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Abstract. Let A be a unital algebra and M be a unital A-bimodule. A characterization of

generalized derivations and generalized Jordan derivations from A into M, through zero products

or zero Jordan products, is given. Suppose that M is a unital left A-module. It is investigated

when a linear mapping from A into M is a Jordan left derivation under certain conditions. It is also

studied whether an algebra with a nontrivial idempotent is zero Jordan product determined, and

Jordan homomorphisms, Lie homomorphisms and Lie derivations on zero Jordan product determined

algebras are characterized.
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1. Introduction. Throughout this paper, let A be a unital associative algebra

over F, where F is a field of characteristic not 2.

For each a, b in A, we define the Jordan product by a ◦ b = ab + ba and the Lie

product by [a, b] = ab− ba.

Suppose that M is a unital A-bimodule. A linear mapping δ from A into M is

called a generalized derivation if δ(ab) = δ(a)b+aδ(b)−aδ(1)b for each a, b in A, and

δ is called a generalized Jordan derivation if δ(a◦b) = δ(a)◦b+a◦δ(b)−aδ(1)b−bδ(1)a

for each a, b in A.

In [1, 2, 7, 8, 10, 11, 14, 15, 17], several authors consider the following conditions

on a linear mapping δ : A → M:

(D1) a, b ∈ A, ab = 0 ⇒ aδ(b) + δ(a)b = 0;

(D2) a, b, c ∈ A, ab = bc = 0 ⇒ aδ(b)c = 0;

(D3) a, b ∈ A, ab = ba = 0 ⇒ a ◦ δ(b) + δ(a) ◦ b = 0;
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and investigate whether these conditions characterize generalized derivations or gen-

eralized Jordan derivations.

We denote by L(A) the linear span of all idempotents in A, and by J(A) the

subalgebra of A generated algebraically by all idempotents in A. M is said to have

the property P1, if there is an ideal J ⊆ J(A) of A such that

{m ∈ M : xm = mx = 0 for every x ∈ J } = {0};

M is said to have the property P2, if there is an ideal J ⊆ J(A) of A such that

{m ∈ M : xmy = 0 for each x, y ∈ J } = {0};

M is said to have the property P3, if there is an ideal J ⊆ J(A) of A such that

{m ∈ M : xmx = 0 for every x ∈ J } = {0}.

It is clear that P3 ⇒ P2 ⇒ P1 and if A = J(A), then M has the properties P1-P3.

Let H be a complex Hilbert space and B(H) be the set of all bounded linear

operators onH. By a subspace lattice onH, we mean a collection L of closed subspaces

of H with (0) and H in L such that for every family {Mr} of elements of L, both

∩Mr and ∨Mr belong to L, where ∨Mr denotes the closed linear span of {Mr}. We

disregard the distinction between a closed subspace and the orthogonal projection

onto it.

Let L be a subspace lattice on H, define PL = {E ∈ L : E− + E}, where

E− = ∨{F ∈ L : F + E} and let E+ = ∩{F ∈ L : F * E}. A subspace L is

called a completely distributive if L = ∨{E ∈ L : E− + L} for every L ∈ L; L is

called a P-subspace lattice if ∨{E : E ∈ PL} = H or ∩{E− : E ∈ PL} = (0). For

some properties of completely distributive subspace lattices and P-subspace lattices,

see [7, 13]. L is said to be a commutative subspace lattice if it consists of mutually

commuting projections. A totally ordered subspace lattice N is called a nest.

We use AlgL to denote the algebra of all operators in B(H) that leave members

of L invariant.

Let J be an ideal ofA, we say that J is a right separating set (resp., left separating

set) of M if for every m in M, Jm = {0} implies m = 0 (resp., mJ = {0} implies

m = 0). When J is a right separating set and a left separating set of M, we call J a

separating set of M. By [7, 11], we know that if A and M satisfy one of the following

conditions:

(1) A = B ∩ AlgN and M = B, where N is a nest in a factor von Neumann

algebra B;
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(2) A = AlgL with (0)+ 6= (0) and H− 6= H, M = B(H);

(3) A = AlgL with ∨{E : E ∈ PL} = H and ∩{E− : E ∈ PL} = (0), M = B(H),

then M has a separating set J with J ⊆ J(A), it is easy to show that M has the

property P2. If A is a completely distributive commutative subspace lattice algebra

and M = B(H), then M has the property P3.

