej will denote a standard unit basis vector with a single 1 in the j-th position

and zeros elsewhere; the order will always be clear from the context.

Lemma 3.2. Let T be a tree on n ≥ 3 vertices with twin pendent vertices 1 and

2, both adjacent to vertex i. Let T̃ be the tree formed from T by deleting vertices 1

and 2 as well as both incident edges. Denote the degree vectors and distance matrices

for T and T̃ by d,∆, d̃, and ∆̃, respectively.

a) We have d⊤∆d = d̃⊤∆̃d̃+ 8e⊤i−2∆̃d̃+ 8n− 12.

b) Let U be the graph formed from T by inserting the edge between vertices 1

and 2. Denote the degree vector for U by d̂ and let Σ be as in Corollary 2.4. Then

d̂⊤Σd̂ = 3d̃⊤∆̃d̃+ 36ei−2∆̃d̃+ 32n− 48.
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c) We have

K(U) −K(T ) =
−3d̃⊤D̃d̃+ 12(n− 3)ei−2∆̃d̃+ 4(n− 4)(2n− 3)

12n(n− 1)
.

Proof. a) Observe that we can write d⊤ =
[
1 1 d̃⊤ + 2e⊤i−2

]
and

∆ =






0 2 (e⊤i−2∆̃ + 1⊤)

2 0 (e⊤i−2∆̃ + 1⊤)

(∆̃ei−2 + 1) (∆̃ei−2 + 1) ∆̃




 .

Hence, we have

∆d =






2 + e⊤i−2∆̃d̃+ 2(n− 3) + 2

2 + e⊤i−2∆̃d̃+ 2(n− 3) + 2

2(∆̃ei−2 + 1) + ∆̃d̃+ 2∆̃ei−2




 .

It now follows that

d⊤∆d = 2(e⊤i−2∆̃d̃+ 2n− 2) + d̃⊤∆̃d̃+ 4d̃⊤∆̃ei−2 + 2(2(n− 3)) + 2e⊤i−2∆̃d̃+ 4,

which readily yields the conclusion.

b) Since the graph U is unicyclic with a single cycle of length 3, we find that

σj,k = 3δ̃j,k for each j, k = 3, . . . , n. Note also that σ1,2 = σ2,1 = 2. For each

j = 3, . . . , n we have σ1,j = 3δ̃i−2,j +2, since this counts the number of forests in S1,j

such that 1, i are in the same tree, plus the number of of forests in S1,j such that 1, i

are in different trees. From the above we find that

Σ =






0 2 (3e⊤i−2∆̃ + 21⊤)

2 0 (3e⊤i−2∆̃ + 21⊤)

(3∆̃ei−2 + 21) (3∆̃ei−2 + 21) 3∆̃




 .

It is straightforward to determine that d̂⊤ =
[
2 2 d̃⊤ + 2ei−2

]
. A computation

now reveals that d̂⊤Σd̂ = 3d̃⊤∆̃d̃+ 36ei−2∆̃d̃+ 32n− 48, as desired.

c) Since U is unicyclic with a single cycle of length 3, it has n edges and 3 spanning

trees. From Corollary 2.4 and part b) of the present lemma we thus have

K(U) = 3d̃⊤∆̃d̃+ 36ei−2∆̃d̃+ 32n− 48

12n
.

From Theorem 3.1 and part a) of this lemma,

K(T ) =
d̃⊤∆̃d̃+ 8e⊤i−2∆̃d̃+ 8n− 12

4(n− 1)
.
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A computation now yields the desired expression for K(U)− K(T ).

In the next lemma and elsewhere, we use the following notation: for a graph G
with vertices u, v we denote the edge between u and v by u ∼ v.

Lemma 3.3. Let T be a tree on n ≥ 2 vertices with distance matrix ∆ and degree

vector d. For each i, j = 1, . . . , n, we have

e⊤j ∆d− e⊤i ∆d+ 2nδi,j ≥ 4δi,j.(3.1)

Proof. We begin by noting that certainly (3.1) holds when δi,j = 0 – i.e., when

i = j. To establish (3.1) when δi,j ≥ 1, We proceed by induction on δi,j .

