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Abstract. This paper is triggered by the preprint [P. Jain, C. Jin, S.M. Kakade, and P. Netra-

palli. Computing matrix squareroot via non convex local search. Preprint, arXiv:1507.05854, 2015.],

which analyzes gradient-descent for computing the square root of a positive definite matrix. Contrary

to claims of Jain et al., the author’s experiments reveal that Newton-like methods compute matrix

square roots rapidly and reliably, even for highly ill-conditioned matrices and without requiring com-

mutativity. The author observes that gradient-descent converges very slowly primarily due to tiny

step-sizes and ill-conditioning. The paper derives an alternative first-order method based on geodesic

convexity; this method admits a transparent convergence analysis (< 1 page), attains linear rate, and

displays reliable convergence even for rank deficient problems. Though superior to gradient-descent,

ultimately this method is also outperformed by a well-known scaled Newton method. Nevertheless,

the primary value of the paper is conceptual: it shows that for deriving gradient based methods for

the matrix square root, the manifold geometric view of positive definite matrices can be much more

advantageous than the Euclidean view.
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1. Introduction. Matrix functions such as Aα, logA, or eA (A ∈ Cn×n) arise in

diverse contexts. Higham [9] provides an engaging overview of such matrix functions.

A building block for efficient numerical evaluation of various matrix functions is the

matrix square root A1/2, a function whose computation has witnessed great interest

in the literature [1, 2, 8, 10, 12, 20]; see also [9, Chapter 6].

The present paper revisits the problem of computing the matrix square root for

a symmetric positive semidefinite (psd) matrix. (The same ideas extend trivially to

the Hermitian psd case.) Our work is triggered by the recent note of Jain et al. [14],

who analyze a simple gradient-descent procedure for computing A1/2 for a given psd

matrix A. Jain et al. [14] motivate their work by citing weaknesses of the simplified

Newton method that is known to unstable and can even diverge [10].

However, it turns out that the modified “polar-Newton” (Pn) method of [9, Algo-

rithm 6.21] avoids these drawbacks, and offers a method with excellent practical
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behavior. At the same time, gradient-descent of [14], while initially appealing due to

its simplicity, turns out to be empirically unacceptable: it converges extremely slowly,

especially on ill-conditioned matrices because its stepsizes become too small to ensure

progress on computers with limited floating point computation.

At the expense of introducing “yet another matrix square root” (Yamsr) method,

we present a non-Euclidean first-order method grounded in the geometric optimization

framework of [23]. Our method admits a transparent convergence analysis, attains

linear (geometric) convergence rate, and displays reliable behavior even for highly

ill-conditioned problems (including rank-deficient problems). Although numerically

superior to the gradient-descent approach of [14], Yamsr is still outperformed by the

well-known polar-Newton (scaled Newton) method.

In light of these observations, the two key messages delivered by our paper are:

◮ None of the currently known (to us) first-order methods are competitive with the

established second-order polar-Newton algorithm for matrix square roots.1

◮ For deriving gradient based methods that compute matrix square roots, the differ-

ential geometric view of positive definite matrices is much more advantageous than

the Euclidean view.

As a further attestation to the latter claim, our analysis yields as a byproduct a short

convergence proof of a Euclidean iteration due to [2], which previously required a

more intricate analysis. Moreover, it yields a geometric rate of convergence.

Finally, we note that the above conceptual view underlies several other applica-

tions too, where the geometric view of positive definite matrices has also proved quite

useful, e.g., [7, 11, 22, 23, 25, 26, 27].

1.1. Summary of existing methods. To place our statements in wider per-

spective we cite below several methods for matrix square roots. We refer the reader

to [9, Chapters 6 and 8] for more details and references, as well as a broader historical

perspective. For a condensed summary, we refer the reader to the survey of Ian-

nazzo [12] which covers the slightly more general problem of computing the matrix

geometric mean.

1. Eigenvectors: Compute the decomposition A = UΛU∗ and obtain A1/2 =

UΛ1/2U∗. While tempting, this can be slower for large and ill-conditioned

matrices. In our case, since A ≻ 0, this method coincides with the Schur-

Cholesky method mentioned in [12].

2. Matrix averaging: Many methods exist that obtain the matrix geomet-

ric mean as a limit of averaging procedures. These include scaled averaging

1Presumably, the same conclusion may hold for many other matrix functions.
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(which is essentially a matrix Harmonic-Arithmetic mean iteration that con-

verges to the geometric mean) and its variants [12, Section 5.1]. In spirit, the

algorithm that we propose in this paper also falls in this category.