This paper is organized as follows. In Section 2, we suppose that M has the

property P1, P2 or P3 and characterize linear mappings that satisfy the condition D1,

D2 or D3 through their action on zero products or zero Jordan products.

Let M be a left A-module. A linear mapping δ from A into M is said to be a

Jordan left derivation if δ(a ◦ b) = 2aδ(b) + 2bδ(a) for each a, b in A. In [16], J. Li

and J. Zhou show that if M has a right separating set J ⊆ J(A), then every Jordan

left derivation from A into M is zero.

The natural way to translate the conditions D1-D3 to the context of Jordan left

derivations is to consider the following conditions on a linear mapping δ : A → M:

(J1) a, b ∈ A, ab = 0 ⇒ aδ(b) + bδ(a) = 0;

(J2) a, b, c ∈ A, ab = bc = 0 ⇒ acδ(b) = 0;

(J3) a, b ∈ A, ab = ba = 0 ⇒ aδ(b) + bδ(a) = 0.

It is clear that J1 implies J3. In [16], J. Li and J. Zhou show that if M has a right

separating set J ⊆ J(A), then each linear mapping δ such that the condition J1 is

zero under certain conditions.

In Section 3, we investigate whether the condition J2 or J3 characterizes Jordan

left derivation and, as applications of Theorem 3.1, we generalize some results in [16].

In [6], M. Brešar et al. introduce the concepts of zero product determined algebras

and zero Jordan product determined algebras, which can be used to study the linear

mappings preserving zero product or zero Jordan product.

Let X be a linear space over F. An algebraA is said to be zero product determined

if every bilinear mapping φ from A×A into any linear space X satisfying

φ(a, b) = 0, whenever ab = 0

can be written as φ(a, b) = T (ab), for some linear mapping T from A into X .

Similarly, A is said to be zero Jordan product determined if every bilinear mapping

φ from A×A into any linear space X satisfying

a, b ∈ A, a ◦ b = 0 ⇒ φ(a, b) = 0
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can be written as φ(a, b) = T (a ◦ b), for some linear mapping T from A into X .

In Section 4, we investigate whether an algebra with a nontrivial idempotent is

zero Jordan product determined. For a unital zero Jordan product determined algebra

A, we also characterize the linear mappings η on A satisfying that η(a) ◦ η(b) = 0

whenever ab = ba = 0 or η([a, b])− [η(a), η(b)] = 0 whenever a◦b = 0. As applications

of Theorems 4.7, 4.8 and 4.9, we generalize the main results in [17].

2. Generalized derivations and generalized Jordan derivations. In [5],

Brešar shows that ifA = J(A), thenA is zero product determined. In [8], Ghahramani

proves that if A = L(A), then A is zero Jordan product determined. In [3], we show

that if A = J(A), then A is zero Jordan product determined. For more information

on bilinear mappings from A×A into a vector space X , we refer to [9, 12, 17].

The following two lemmas will be used repeatedly.

Lemma 2.1. [5, Theorem 4.1] If φ is a bilinear mapping from A×A into a vector

space X such that

a, b ∈ A, ab = 0 ⇒ φ(a, b) = 0,

then we have that

φ(a, x) = φ(ax, 1) and φ(x, a) = φ(1, xa)

for every a in A and every x in J(A).

Lemma 2.2. If φ is a bilinear mapping from A × A into a vector space X such

that

a, b ∈ A, ab = ba = 0 ⇒ φ(a, b) = 0,

then we have that

φ(a, x) + φ(x, a) = φ(ax, 1) + φ(1, xa)

for every a in A and every x in J(A).

Proof. By the definition of J(A), we know that every x in J(A) can be writ-

ten as a linear combination of some elements x1, x2, . . . , xk in J(A) such that xk =

pk1
pk2

· · · pki
, where pk1

, pk2
, . . . , pki

are idempotents in A. Since φ is bilinear, to

show the theorem, it is sufficient to prove that

φ(a, p1p2 · · · pn) + φ(p1p2 · · · pn, a) = φ(ap1p2 · · · pn, 1) + φ(1, p1p2 · · · pna) (2.1)

for every a and idempotents pi in A.
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By [8, Theorem 3.5], we know that if n = 1, then (2.1) is true. For n = k, suppose

that (2.1) is true.