Suppose first that δi,j = 1; let C1, C2 denote the connected components of T \{i ∼
j}, where C1 has say p vertices and C2 has n − p vertices. Reordering indices if

necessary so that those of C1 precede those of C2, we find that there are vectors

x,∈ R
p, y ∈ R

n−p such that
[

e⊤i ∆

e⊤j ∆

]

=

[

x⊤ y⊤ + 1⊤

x⊤ + 1⊤ y⊤

]

.

It now follows that

(ej − ei)
⊤∆d =

∑

l∈C1

dl −
∑

l∈C2

dl = 2(p− 1) + 1− (2(n− p− 1) + 1) = 4p− 2n.

Hence, e⊤j ∆d− e⊤i ∆d+ 2nδi,j = 4p ≥ 4 = 4δi,j .

Fix k ≥ 1 and suppose now that (3.1) holds for pairs of vertices at distance k,

and that δi,j = k + 1. Select a vertex l 6= i, j that is on the path from j to i, and

note that δj,l, δl,i ≤ k. We have e⊤j ∆d− e⊤i ∆d + 2nδi,j = (e⊤j ∆d− e⊤l ∆d + 2nδl,j) +

(e⊤l ∆d− e⊤i ∆d+ 2nδi,l). Applying the induction hypothesis to the pairs j, l and i, j,

we have e⊤j ∆d− e⊤i ∆d+2nδi,j ≥ 4δi,l +4δl,j = 4δi,j . This completes the proof of the

induction step.

Lemma 3.4. Let T be a tree on n ≥ 2 vertices with degree vector d and distance

matrix ∆. For each i = 1, . . . , n, we have

−d⊤∆d+ 4(n− 1)e⊤i ∆d ≥ 2(n− 1).(3.2)

Proof. We proceed by induction on n. Note that when n = 2, d⊤ =
[
1 1

]
,∆ =

[
0 1

1 0

]

, in which case (3.2) is immediate.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 444-464, June 2016

http:/repository.uwyo.edu/ela



ELA

Kemeny’s Constant and Braess’ Paradox 453

Suppose now that (3.2) holds for trees on n ≥ 2 vertices, and that T has n + 1

vertices. Without loss of generality we take 1 as a pendent vertex, adjacent to vertex 2.

Let T̃ denote the tree formed from T by deleting vertex 1 and its incident edge; let d̃, ∆̃

denote the degree vector and distance matrix for T̃ , respectively. It is straightforward

to see that d⊤ =
[
1 d̃⊤ + 1⊤

]
and

∆ =

[

0 e⊤1 ∆̃ + 1⊤

∆̃e1 + 1 ∆̃

]

.

From this we find that

∆d =

[

e⊤1 ∆̃d̃+ 2n− 1

∆̃d̃+ 2∆̃e1 + 1

]

.

It now follows that d⊤∆d = d̃⊤∆̃d̃+ 4e⊤1 ∆̃d̃+ 4n− 2. Consequently,

−d⊤∆d+ 4ne⊤i ∆d

= −d̃⊤∆̃d̃− 4e⊤1 ∆̃d̃− 4n+ 2 + 4n

{
e⊤1 ∆̃d̃+ 2n− 1, if i = 1,

e⊤i−1∆̃d̃+ 2e⊤i−1∆̃e1 + 1, if i = 2, . . . , n.

In the case that i = 1, we find from (3.3) that

−d⊤∆d+ 4ne⊤1 ∆d = −d̃⊤∆̃d̃− 4e⊤1 ∆̃d̃− 4n+ 2 + 4ne⊤1 ∆̃d̃+ 4n(2n− 1)

= −d̃⊤∆̃d̃+ 4(n− 1)e⊤1 ∆̃d̃+ 2(2n− 1)2.

Applying the induction hypothesis to T̃ , we now find that −d⊤∆d + 4ne⊤1 ∆d ≥
2(n− 1) + 2(2n− 1)2 > 2n.

In the case that i ≥ 2, (3.3) yields

−d⊤∆d+ 4ne⊤1 ∆d = −d̃⊤∆̃d̃− 4e⊤1 ∆̃d̃− 4n+ 2 + 4n(e⊤i−1∆̃d̃+ 2e⊤i−1∆̃e1 + 1)

= −d̃⊤∆̃d̃+ 4(n− 1)e⊤i−1∆̃d̃+ 2 + 4(e⊤i−1∆̃d̃− e⊤1 ∆̃d̃+ 2nδ̃i−1,1).