3. Newton-like: The classic Newton iteration of [10], whose weaknesses moti-

vate the gradient-descent procedure of [14]. However, a better way to imple-

ment this iteration is to use polar decomposition. Here, first we compute the

Cholesky factorization A = RTR, then obtain the square root as A1/2 = UR,

where U is the unitary polar factor of R−1. This polar factor could be com-

puted using the SVD of R, but the polar-Newton (Pn) iteration [9, Algo-

rithm 6.21] avoids that and instead uses the scaled Newton method

Uk+1 = 1
2

(

µkUk + µ−1
k U−T

k

)

, U0 = R.

This iteration has the benefit that the number of steps needed to attain a

desired tolerance can be predicted in advance, and it can be implemented

to be backward stable. It turns out that empirically this iteration works

reliably even for extremely ill-conditioned matrices, and converges (locally)

superlinearly. The scaled Halley-iteration of [20] converges even more rapidly

and can be implemented in a numerically stable manner [19].

4. Quadrature: Methods based on Gaussian and Gauss-Chebyshev quadrature

and rational minimax approximations to z−1/2 are surveyed in [12, Section

5.4]. Among others, these methods easily tackle computation of general pow-

ers, logarithms, and some other matrix functions [8, 13].

5. First-order methods: The binomial iteration uses (I−C)1/2 = I−∑j αjC
j

for suitable αj > 0 and needs ρ(C) < 1 [9, Section 6.8.1]. The gradient-

descent method of [14] minimize ‖X2 − A‖2F . Like the binomial iteration,

this method does not depend on linear system solves (or matrix inversion)

and uses only matrix multiplication. The method introduced in Section 2.1

is also a first-order method, though cast in a non-Euclidean space; it does,

however, require (Cholesky based) linear system solves.

Additional related work includes fast computation of a matrix C such that Ap ≈
CCT for SDD matrices [6]; various algorithms for computing the product f(A)b [9,

Chapter 13]; and the broader topic of multivariate matrix means [3, 5, 15, 17, 21, 22].

2. Geometric optimization. We present details of computing the matrix squa-

re root using geometric optimization. Specifically, we cast the problem of computing

matrix square roots into the nonconvex optimization problem

min
X≻0

δ2S(X,A) + δ2S(X, I), (2.1)
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whose unique solution is the desired matrix square root X∗ = A1/2; here δ2S denotes

the S-Divergence [22]:

δ2S(X,Y ) := log det
(

X+Y
2

)

− 1
2 log det(XY ). (2.2)

To present our algorithm for solving (2.1) let us first recall some background.

The crucial property that helps us solve (2.1) is geodesic convexity of δ2S , that

is, convexity along geodesics in Pn endowed with its usual Riemannian geometry (see

e.g., [4, Chapter 6]). The geodesic joining X to Y is given by

X#tY := X1/2(X−1/2Y X−1/2)tX1/2, X, Y ≻ 0, t ∈ [0, 1], (2.3)

and a function f : Pn → R is called geodesically convex (g-convex ) if

f(X#tY ) ≤ (1− t)f(X) + tf(Y ). (2.4)

Theorem 2.1. The S-Divergence (2.2) is jointly g-convex on psd matrices.

Proof. See [22, Theorem 4.4]; we include a proof in the appendix for the reader’s

convenience.

Similar to Euclidean convexity, g-convexity bestows the crucial property: “Local

=⇒ global”. Consequently, we may use any algorithm that ensures local optimality;

g-convexity will imply global optimality. We present one such algorithm below.

But first let us see why solving (2.1) yields the desired matrix square root.

Theorem 2.2. Let A,B ≻ 0. Then,

A#1/2B = argminX≻0 δ2S(X,A) + δ2S(X,B). (2.5)

Moreover, A#1/2B is equidistant from A and B.

Proof. See [22, Theorem 4.1]. We include a proof below for convenience.

Since the constraint set is open, we can simply differentiate the objective in (2.5),

and set the derivative to zero to obtain the necessary condition

(

X+A
2

)−1 1
2 +

(

X+B
2

)−1 1
2 −X−1 = 0,

=⇒ X−1 = (X +A)−1 + (X +B)−1

=⇒ (X +A)X−1(X +B) = 2X +A+B

=⇒ B = XA−1X.
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The latter is a Riccati equation whose unique positive solution is X = A#1/2B—

see [4, Proposition 1.2.13]2. Global optimality of this solution follows easily since δ2S
is g-convex as per Theorem 2.1.

Corollary 2.3. The unique solution to (2.1) is X∗ = A#1/2I = A1/2.

2.1. Algorithm for matrix square root. We present now an iteration for

solving (2.1). As for Theorem 2.2, we obtain here the optimality condition

X−1 = (X +A)−1 + (X + I)−1. (2.6)

Our algorithm solves (2.6) simply by running3

X0 = 1
2 (A+ I) (2.7)

Xk+1 ← [(Xk +A)−1 + (Xk + I)−1]−1, k = 0, 1, . . . (2.8)

The following facts about our algorithm and its analysis are noteworthy:

1. Towards completion of this article we discovered that iteration (2.8) has been

known in matrix analysis since over three decades! Indeed, motivated by

electrical resistance networks, Ando [2] analyzed exactly the same iteration

as (2.8) in 1981. Our convergence proof (Theorem 2.4) is much shorter and

more transparent—it not only reveals the geometry behind its convergence

but also yields explicit bounds on the convergence rate, thus offering a new

understanding of the classical work [2].