Let n = k + 1. By a = pk+1ap1 + p⊥
k+1ap1 + pk+1ap

⊥
1 + p⊥

k+1ap
⊥
1 , it follows that

φ(a, p1p2 · · · pkpk+1) =φ(pk+1ap1, p2 · · · pkpk+1)− φ(pk+1ap1, p
⊥

1 p2 · · · pk)

+ φ(p⊥
k+1ap1, p2 · · · pkpk+1) + φ(pk+1ap

⊥

1 , p1p2 · · · pk),

and

φ(p1p2 · · · pkpk+1, a) =φ(p2 · · · pkpk+1, pk+1ap1)− φ(p⊥1 p2 · · · pk, pk+1ap1)

+ φ(p2 · · · pkpk+1, p
⊥

k+1ap1) + φ(p1p2 · · · pk, pk+1ap
⊥

1 ).

We have that

φ(a, p1p2 · · · pk+1)+φ(p1p2 · · · pk+1, a)

=(φ(pk+1ap1, p2 · · · pkpk+1) + φ(p2 · · · pkpk+1, pk+1ap1))

− (φ(pk+1ap1, p
⊥

1 p2 · · · pk) + φ(p⊥1 p2 · · · pk, pk+1ap1))

+ (φ(p⊥k+1ap1, p2 · · · pkpk+1) + φ(p2 · · · pkpk+1, p
⊥

k+1ap1))

+ (φ(pk+1ap
⊥

1 , p1p2 · · · pk) + φ(p1p2 · · · pk, pk+1ap
⊥

1 )).

By the inductive assumption, we obtain the following identity:

φ(a, p1p2 · · · pkpk+1)+φ(p1p2 · · · pkpk+1, a)

=φ(pk+1ap1p2 · · · pkpk+1, 1) + φ(1, p2 · · · pkpk+1ap1)

− φ(1, p⊥1 p2 · · · pkpk+1ap1) + φ(p⊥
k+1ap1p2 · · · pkpk+1, 1)

+ φ(1, p1p2 · · · pkpk+1ap
⊥

1 ).

It implies that

φ(a, p1p2 · · · pk+1) + φ(p1p2 · · · pk+1, a) = φ(ap1p2 · · · pk+1, 1) + φ(1, p1p2 · · · pk+1a).

Thus, (2.1) is true when n = k + 1.

Theorem 2.3. Suppose that δ is a linear mapping from A into M such that the

condition D1 holds. If M has the property P1, then δ is a generalized derivation and

aδ(1) = δ(1)a for every a in A.

Proof. Define a bilinear mapping φ from A × A into M by φ(a, b) = δ(ab) −

aδ(b)− δ(a)b for each a, b in A. Then ab = 0 implies φ(a, b) = 0.

Let J ⊆ J(A) be an ideal of A, a and b be in A, x be in J . Applying Lemma

2.1, we obtain φ(a, x) = φ(ax, 1) and φ(x, 1) = φ(1, x). Hence,

δ(ax)− aδ(x)− δ(a)x = δ(ax)− axδ(1)− δ(ax) (2.2)
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and

δ(x)− δ(x) − δ(1)x = δ(x) − δ(x)− xδ(1). (2.3)

By (2.2) and (2.3), it follows that

δ(ax) = aδ(x) + δ(a)x− axδ(1) (2.4)

and

δ(1)x = xδ(1). (2.5)

By (2.4), it follows that

δ(abx) = δ((ab)x) = abδ(x) + δ(ab)x− abxδ(1), (2.6)

and on the other hand we have that

δ(abx) = aδ(bx) + δ(a)bx− abxδ(1) = abδ(x) + aδ(b)x+ δ(a)bx− 2abxδ(1). (2.7)

Using (2.5), (2.6) and (2.7), we obtain

(δ(ab)− aδ(b)− δ(a)b + abδ(1))x = 0.

Similarly, we have that

x(δ(ab)− aδ(b)− δ(a)b+ abδ(1)) = 0.

Since M has the property P1, it follows that

δ(ab) = aδ(b) + δ(a)b − abδ(1). (2.8)

Taking a = 1 in (2.8), we have that δ(1)b = bδ(1) for every b in A. Thus, δ is a

generalized derivation.

A linear mapping δ from A into M is called a local derivation if for every a in A

there exists a derivation δa (depending on a) from A into M such that δ(a) = δa(a).

It is clear that every local derivation satisfies the condition D2. Hence, the following

result is extremely useful in studying the structure of local derivations.