From Lemma 3.3 we have e⊤i−1∆̃d̃ − e⊤1 ∆̃d̃ + 2nδ̃i−1,1 ≥ 4δ̃i−1,1 ≥ 0, and from the

induction hypothesis applied to T̃ we have −d̃⊤∆̃d̃ + 4(n − 1)e⊤i−1∆̃d̃ ≥ 2(n − 1).

Assembling the above it now follows that −d⊤∆d + 4ne⊤1 ∆d ≥ 2(n − 1) + 2 = 2n.

This completes the proof of the induction step.

Remark 3.1. Examining the proof of Lemma 3.4, we find that equality can hold

in (3.2) only in the case that n = 2 or vertex i is adjacent to the particular pendent

vertex selected at the start of the proof of the induction step. But since the pendent

vertex initially selected was arbitrary, we deduce that when n ≥ 3, equality can hold

in (3.2) only if vertex i is adjacent to every pendent vertex – i.e., T is the star in n

vertices K1,n−1, with i as the centre vertex.
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We now present one of the main results of this section.

Theorem 3.5. Let T be a tree on n ≥ 3 vertices with twin pendent vertices 1

and 2. Let U be the graph formed from T by inserting the edge between vertices 1 and

2. Then

K(U)−K(T ) ≥ 4n− 15

6n
.(3.3)

Proof. From Lemma 3.2,

K(U) −K(T ) =
−3d̃⊤D̃d̃+ 12(n− 3)ei−2∆̃d̃+ 4(n− 4)(2n− 3)

12n(n− 1)
,

where d̃ and ∆̃ are the degree vector and distance matrix for the tree T̃ on n−2 vertices

formed from T by deleting vertices 1 and 2 and their incident edges. By Lemma 3.4,

−d̃⊤D̃d̃ + 4(n− 3)ei−2∆̃d̃ ≥ 2(n − 3), so that K(U) − K(T ) ≥ 4n2−19n+15
6n(n−1) = 4n−15

6n ,

as desired.

Remark 3.2. Examining the proof of Theorem 3.5, we find the equality holds

in (3.3) only if it holds in (3.2) (for vertex i − 2 in T̃ ). Referring to Remark 3.1 we

find that the latter holds only when T̃ , and hence, T is a star. It now follows readily

that equality holds in (3.3) if and only if T = K1,n−1.

We have the following ‘Schwenk-type’ result.

Theorem 3.6. For almost every tree T , there is a Braess edge for T .

Proof. According to Proposition 2.1, given any rooted tree L, almost all trees

contain L as a limb. In particular, we find that almost all trees contain a pair of twin

pendent vertices. The conclusion now follows from Theorem 3.5.

The following example considers the effect of inserting a weighted edge to the star

K1,n−1.

Example 3.1. Suppose that n ≥ 4 and consider the weighted graph U(h) formed

from K1,n−1 by inserting a single edge of weight h > 0 between two pendent vertices.

Letting M(h) denote the transition matrix for the random walk on U(h), we can write

M(h) as

M(h) =








0 h
1+h

0⊤ 1
1+h

h
1+h

0 0⊤ 1
1+h

0 0 0 1
1

n−1
1

n−1
1

n−11
⊤ 0







.

The eigenvalues of M(h) are: 1 with multiplicity one; 0 with multiplicity n − 4;
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− h
1+h

; and − 1
2(1+h) ±

√
1

4(1+h)2 + h(n−3)
(1+h)(n−1) , these last three having multiplicity one.

A sequence of computations shows that K(M(h)) = n− 3
2 +

h(4(n−3)h−3)
(2h+1)(2h+2(n−1)) . It now

follows that K(M(h)) < K(K1,n−1) for 0 < h < 3
4(n−3) ,K(M(h)) = K(K1,n−1) for

h = 3
4(n−3) , and K(M(h)) > K(K1,n−1) for h > 3

4(n−3) .

Set g(h) = h(4(n−3)h−3)
(2h+1)(2h+2(n−1)) , and let

h0 =
−4(n− 3)(n− 1) +

√

16(n− 3)2(n− 1)2 + 3(n− 1)(8n2 − 28n+ 18)

8n2 − 28n+ 18
.

An elementary exercise reveals that K(M(h)) is decreasing on the interval h ∈ (0, h0)

and increasing on the interval (h0,∞).