2. Initialization (2.7) is just one of many. Any matrix in the interval [2(I +

A−1)−1, 1
2 (A+I)] is valid too; different choices can lead to faster convergence.

3. Each iteration of the algorithm involves three matrix inverses. Theoretically,

this costs “just” O(nω) operations (where ω denotes the exponent denoting

the complexity of matrix multiplication). In practice, we compute (2.8) using

linear system solves; in Matlab notation:

R = (X+A)\I + (X+I)\I; X = R\I;

4. The gradient-descent method in [14] and the binomial method [9] do not

require solving linear systems, and rely purely on matrix multiplication. But

both turn out to be slower than (2.8) while also being more sensitive to

ill-conditioning.

5. For ill-conditioned matrices, it is better to iterate (2.8) with αI, for a suitable

scalar α > 0; the final solution is recovered by dowscaling by α−1/2. A

heuristic choice is α = tr(A)/
√
n, which seems to work well in practice (for

well-conditioned matrices α = 1 is preferable).

2There is a typo in the cited result; it uses A and A1/2 where it should use A−1 and A−1/2.
3Observe that the same algorithm also computes A#1/2B if we replace I by B in (2.7) and (2.8).
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Theorem 2.4 (Convergence). Let {Xk}k≥0 be generated by (2.7)–(2.8). Let

X∗ = A1/2 be the optimal solution to (2.1). Then, there exists a constant γ < 1 such

that δ2S(Xk, X
∗) ≤ γkδ2S(X0, X

∗). Moreover, limXk = X∗.

Proof. Our proof is a specialization of the fixed-point theory in [18, 23]. Specif-

ically, we prove that (2.8) is a fixed-point iteration under the Thompson part metric

δT (X,Y ) := ‖ log(X−1/2Y X−1/2)‖, (2.9)

where ‖ · ‖ is the usual operator norm. The metric (2.9) satisfies many remarkable

properties; for our purpose, we use the fact that it is complete [24], as well the

following three well-known properties (e.g., [23, Proposition 4.2]):

δT (X
−1, Y −1) = δT (X,Y )

δT (X +A, Y +B) ≤ max{δT (X,Y ), δT (A,B)},
δT (X +A, Y +A) ≤ α

α+λmin(A)δT (X,Y ), α = max{‖X‖, ‖Y ‖}.
(2.10)

Consider now the nonlinear map

G ≡ X 7→
[

1
2

(

X+A
2

)−1

+ 1
2

(

X+I
2

)−1]−1

≡ [(X +A)−1 + (X + I)−1]−1,

corresponding to iteration (2.8). Using properties (2.10) of the metric δT we have

δT (G(X),G(Y )) = δT ([(X +A)−1 + (X + I)−1]−1, [(Y +A)−1 + (Y + I)−1]−1)

= δT ((X +A)−1 + (X + I)−1, (Y +A)−1 + (Y + I)−1)

≤ max
{

δT ((X +A)−1, (Y +A)−1), δT ((X + I)−1, (Y + I)−1)
}

= max {δT (X +A, Y +A), δT (X + I, Y + I)}
≤ max {γ1δT (X,Y ), γ2δT (X,Y )}

(where γ1 = α
α+λmin(A) , γ2 = α

α+1 , α = max{‖X‖, ‖Y ‖})
≤ γδT (X,Y ), γ < 1,

where we can choose γ to be independent of X and Y . Thus, the map G is a strict

contraction. Hence, from the Banach contraction theorem it follows that δT (Xk, X
∗)

converges at a linear rate given by γ, and that Xk → X∗. Using operator convexity

of the map X−1 a brief manipulation shows that G maps the (compact) interval

[2(I + A−1)−1, 1
2 (A + I)] to itself. Thus, α ≤ 1

2‖I + A‖; since α
c+α is increasing, we

can easily upper-bound γ = max(γ1, γ2) to finally obtain

γ ≤ α

α+min(λmin, 1)
≤ 1 + ‖A‖

1 + ‖A‖+ 2min(λmin(A), 1)
.

This is strictly smaller than 1 if A ≻ 0, thus yielding an explicit contraction rate.
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Remark 1. The bound on γ above is a worst-case bound. Empirically, the value

of γ is usually much smaller and the convergence rate commensurately faster.

Remark 2. Starting withX0 = 1
2 (A+I) ensures thatX0 ≻ 0; thus, we can use the

iteration (2.8) even if A is semidefinite, as all intermediate iterates remain well-defined.