Theorem 2.4. Suppose that δ is a linear mapping from A into M such that the

condition D2 holds. If M has the property P2, then δ is a generalized derivation.

Proof. Choosing a0, b0 in A such that a0b0 = 0. Define a bilinear mapping φ1

from A×A into M by φ1(a, b) = aδ(ba0)b0 for each a, b in A. Then ab = 0 implies

φ1(a, b) = 0.
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Let J ⊆ J(A) be an ideal of A, a be in A and x be in J . Applying Lemma 2.1,

we obtain

φ1(x, a) = φ1(1, xa) and φ1(x, 1) = φ1(1, x). (2.9)

Since J is an ideal of A, we have that

φ1(1, xa) = φ1(xa, 1). (2.10)

Hence, by (2.9) and (2.10), it follows that

xδ(aa0)b0 = xaδ(a0)b0. (2.11)

Now fix a1 ∈ A and x ∈ J . By (2.11), it follows that ab = 0 implies xδ(a1a)b −

xa1δ(a)b = 0 for each a, b in A.

Define a bilinear mapping φ2 fromA×A intoM by φ2(a, b) = xδ(a1a)b−xa1δ(a)b

for each a, b in A. Then ab = 0 implies φ2(a, b) = 0.

Let a2 be in A and y be in J . Similarly, we obtain φ2(a2, y) = φ2(a2y, 1) =

φ2(1, a2y). Hence,

xδ(a1a2)y − xa1δ(a2)y = xδ(a1)a2y − xa1δ(1)a2y. (2.12)

By (2.12), we have that

x(δ(a1a2)− a1δ(a2)− δ(a1)a2 + a1δ(1)a2)y = 0 (2.13)

for each a1, a2 in A and x, y in J .

Since M has the property P2, by (2.13) it is easy to show that δ is a generalized

derivation.

In [1], the authors show that in the case when A is a C∗-algebra and M is an

essential Banach A-bimodule, the condition D3 implies that δ is of the form δ = ∆+ϕ,

where ∆ : A → M is a derivation and ϕ : A → M is a bimodule homomorphism.

Applying the techniques in [8], we have the following result.

Theorem 2.5. Suppose that δ is a linear mapping from A into M such that

the condition D3 holds. If M has the property P3, then δ is a generalized Jordan

derivation and aδ(1) = δ(1)a for every a in A.

Proof. Let p be an idempotent in A. By p(1− p) = (1− p)p = 0, it follows that

2δ(p) + pδ(1) + δ(1)p = 2pδ(p) + 2δ(p)p. (2.14)
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Multiplying p from the left and the right of (2.14), respectively, we obtain the following

identities:

pδ(1)p+ δ(1)p = 2pδ(p)p (2.15)

and

pδ(1) + pδ(1)p = 2pδ(p)p. (2.16)

Comparing (2.15) and (2.16), we have that pδ(1) = δ(1)p.

Let J ⊆ J(A) be an ideal of A, then by the definition of J(A) we obtain xδ(1) =

δ(1)x for every x in J . Hence, we have the following identities:

aδ(1)x = axδ(1) = δ(1)ax (2.17)

and

xδ(1)a = δ(1)xa = xaδ(1) (2.18)

for every a in A and x in J . By (2.17) and (2.18), we obtain

x(aδ(1) − δ(1)a)x = 0.

Since M has the property P3, it follows that aδ(1) = δ(1)a for every a in A.

Define a linear mapping ∆ from A into M by ∆(a) = δ(a)− aδ(1) for every a in

A. It is clear that a ◦∆(b) + ∆(a) ◦ b = 0 for each a, b in A with ab = ba = 0 and

∆(1) = 0.

Define a bilinear mapping φ from A×A into M by φ(a, b) = a ◦∆(b) +∆(a) ◦ b.

Then ab = ba = 0 implies φ(a, b) = 0. Applying Lemma 2.2, we obtain

φ(a, x) + φ(x, a) = φ(ax, 1) + φ(1, xa)

for every a in A and x in J . Hence, ∆(a ◦ x) = a ◦∆(x) + ∆(x) ◦ a for every a in A

and x in J .

Next we prove that ∆ is a Jordan derivation. Define {a,m, b} = amb+ bma and

{a, b,m} = {m, b, a} = abm+mba for each a, b in A and every m in M.