We have the following structural result for trees.

Proposition 3.7. Suppose that T is a tree on n ≥ 3 vertices. Then T has a

next to pendent vertex of degree 2, or it has a pair of twin pendent vertices.

Proof. We proceed by induction on n, and note that when n = 3, the tree in

question has both types of vertices.

Suppose now that n ≥ 4, and that the statement holds for trees on n− 1 vertices.

Let T be a tree on n vertices, say with vertex 1 as a pendent vertex adjacent to vertex

2. Let T = T \{1}; for clarity, the vertices in T inherit their labels from T . Consider

vertex 2 of T and denote its degree in T by d. If d = 1, then in T vertex 2 is a next to

pendent vertex of degree 2. Suppose now that d ≥ 2. From the induction hypothesis,

there is a vertex i of T such that either i is next to pendent and of degree 2 in T , or

there are two pendent vertices of T that are adjacent to i. If i ≥ 3, then considered

as a vertex of T , vertex i has the corresponding desired property. If i = 2 and there

are two pendent vertices of T adjacent to 2, then the same is true in T . If in T we

have that vertex 2 is adjacent to a pendent vertex j, then in T , 1 and j are pendent

vertices both adjacent to vertex 2. Thus, in all cases, T has the desired property,

completing the proof of the induction step.

From Proposition 3.7, any tree has either a pair of twin pendent vertices, or a

pendent vertex adjacent to a vertex of degree 2. Theorem 3.5 shows that creating a

three-cycle by inserting an edge between twin pendent vertices in a tree with at least

4 vertices will increase the value of Kemeny’s constant. Our next two examples show

that creating a three-cycle by inserting the edge between the two neighbours of a next

to pendent of degree 2 may raise or lower the value of Kemeny’s constant, depending

on the structure of the original tree.

Example 3.2. Here we consider the tree T on n ≥ 5 vertices formed from the star

K1,n−3 by appending a path of length two at the centre vertex. The corresponding
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distance matrix can be written as







0 1 31⊤ 2

1 0 21⊤ 1

31 21 2(J − I) 1

2 1 1⊤ 0






.

It now follows from Theorem 3.1 that K(T ) = 2n2−n−9
2(n−1) .

Next, we form the graph U by inserting the edge between vertex 1 and vertex n.

Using the technique of Lemma 3.2 b), we find that K(U) = 6n2−5n−15
6n . It now follows

that

K(U)−K(T ) =
−8n2 + 17n+ 15

6n(n− 1)
,

which is negative since n ≥ 5.

Example 3.3. Suppose that n ≥ 4, and consider the path on n vertices Pn,

with vertices labelled so that vertex j is adjacent to vertices j − 1, j + 1 for j =

2, . . . , n − 1. We have degree vector d =
[
1 2 · · · 2 1

]⊤
and distance matrix

∆ =
[
|i− j|

]n

i,j=1
. A computation using Theorem 3.1 now shows that K(Pn) =

2n2−4n+3
6 . Next we form the unicyclic graph Un by inserting the edge 1 ∼ 3 to Pn.

Applying the technique of Lemma 3.2 b) it follows that K(Un) =
2n3−37n+81

6n . Conse-

quently,

K(Un)−K(Pn) =
4n2 − 40n+ 81

6n
,

which is positive for all n ≥ 8.

1

2

3 4 5 n− 1 n✉ ✉ ✉ . . . ✉ ✉✉
✉ ❍❍❍

✟✟✟

Fig. 3.1. Un.

Remark 3.3. Consider the unicyclic graph Un depicted in Figure 3.1. Note that

the only edges that can be deleted from Un while maintaining connectivity are the

edges 1 ∼ 2, 2 ∼ 3, and 1 ∼ 3. From Example 3.3, we see that if n ≥ 8, then deleting

either 2 ∼ 3 or 1 ∼ 3 will lower the corresponding value of Kemeny’s constant, while

by Theorem 3.5, deleting 1 ∼ 2 will also lower the corresponding value of Kemeny’s
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constant. Thus, for n ≥ 8, Un has the intriguing property that the effect of deleting

any edge is to either destroy connectivity or decrease the corresponding value of

Kemeny’s constant.