This suggests why iteration (2.8) is empirically robust against ill-conditioning.

Example 2.5. Suppose A = 0. Then, the map G is no longer contractive but

still nonexpansive. Iterating (2.8) generates the sequence {Xk} = { 12I, 3
8I,

33
112I, . . .},

which converges to zero.

Example 2.5 shows that iteration (2.8) remains well-defined even for the zero

matrix. This prompts us to take a closer look at computing square roots of low-rank

semidefinite matrices. In particular, we extend the definition of the S-Divergence to

low-rank matrices. Let A be a rank-r semidefinite matrix of size n× n where r ≤ n.

Then, define detr(A) :=
∏r

i=1 λi(A) to be product of its r positive eigenvalues. Using

this, we can extend (2.2) as

δ2S,r(X,Y ) := log detr
(

X+Y
2

)

− 1
2 log detr(X)− 1

2 log detr(Y ) (2.11)

for rank-r SPD matrices X and Y . If rank(X) 6= rank(Y ), we set δS,r(X,Y ) = +∞.

The above definition can also be obtained as a limiting form of (2.2) by applying δ2S
to rank deficient X and Y by considering X + ǫI and Y + ǫI and letting ǫ→ 0.

Although iteration (2.8) works remarkably well in practice, it is a question of

future interest on how to obtain square roots for rank deficient matrices faster by

exploiting (2.11) instead.

3. Numerical results. We present numerical results comparing running times

and accuracy attained by: (i) Yamsr; (ii) Gd; (iii) LsGd; and (iv) Pn. These

methods respectively refer to iteration (2.8), the fixed step-size gradient-descent pro-

cedure of [14], our line-search based implementation of gradient-descent, and the

polar-Newton iteration of [9, Algorithm 6.21].

We present only one experiment with Gd, because with fixed steps it vastly

underperforms all other methods. In particular, if we set the step size according

to the results in [14], then for matrices with large condition numbers the step size

becomes smaller than machine precision! In our experiments with Gd we used step

sizes much larger than theoretical ones, otherwise the method makes practically no

progress. More realistically, if we wish to use gradient-descent we must employ line-

search. Ultimately, although substantially superior to plain Gd, even LsGd turns

out to be outperformed by Yamsr.

We experiment with the following matrices (generated in Matlab):
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1. I +βUU ′ for a low-rank matrix U and a variable constant β. These matrices

are well-conditioned.

2. Random correlation matrices (gallery(’randcorr’, n)); medium condi-

tioned.

3. The Hilbert matrix (hilb(n)), a well-known ill-conditioned matrix.

4. The inverse Hilbert matrix (invhilb(n)). The entries of the inverse Hilbert

matrix are very large integers. Extremely ill-conditioned.
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Fig. 3.1. Running times: Gd versus LsGd; this behavior is typical.
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Fig. 3.2. Running times: Yamsr vs LsGd (κ is condition number).
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Fig. 3.3. Running time: Yamsr vs Pn; this behavior is also typical.
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Fig. 3.4. Running time: Yamsr, LsGd, and Pn for computing square root of a 500 × 500

low-rank (rank 50) covariance matrix.

4. Conclusions. We revisited computation of the matrix square root, and com-

pared the recent gradient-descent procedure of [14] against the polar-Newton method

of [9, Algorithm 6.21], as well as Yamsr, a first-order fixed-point algorithm that we

derived using the viewpoint of geometric optimization. The experimental results show

that the polar-Newton method is the clear winner for computing matrix square roots

(except near the 10−15 accuracy level for well-conditioned matrices). Among the

first-order methods Yamsr outperforms both gradient-descent as well its line-search

variant across all tested settings, including singular matrices.
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Appendix A. Technical details.

Proof of Theorem 2.1. It suffices to prove midpoint convexity; the general case

follows by continuity. Consider therefore psd matrices X1, X2, Y1, Y2. We need to

show that

δ2S(X1#1/2X2, Y1#1/2Y2) ≤ 1
2δ

2
S(X1, Y1) +

1
2δ

2
S(X2, Y2). (A.1)
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From the joint concavity of the operator #1/2 [16], we know that

X1#1/2X1 + Y1#1/2Y2 � (X1 + Y1)#1/2(X2 + Y2).

Since log det is a monotonic function, applying it to this inequality yields

log det[X1#1/2X1 + Y1#1/2Y2] ≤ log det[(X1 + Y1)#1/2(X2 + Y2)]. (A.2)

But we also know that log det((1 − t)X#ttY ) = (1 − t) log det(X) + t log det(Y ).

Thus, a brief algebraic manipulation of (A.2) combined with the definition (2.2)

yields inequality (A.1) as desired.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 433-443, June 2016

http:/repository.uwyo.edu/ela