Let a be in A, x and y be in M. By the proof of [8, Theorem 4.3], we have the

following two identities:

∆{x, a, y} = {∆(x), a, y}+ {x,∆(a), y}+ {x, a,∆(y)}, (2.19)

and

∆{x, a2, y} = {∆(x), a2, y}+ {x, a ◦∆(a), y}+ {x, a2,∆(y)}. (2.20)
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On the other hand, by (2.19) we have that

∆{x, a2, x} = {∆(x), a2, x}+ {x,∆(a2), x} + {x, a2,∆(x)}. (2.21)

Comparing (2.20) and (2.21), it follows that {x,∆(a2), x} = {x, a ◦∆(a), x}. That is

x(∆(a2)− a ◦∆(a))x = 0.

Since M has the property P3, it follows that ∆(a2)− a ◦∆(a) = 0 for every a in

A. It means that δ is a generalized Jordan derivation.

Remark 2.6. Suppose that A = J(A), an example of such an algebra is the

matrix algebra Mn(B), where n > 2 and B is a unital algebra. It is easy to show that

if A = J(A), then Theorems 2.3 and 2.5 improve [17, Theorem 2.3]

3. Characterizations of Jordan left derivations. Let M be a unital left A-

module. In this section, we characterize the linear mappings satisfying the condition

J2 or J3 holds. The main result of this section is the following theorem.

Theorem 3.1. Suppose that δ is a linear mapping from A into M such that the

condition J3 holds. If M has a right separating set J ⊆ J(A), then δ(a) = aδ(1) for

every a in A. Moreover, if δ(1) = 0, then δ ≡ 0.

To prove Theorem 3.1, we need the following lemma.

Lemma 3.2. Let δ be as in Theorem 3.1. Then for every a, every idempotent p

in A, the following three statements hold:

(1) δ(p) = pδ(p) = pδ(1);

(2) δ(pa) = pδ(a);

(3) δ(ap) = pδ(a) + (ap− pa)δ(1).

Proof. Since p(1 − p) = (1 − p)p = 0, it follows that pδ(1− p) + (1 − p)δ(p) = 0.

Through a simple calculation, we have that δ(p) = pδ(p) = pδ(1).

To prove (2) and (3), define a linear mapping ∆ from A into M by ∆(a) =

δ(a) − aδ(1) for every a in A. It is clear that a∆(b) + b∆(a) = 0 for each a, b in A

with ab = ba = 0 and ∆(1) = 0.

Define a bilinear mapping φ from A×A into M by φ(a, b) = a∆(b) + b∆(a) for

each a, b in A. Then ab = ba = 0 implies φ(a, b) = 0.

Let a be in A and p be an idempotent in A. Applying Lemma 2.2, we obtain

φ(a, p) + φ(p, a) = φ(ap, 1) + φ(1, pa),
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and hence,

2p∆(a) = ∆(ap) + ∆(pa). (3.1)

Replacing a by ap and pa in (3.1), respectively, we have the following two iden-

tities:

2p∆(ap) = ∆(ap) + ∆(pap) (3.2)

and

2p∆(pa) = ∆(pa) + ∆(pap). (3.3)

Multiplying p from the left of (3.2), we obtain 2p∆(ap) = p∆(ap) + p∆(pap). Thus,

p∆(ap) = p∆(pap). (3.4)

Similarly, we have that

p∆(pa) = p∆(pap). (3.5)

Replacing a by a(1 − p) in (3.1), we obtain 2p∆(a − ap) = ∆(pa − pap). Then by

(3.5) we have that

p∆(a) = p∆(ap) (3.6)

and ∆(pa) = ∆(pap). Then by (3.6) we obtain

p∆(pa) = ∆(pa) = ∆(pap). (3.7)

Multiplying p from the left of (3.1), we have that 2p∆(a) = p∆(ap) + p∆(pa). By

(3.1), (3.3) and (3.7), it follows that p∆(a) = p∆(pa) = ∆(pa) = ∆(ap). By the

definition of ∆, it follows that

p(δ(a)− aδ(1)) = δ(ap)− apδ(1) = δ(pa)− paδ(1),

that is,

δ(pa) = pδ(a) = δ(ap)− (ap− pa)δ(1)

for every a and every idempotent p in A.

By the definition of J(A), it is easy to show the following result.

Corollary 3.3. Let δ be as in Theorem 3.1. If B ⊆ J(A), then for every s in

B and every a in A, we have that δ(sa) = sδ(a).
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In the following, we prove Theorem 3.1.