The graph Un in Figure 3.1 is a member of the family of so-called lollipop graphs,

each of which is constructed from a cycle of length k ≥ 3 by appending a path on

n − k ≥ 1 vertices. Figure 3.2 illustrates. Our next example examines Kemeny’s

constant for the family of lollipop graphs on a fixed number of vertices.

1

k − 1

k k + 1 k + 2 n− 1 n

2

k − 2

✉ ✉ ✉ . . . ✉ ✉
✉

✉

✉

✉

...

. . .

✟✟

❍❍

❅
❅

❅

�
�

�

Fig. 3.2. The lollipop graph Lk,n.

Example 3.4. Observe that each lollipop graph can be constructed from the

path Pn (where the vertices have been labelled so that vertex j is adjacent to vertices

j − 1 and j + 1 for each j = 2, . . . , n − 1) by inserting the edge 1 ∼ k for some

3 ≤ k ≤ n − 1. Our goal in this example is to derive an expression for Kemeny’s

constant for the lollipop graph on n vertices with cycle length k, then examine that

expression as a function of k. To that end, fix an index k with 3 ≤ k ≤ n − 1, and

consider the corresponding lollipop graph Lk,n, labelled as in Figure 3.2. Observe that

the degree vector d can be written as d =
[
2 2 · · · 2 3 2 2 · · · 2 1

]⊤
,

where the lone 3 appears in the k-th position. We adopt the notation of Corollary

2.4, and use this to derive expressions for σi,j , i, j = 1, . . . , n.

Suppose first that i, j ∈ {1, . . . , k}. Each forest in Si,j is generated by deleting one

edge from each of the two paths that connect i and j on the k-cycle. Consequently,

σi,j = |j − i|(k − |j − i|) when i, j ∈ {1, . . . , k}.

Next, suppose that i, j ∈ {k + 1, . . . , n}. Each forest in Si,j is generated by

deleting one edge on the path between i and j, and one edge on the k-cycle. Hence,

σi,j = k|j − i| when i, j ∈ {k + 1, . . . , n}.

Finally, suppose that i ∈ {1, . . . , k} and j ∈ {k + 1, . . . , n}. Each forest in Si,j is

generated either by deleting one edge from each of the two paths that connect i and

k on the k-cycle, or by deleting one edge on the path between k and j, and one edge
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on the k-cycle. We thus find that σi,j = i(k − i) + k(j − k) when i ∈ {1, . . . , k}, j ∈
{k + 1, . . . , n}.

A long and not especially interesting computation now shows that d⊤Σd =
(
2k
3

)
(2n3 − 4nk2 + 3k3 − n). Appealing to Corollary 2.4, we find that

K(Lk,n) =
2n3 − 4nk2 + 3k3 − n

6n
.(3.4)

We note in passing that for the n-cycle Cn we have K(Cn) = n2−1
6 , so that (3.4)

also holds in the case k = n, provided that we accept the natural interpretation that

Ln,n = Cn. Considered as a function of k, it is straightforward to determine that
2n3−4nk2+3k3−n

6n is decreasing in k for 3 ≤ k ≤ 8n
9 and increasing in k for 8n

9 ≤ k ≤ n.

Thus, we have the somewhat surprising result that K(Lk,n) fails to be monotonically

decreasing in k when n ≥ 10.

0 10 20 30 40 50 60 70 80
1000

1200

1400

1600

1800

2000

2200

Fig. 3.3. Kemeny’s constants for lollipop graphs on 81 vertices.

We have already seen from Example 3.3 that K(L3,n) > K(Pn). For which values

of k do we have K(Lk,n) ≤ K(Pn)? Referring to Example 3.3, we find that the

inequality K(Lk,n) ≤ K(Pn) can be rewritten as

2n3 − 4nk2 + 3k3 − n

6n
≤ 2n2 − 4n+ 3

6
.

This last is readily seen to simplify to the condition

p(k) ≡ 3k3 − 4nk2 + 4n2 − 4n ≤ 0.

Since p(k) is decreasing in k on the interval [0, 8n
9 ] and increasing on [ 8n9 , n], and

since p(n) < 0 < p(0), we deduce that there is precisely one k0 ∈ [0, n] such that

p(k0) = 0, and that p(k) > 0 for 0 ≤ k < k0 and p(k) < 0 for k0 < k ≤ n. Evidently
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p(
√
n) = (3

√
n− 4)n > 0, so that necessarily

√
n < k0. Another computation shows

that p(
√
n+ 3

8 ) = − 19
16n+

27
64

√
n+ 81

512 , which is readily seen to be negative since n ≥ 4.