Proof of Theorem 3.1. By Corollary 3.3, we have that δ(sab) = sδ(ab) and

δ(sab) = δ((sa)b) = saδ(b) for each a, b in A and every s in J .

Hence, s(δ(ab) − aδ(b)) = 0 for each a, b in A and every s in J . Since J is a

right separating set of M, it follows that δ(ab) = aδ(b) for each a, b in A. Taking

b = 1, we obtain δ(a) = aδ(1) for every a in A.

In [16], J. Li and J. Zhou show that if M has a right separating set J ⊆ J(A),

then each linear mapping δ satisfying J1 is zero under certain conditions. Since J1
implies J3, by using Theorem 3.1, we can improve [16, Theorem 3.3].

Theorem 3.4. Suppose that δ is a linear mapping from A into M such that the

condition J2 holds. If A = J(A) and δ(1) = 0, then δ ≡ 0.

Proof. Choose a0, b0 in A such that a0b0 = 0. Define a bilinear mapping φ1

from A×A into M by φ1(a, b) = ab0δ(ba0) for each a, b in A. Then ab = 0 implies

φ1(a, b) = 0. Let a be in A, applying Lemma 2.1, we obtain

φ1(a, 1) = φ1(1, a),

and hence,

ab0δ(a0) = b0δ(aa0). (3.8)

By (3.8), it follows that for each a, a0, b0 in A, a0b0 = 0 implies ab0δ(a0)−b0δ(aa0) =

0.

Now fix a1 ∈ A, define a bilinear mapping φ2 from A×A into M by φ2(a, b) =

a1bδ(a) − bδ(a1a) for each a, b in A. Then ab = 0 implies φ2(a, b) = 0. Applying

Lemma 2.1, we obtain

φ2(1, a2) = φ2(a2, 1)

for every a2 in A. Hence,

a1a2δ(1)− a2δ(a1) = a1δ(a2)− δ(a1a2)

for each a1, a2 in A. This means that δ is a left derivation if δ(1) = 0. By Theorem

3.1, we have that δ ≡ 0.

4. Characterizing linear mappings through zero Jordan products. A

linear mapping δ from A into an A-bimodule M is called a Lie derivation if δ[a, b] =

[δ(a), b] + [a, δ(b)] for each a, b in A. A linear mapping η from A into an algebra B is

said to be a Jordan homomorphism if η(a ◦ b) = η(a) ◦ η(b) for each a, b in A and η

is said to be a Lie homomorphism if η[a, b] = [η(a), η(b)] for each a, b in A.
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In this section, we investigate whether a unital algebra with nontrivial idempo-

tents is zero Jordan product determined, and we characterize Jordan homomorphisms,

Lie homomorphisms and Lie derivations on a unital zero Jordan product determined

algebra.

Lemma 4.1. [3, Theorem 2.1] If φ is a bilinear mapping from A×A into a vector

space X such that

a, b ∈ A, a ◦ b = 0 ⇒ φ(a, b) = 0,

then we have that

φ(a, x) =
1

2
φ(ax, 1) +

1

2
φ(xa, 1)

for every a in A and every x in J(A). Thus, A is zero Jordan product determined if

A = J(A).

Similar to the proof of Lemma 4.1, we can obtain the following result.

Lemma 4.2. If φ is a bilinear mapping from A × A into a vector space X such

that

a, b ∈ A, a ◦ b = 0 ⇒ φ(a, b) = 0,

then we have that

φ(x, a) =
1

2
φ(1, ax) +

1

2
φ(1, xa)

for every a in A and every x in J(A). Thus, A is zero Jordan product determined if

A = J(A).

Let p be a nontrivial idempotent in A and q = 1 − p. We have the Peirce

decomposition of A as follows:

A = pAp+ pAq + qAp+ qAq.

It is easy to show that p+ paq is an idempotent for every a in A, and hence, pAq =

(p+ pAq)− p is contained in J(A).

Recall an algebra A is simple if {0} and A are the only two ideals of A. By [4,

p.11], we know that every simple algebra with a nontrivial idempotent is generated

algebraically by its idempotents. By Lemma 4.1, we can obtain the following result

immediately.

Corollary 4.3. If A is a simple algebra with a nontrivial idempotent p, then A

is zero Jordan product determined.

Theorem 4.4. If pAp and qAq are zero Jordan product determined, then A is

zero Jordan product determined.
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Proof. Suppose that X is a linear space and φ is a bilinear mapping from A×A

into X such that

a, b ∈ A, a ◦ b = 0 ⇒ φ(a, b) = 0.

Let a and b be in A. Since pAp is zero Jordan product determined and p is the

unit in pAp, we have a linear mapping T from pAp into X such that

φ(pap, pbp) = T (papbp) + T (pbpap) =
1

2
φ(papbp, p) +

1

2
φ(pbpap, p).

By Lemma 4.1, we obtain

φ(papbp, p) = φ(papbp, 1)

and

φ(pbpap, p) = φ(pbpap, 1).

It follows that

φ(pap, pbp) =
1

2
φ(papbp, 1) +

1

2
φ(pbpap, 1). (4.1)

Similarly, we have that

φ(qaq, qbq) =
1

2
φ(qaqbq, 1) +

1

2
φ(qbqaq, 1).

By Peirce decomposition, we obtain

φ(a, b) = φ(pap+ paq + qap+ qaq, pbp+ pbq + qbp+ qbq).

By Lemma 4.1 and (4.1), it follows that

φ(pap, pbp+ pbq + qbp+ qbq) =φ(pap, pbp) + φ(pap, pbq)

+ φ(pap, qbp) + φ(pap, qbq)

=
1

2
φ(papbp, 1) +

1

2
φ(pbpap, 1)

+
1

2
φ(papbq, 1) +

1

2
φ(qbpap, 1)

=
1

2
φ(papb, 1) +

1

2
φ(bpap, 1). (4.2)

Similarly, we have the following identity:

φ(qaq, pbp+ pbq + qbp+ qbq) =
1

2
φ(bqaq, 1) +

1

2
φ(qaqb, 1). (4.3)
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By Lemma 4.2 we know that φ(1, x) = φ(x, 1) for every x ∈ J(A), and

φ(paq, pbp+ pbq + qbp+ qbq) =
1

2
φ(1, pbpaq) +

1

2
φ(1, paqbp)

+
1

2
φ(1, qbpaq) +

1

2
φ(1, paqbq)

=
1

2
φ(pbpaq, 1) +

1

2
φ(paqbp, 1)

+
1

2
φ(qbpaq, 1) +

1

2
φ(paqbq, 1)

=
1

2
φ(bpaq, 1) +

1

2
φ(paqb, 1). (4.4)

Similarly, we can obtain

φ(qap, pbp+ pbq + qbp+ qbq) =
1

2
φ(qapb, 1) +

1

2
φ(bqap, 1). (4.5)

By (4.2), (4.3), (4.4) and (4.5), it follows that

φ(a, b) =
1

2
φ(ab, 1) +

1

2
φ(ba, 1). (4.6)

Define a linear mapping T0 from A into X by T0(a) =
1

2
φ(a, 1) for every a in A.

By (4.6) we have that φ(a, b) = T0(a ◦ b) for each a, b in A.

Theorem 4.5. If A is zero Jordan product determined and pAqAp = {0}, then

pAp is zero Jordan product determined.

Proof. Suppose that X is a linear space and φ is a bilinear mapping from pAp×

pAp into X such that

a, b ∈ A, pap ◦ pbp = 0 ⇒ φ(pap, pbp) = 0.

Let a and b be in A. Define a bilinear mapping ϕ from A×A into X by ϕ(a, b) =

φ(pap, pbp).

Since pAqAp = {0}, we obtain pabp = papbp+ paqbp = papbp. Similarly, we have

pbap = pbpap.

If ab+ba = 0, then papbp+pbpap = pabp+pbap = 0 and ϕ(a, b) = φ(pap, pbp) = 0.

Since A is zero Jordan product determined, we have a linear mapping T from A

into X such that T (a ◦ b) = ϕ(a, b).

Define a linear mapping T0 from pAp into X by T0(pap) = T (a) for every a in A.

Next we show that T0 is well defined. Let a and b be in A such that p(a−b)p = 0.

By the definition of ϕ, it follows that

2T (a− b) = T ((a− b) ◦ 1) = ϕ(a− b, 1) = φ(p(a− b)p, p) = 0,
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it means that T (a) = T (b).

Since pabp = paqbp and pbap = pbqbp, we have that

T0(pap ◦ pbp) = T0(p(ab+ ba)p) = T (ab+ ba) = ϕ(a, b) = φ(pap, pbp)

for each a, b in A. Thus, pAp is zero Jordan product determined.