Hence, we have k0 <
√
n+ 3

8 . Consequently, we find that there is a k0 ∈ (
√
n,

√
n+ 3

8 )

such that K(Lk,n) ≥ K(Pn) for 3 ≤ k ≤ k0 and K(Lk,n) ≤ K(Pn) for k0 ≤ k ≤ n.

Figure 3.3 plots K(Lk,81) (as computed by Matlab R©) for the values k = 3, . . . , 81,

again interpreting the k = 81 case as C81; the horizontal line in Figure 3.3 is at height

K(P81) = 2133.5. Observe that the minimum value for K(Lk,81) corresponds to

k = 72, and that K(L9,81) > K(P81) > K(L10,81), as anticipated by our discussion in

this example.

4. Almost all trees have many co-Kemeny mates. We say that two con-

nected nonisomorphic graphs G1,G2 on the same number of vertices are co-Kemeny

mates if K(G1) = K(G2). In this section, we again focus on trees, but this time we

consider the issue of co-Kemeny mates.

Recall that for a connected undirected graph G with adjacency matrix A and

diagonal matrix of vertex degrees D, the normalised Laplacian matrix for G is given

by L = I −D− 1

2AD− 1

2 ; it is straightforward to see that I −L is diagonally similar to

the transition matrix of the random walk on G. In particular, we observe that if the

normalised Laplacian matrices for two graphs have the same spectra, then so do the

transition matrices of the corresponding random walks. A result of Osborne [12] states

that for almost every tree T , there is another tree T̂ which is not isomorphic to T , but

which has the same normalised Laplacian spectrum as T . From our observation above,

it follows immediately that almost all trees have a co-Kemeny mate. The main result

of this section, Theorem 4.2, proves a stronger result regarding co-Kemeny mates,

namely that given any m ∈ N, almost all trees have at least m co-Kemeny mates.

The following technical result allows us to compare the value of Kemeny’s constant

for two related trees.

Proposition 4.1. Consider a tree T0 with two distinct vertices i and j, and let

B be another tree rooted at vertex k. Form T1 from T0 and B by inserting an edge

between vertex i of T0 and vertex of k of B; form T2 from T0 and B by inserting an

edge between vertex j of T0 and vertex of k of B. Let d(1),∆(1) denote the degree

vector and distance matrix for T1, and let d(2),∆(2) denote the degree vector and

distance matrix for T2.

Denote the path in T0 from i to j by i ≡ l0 ∼ l1 ∼ . . . ∼ ld ≡ j. Let C0 denote

the component of T0 \ {l0 ∼ l1} containing vertex l0, let Cd denote the component of

T0 \ {ld−1 ∼ ld} containing vertex ld, and for each p = 1, . . . , d− 1, let Cp denote the

component of T0 \ {lp−1 ∼ lp, lp ∼ lp+1} containing vertex lp.
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Then

d(1)⊤∆(1)d(1)− d(2)⊤∆(2)d(2) = 8|B|
d∑

j=0

|Cj |(2j − d).(4.1)

Proof. Denote the degree vectors and distance matrices for B and T0 by dB,

dT0
,∆B, and ∆T0

, respectively. Then d(1)⊤ =
[
d⊤B + e⊤k d⊤T0

+ e⊤i
]
, and

∆(1) =

[

∆B ∆Bek1
⊤ + 1e⊤i ∆T0

+ J

1e⊤k ∆B +∆T0
ei1

⊤ + J ∆T0

]

,

where J denotes an all ones matrix. Consequently we find that

d(1)⊤∆(1)d(1) = (d⊤B + e⊤k )∆B(dB + ek) + (d⊤T0
+ e⊤i )∆T0

(dT0
+ ei)

+2(d⊤B + e⊤k )(∆Bek1
⊤ + 1e⊤i ∆T0

+ J)(dT0
+ ei).

An analogous expression holds for d(2)⊤∆(2)d(2), and it now follows that

d(1)⊤∆(1)d(1) − d(2)⊤∆(2)d(2)

= 2e⊤i ∆T0
dT0

+ 2(2|B| − 1)e⊤i ∆T0
dT0

− 2e⊤j ∆T0
dT0

− 2(2|B| − 1)e⊤j ∆T0
dT0

= 4|B|(e⊤i − e⊤j )∆T0
dT0

.