By Theorems 4.4 and 4.5, we have the following result.

Corollary 4.6. Suppose that pAqAp = {0} and qApAq = {0}. Then A is

zero Jordan product determined if and only if pAp and qAq are zero Jordan product

determined.

Remark 4.7. In [9], Ghahramani shows that the triangular algebra

T =

[

A M

0 B

]

=

{[

A M

0 B

]

: A ∈ A, B ∈ B,M ∈ M

}

is zero Jordan product determined if and only if A and B are zero Jordan product

determined. By Corollary 4.6, we can obtain this result immediately.

Theorem 4.8. Let A be a unital zero Jordan product determined algebra and B

be a unital algebra. Suppose that η is a linear mapping from A into B with η(1) = 1.

If η satisfies

a, b ∈ A, ab = ba = 0 ⇒ η(a) ◦ η(b) = 0,

then η is a Jordan homomorphism.

Proof. Define a bilinear mapping φ from A×A into B by

φ(a, b) = η(a ◦ b)− η(a) ◦ η(b) (4.7)

for each a and b in A. Then ab = ba = 0 implies φ(a, b) = 0. By Lemma 2.2, we have

that

φ(a, b) + φ(b, a) = φ(ab, 1) + φ(1, ba). (4.8)

By (4.7) and (4.8), it is easy to show that

φ(a, b) = φ(b, a) and φ(a, b) =
1

2
φ(ab + ba, 1).

It follows that ab + ba = 0 implies φ(a, b) = 0. Since A is zero Jordan product

determined, we have a linear mapping T from A into B such that φ(a, b) = T (a ◦ b).

It follows that

T (a ◦ b) = η(a ◦ b)− η(a) ◦ η(b). (4.9)
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Taking b = 1 in (4.9) and by η(1) = 1, we obtain T (a) = 0. Thus, by (4.9), we have

that η(a ◦ b) = η(a) ◦ η(b) for each a, b in A.

Theorem 4.9. Let A be a unital zero Jordan product determined algebra and B

be a unital algebra. Suppose that η is a linear mapping from A into B with η(1) = 1.

If η satisfies

a, b ∈ A, a ◦ b = 0 ⇒ η([a, b])− [η(a), η(b)] = 0,

then η is a Lie homomorphism.

Proof. Define a bilinear mapping φ from A × A into B by φ(a, b) = η([a, b]) −

[η(a), η(b)] for each a and b in A.

Then a ◦ b = 0 implies φ(a, b) = 0. Since A is zero Jordan product determined,

we have a linear mapping T from A into B such that φ(a, b) = T (a ◦ b). It follows

that

T (a ◦ b) = η([a, b])− [η(a), η(b)]. (4.10)

Taking b = 1 in (4.10), we obtain that:

2T (a) = −[η(a), η(1)] = 0.

It follows that T (a) = 0 for all a ∈ A. Thus, by (4.10), we have that η([a, b]) =

[η(a), η(b)] for each a, b in A.

Theorem 4.10. Let A be a unital zero Jordan product determined algebra and

M be a unital A-bimodule. If δ is a linear mapping from A into M such that

a, b ∈ A, a ◦ b = 0 ⇒ δ([a, b])− [a, δ(b)]− [δ(a), b] = 0,

then η is a Lie derivation.

Proof. Define a bilinear mapping φ from A × A into M by φ(a, b) = δ([a, b]) −

[a, δ(b)]− [δ(a), b] for each a and b in A.

Then a ◦ b = 0 implies φ(a, b) = 0. Since A is zero Jordan product determined,

we have a linear mapping T from A into B such that φ(a, b) = T (a ◦ b). It follows

that

T (a ◦ b) = δ([a, b])− [a, δ(b)]− [δ(a), b]. (4.11)

Taking b = 1 and a = 1 in (4.11), respectively, we obtain the following two

identities:
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T (2a) = −[a, δ(1)] and T (2b) = −[δ(1), b].

It implies that 2T (a) = −[δ(1), a] = 0. Thus, by (4.11), we have that δ([a, b]) =

[a, δ(b)] + [δ(a), b] for each a, b in A.

Remark 4.11. If A = J(A), then Theorems 4.8, 4.9 and 4.10 generalize [17,

Theorems 2.1, 2.2 and 2.4].
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