Fix an index p with 0 ≤ p ≤ d, and suppose that q ∈ Cp. Then for some integer

r we have e⊤i ∆T0
eq = r + p and e⊤j ∆T0

eq = r + d − p, so that (e⊤i − e⊤j )∆T0
eq =

2p − d. If p = 0 or d we have
∑

q∈Cp
e⊤q dT0

= 2(|Cj | − 1) + 1 = 2|Cj | − 1, while for

p = 1, . . . , d− 1,
∑

q∈Cp
e⊤q dT0

= 2(|Cp| − 1) + 2 = 2|Cp|. Consequently we find that

(e⊤i −e⊤j )∆T0
dT0

= −d(2|C0|−1)+d(2|Cd|−1)+

d−1∑

p=1

2|Cp|(2p−d) = 2

d∑

p=0

|Cp|(2p−d).

The expression (4.1) now follows.

✉ ✉ ✉ . . . ✉ ✉ ✉
✉
...

}

✟✟✟
❍❍❍

ul

︸ ︷︷ ︸

k − l − 1

l

Fig. 4.1. Tk,l.
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✉ ✉ ✉ ✉
✉

✤

✣

✜

✢

✤

✣

✜

✢

✤

✣

✜

✢
. . .

✛
✚

✘
✙

✟✟✟✟✟✟

❍❍❍❍❍❍w u0 uk−3u1

v

B

Tk,0 Tk,1 Tk,k−3

Fig. 4.2. The tree R0(k) for Example 4.1.

The following example produces families of trees which are all co-Kemeny mates.

Example 4.1. For each k ≥ 4 and 1 ≤ l ≤ k − 3, let Tk,l be the rooted tree on

k vertices, formed from the star K1,l (rooted at the centre vertex, which we label as

ul) by appending a path on k − l − 1 vertices at the root vertex ul. (This type of

tree is sometimes known as a ‘broom’.) We define Tk,0 to be the path Pk with root

u0 at one end point of the path. Figure 4.1 illustrates. Next we form a tree Lk from

∪k−3
l=0 Tk,l by inserting a new vertex v, and making it adjacent to each of the roots

vertices u0, . . . , uk−3. Observe that in Lk, for each l = 0, . . . , k − 3, vertex ul has

degree l+ 2.

Fix a k ≥ 4, and take any tree B, rooted at vertex w, say. For each l = 0, . . . , k−3,

form the tree Rl(k) from B∪Lk by inserting the edge between w and ul. (Here we are

suppressing the explicit dependence on B.) Denote the corresponding degree vector

and distance matrix by d(l),∆(l), respectively. Figure 4.2 illustrates R0(k).

We claim that d(l1)
⊤∆(l1)d(l1) = d(l2)

⊤∆(l2)d(l2) whenever 0 ≤ l1 < l2 ≤ k− 3.

To see the claim, observe that Proposition 4.1 applies. In the language and notation

of that proposition, the path from ul1 to ul2 is ul1 ∼ v ∼ ul2 , so that d = 2. Observe

also that |C0| = k, |C1| = 1 and |C2| = k. According to (4.1) we have

d(l1)
⊤∆(l1)d(l1)− d(l2)

⊤∆(l2)d(l2) = 8|B|(k(0− 2) + 1(2− 2) + k(4− 2)) = 0,

as claimed. For each k ≥ 4 and each l = 0, . . . , k − 3, we find from Theorem 3.1 and

the preceding observations that K(R0(k)) = K(R1(k)) = · · · = K(Rk−3(k)). We note

that the trees Rl(k), l = 0, . . . , k − 3 are nonisomorphic, since they all have different

degree sequences.

The following remark shows that in addition to being nonisomorphic, many of

the trees in Example 4.1 fail to be cospectral with respect to the transition matrix of

the corresponding random walk.

Remark 4.1. Fix a k ≥ 4 and an l with 0 ≤ l ≤ k− 3, and denote the transition
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matrix for the random walk onRl(k) byMl(k). It is straightforward to determine that,

denoting the degree vector of Rl(k) by d, we have trace((Ml(k))
2) = 2

∑

p∼q
1

dpdq
.

Observe that this sum can be separated into two pieces – a sum over edges incident

with ul, and a sum over edges not incident with ul. This yields

trace((Ml(k))
2) = 2

∑

p∼q,p,q 6=ul

1

dpdq
+2

∑

p∼ul

1

dpdul

= 2
∑

p∼q,p,q 6=ul

1

dpdq
+

2

l + 3

∑

p∼ul

1

dp
.

Observe that for l = 0, . . . , k − 3,
∑

p∼ul

1
dp

= l + 1
2 + 1

dw
+ 1

k−2 .

Suppose that we have indices l1, l2 with 0 ≤ l1 < l2 ≤ k− 3. We want to compute

trace((Ml1(k))
2)− trace((Ml2(k))

2); we do so by considering, for each of Rl1(k) and

Rl2(k), edges incident with ul1 , edges incident with ul2 , and edges incident with

neither ul1 nor ul2 . It now follows that

1

2

(
trace((Ml1(k))

2)− trace((Ml2(k))
2)
)

=
1

l1 + 3

(

l1 +
1

2
+

1

dw
+

1

k − 2

)

+
1

l2 + 2

(

l2 +
1

2
+

1

k − 2

)

− 1

l2 + 3

(

l2 +
1

2
+

1

dw
+

1

k − 2

)

− 1

l1 + 2

(

l1 +
1

2
+

1

k − 2

)

=

(

−5

2
+

1

dw
+

1

k − 2

)(
1

l1 + 3
− 1

l2 + 3

)

+

(

−3

2
+

1

k − 2

)(
1

l2 + 2
− 1

l1 + 2

)

.

Inspecting (4.2) we find readily that if dw = 1, then

trace((Ml1(k))
2) 6= trace((Ml2(k))

2).

Suppose now that dw ≥ 2, and note that trace((Ml1(k))
2) = trace((Ml2(k))

2) if and

only if

(
3

2
− 1

k − 2

)
(l1 + 3)(l2 + 3)

(l1 + 2)(l2 + 2)
=

5

2
− 1

dw
− 1

k − 2
.

Observe that since l2 ≥ l1 + 1, (l1+3)(l2+3)
(l1+2)(l2+2) ≤ (l1+3)(l1+4)

(l1+2)(l1+3) = l1+4
l1+2 . If we suppose

further that l1 ≥ 4, then
(

3
2 − 1

k−2

)
(l1+3)(l2+3)
(l1+2)(l2+2) ≤

(
3
2 − 1

k−2

)
l1+4
l1+2 ≤ 4

3

(
3
2 − 1

k−2

)

=

2− 4
3(k−2) . Since dw ≥ 2, we have 2− 1

k−2 ≤ 5
2 − 1

dw
− 1

k−2 .

Assembling the observations above, we have that when dw ≥ 2 and l1 ≥ 4,

(
3

2
− 1

k − 2

)
(l1 + 3)(l2 + 3)

(l1 + 2)(l2 + 2)
≤ 2− 4

3(k − 2)
< 2− 1

k − 2
≤ 5

2
− 1

dw
− 1

k − 2
.

In particular, trace((Ml1(k))
2) 6= trace((Ml2(k))

2) whenever l1 ≥ 4.
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We thus conclude that the transition matrices Ml(k), l = 4, . . . , k − 3, (of which

there are k − 6) necessarily have distinct spectra.

Here is our final result, which is also of ‘Schwenk-type’.

Theorem 4.2. Fix an m ∈ N. Then almost all trees have at least m co-Kemeny

mates, none of which are cospectral with respect to the transition matrix of the corre-

sponding random walk.

Proof. Choose k = m+ 7. According to Proposition 2.1, for almost every tree T
there is a vertex w having Lk as a branch at w, with w adjacent to u0. From Example

4.1, we find that for each l = 1, . . . , k − 3, the tree formed from T by deleting the

edge w ∼ u0 and inserting the edge w ∼ ul is a co-Kemeny mate for T . Moreover, by

Remark 4.1, at least k−6 = m+1 of the trees so constructed have transition matrices

with distinct spectra. Hence, at most one of those trees has the property that the

spectrum of its transition matrix coincides with that of T , which readily yields the

conclusion.

Acknowledgement. The authors are grateful to an anonymous referee, who

pointed out connections with some of the results in [5] and [13].

REFERENCES
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