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Abstract. Given a finite set K, a Boolean linear map on K is a map f from the set 2K of all

subsets of K into itself with f(∅) = ∅ such that f(A∪B) = f(A)∪f(B) holds for all A,B ∈ 2K . For

fixed subsets X,Y of K, to predict if Y is reachable from X in the dynamical system driven by f , one

can assume the existence of nonnegative integers h with fh(X) = Y , find an upper bound α for the

minimum of all such assumed integers h, and test if Y really appears in f0(X), . . . , fα(X). In order

to get such an upper bound estimate, this paper establishes an expansion property for the Boolean

linear map f . Namely, the authors find a lower bound on the size of fh(X) for any nonnegative

integer h. Besides presenting several direct applications of the derived expansion property, this paper

collects some related problems on Boolean linear dynamical systems, including problems on primitive

multilinear maps and inhomogeneous topological Markov chains.
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1. Boolean linear maps. Let K be a finite nonempty set. We write
(
K
m

)
for

the set of all subsets of K of size m and we use 2K for the set of all subsets of K,

that is, 2K = ∪
|K|
m=0

(
K
m

)
. A Boolean linear map on K is a map f from 2K to 2K that

satisfies the following two conditions:

{
f(∅) = ∅;

f(A) ∪ f(B) = f(A ∪B) for all A,B ∈ 2K .

The set of all Boolean linear maps on K is denoted BK . Let f ∈ BK . Whenever

we can do iterations, we encounter a dynamical system and so we can consider the

dynamics driven by f . The phase space of f is the digraph with vertex set 2K and

arc set {A → f(A) : A ∈ 2K}, for which we use the notation PSf . Given any

nonnegative integer h, applying f iteratively h times yields the Boolean linear map

fh on K. For any given X ∈ 2K , the evolutionary process of X under the force of fh
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can be recorded as the unique directed walk of length h starting from X in PSf :

X = f0(X) → f1(X) → · · · → fh(X).

Every weakly connected component of PSf must be a cycle with some in-trees planted

on its vertices – the cycle corresponds to the periodic points of the dynamics and

each in-tree, namely a rooted tree with a unique path from every vertex to the root,

removing its root attached on the cycle, corresponds to the transient part of the

dynamics. But this does not mean that there is little to say/ask about PSf . Indeed,

the reachability properties of PSf encode all dynamical behaviors of f and have

attracted much attention in the literature.

We often identify a Boolean linear map f on K with a digraph Γ whose vertex set

is K and whose arc set is {x → y : y ∈ f(x), x ∈ K}. One can think of the dynamical

behavior of f as the topological skeleton of all random walks on Γ which surely reveals

features of the geometry of Γ. Note that f(A) is the union of the out-neighbors in Γ

of all x ∈ A. We will freely switch between the language of digraphs and the language

of linear maps and will later, instead of mentioning Γ, directly refer to the digraph

f . It looks to be a fundamental problem to understand the relationship between the

two digraphs, f and PSf , namely the property of f as a digraph and the property of

f as a Boolean linear map. The digraph f stands for the local connection mechanism

and the digraph PSf displays the global evolving picture. As the science of things

that keep moving, the theory of dynamical systems aims to relate a system’s global

behaviour to its local behaviour and the forces that shape it.

The main concern of this paper is the expansion property of a Boolean linear

map f . More precisely, we will try to establish lower bounds of the size of the set

reached in certain number of steps by applying f , say h steps, from a given set, say

X , in terms of parameters of the digraph f . We can rephrase this problem in a dual

way as follows. After knowing the size of a set Y which is reachable from X in PSf ,

we want to estimate the shortest time needed to go there from X , namely an upper

bound of the smallest h such that Y = fh(X). Unlike the case of nonnegative real

linear maps, where spectral techniques play an important role, we will use a pure

combinatorial approach to study the expansion property in the Boolean linear case.

Due to the fundamental importance of Boolean linear maps, these kind of problems

arise in various guises in many fields [1, 2, 3, 5, 7, 16, 17, 23, 27, 31, 33, 39, 41,

42, 44, 46]. It is noteworthy that our phase space approach naturally suggests many

interesting problems and conjectures, which will be reported in Section 3.

Let N stand for the set of nonnegative integers. For every k ∈ N, we write [k] for

the set of the first k positive integers and we use Bk to represent the set of all Boolean

linear maps on [k]. It is clear that the study of Boolean linear maps on a k-element

set K is essentially a study of Bk.
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In the course of investigating a control theoretic question, Coxson and Shapiro

discovered a result on the reachability of monomial patterns [17, Theorem 3] and they

conjectured a stronger result. This conjecture was later proved by Coxson, Larson

and Schneider [16, Theorem 1], which we present below.

Theorem 1.1 (Coxson-Larson-Schneider). Let k be a positive integer and let

f ∈ Bk be a digraph. Take X ⊆ [k] and h ∈ N such that Y = fh(X) is a singleton

set. Then there exists h′ ∈ N such that h′ ≤ k − 1 and Y = fh′

(X).

The importance of a result like Theorem 1.1 can be seen as follows. Suppose that

we have a reasonably good upper bound estimate of how long it takes to go from X

to Y under the assumption that Y is reachable from X . Then, if we have no way to

predict in advance whether or not X can evolve into Y , we can simply observe fh(X)

for h below our estimate and check if fh(X) = Y has occurred. We will extend

Theorem 1.1 in two ways in this paper; see Theorems 1.2 and 1.11.

Before presenting our main results, we start with some necessary definitions. Let

K be a finite nonempty set and choose f ∈ BK . We use gf to denote the girth of

f , namely the length of a shortest cycle in f , and use  Lf to denote the length of a

longest path in f . As usual, we set gf = ∞ when there is no cycle in f. Let Rf be

the map from K × N to 2K , called the range map, such that Rf (x, i) = f i(x) for

(x, i) ∈ K × N. For x ∈ K, let R∗
f (x) denote the set ∪i∈N Rf (x, i). If R∗

f (x) = K for

all x ∈ K, then f is strongly connected or irreducible. The map f ∈ BK is said to

be nontrivial if f(K) = K. Note that the only trivial irreducible Boolean linear map

is the digraph on one vertex without loops. If y ∈ R∗
f (x), we write Distf (x, y) for

the minimum i such that y ∈ Rf (x, i). In general, for any C ⊆ R∗
f (x), we adopt the

notation Distf (x,C) for miny∈C Distf (x, y). Define the longest distance of f to be

max
x,y∈K

y∈R∗
f
(x)

Distf (x, y)

and denote it by Df . Note that

Df ≤  Lf ≤ |K| − 1.

When f is irreducible, Df is usually named as the diameter of f ; when gf < ∞, say

when f is both irreducible and nontrivial, it holds

gf −1 ≤ Df .

We say that A ⊆ K is recurrent for f if A is on a cycle in PSf and we assert that

A is transient for f otherwise. The Boolean linear map f is primitive provided it

is nontrivial and every walk in PSf staring from a vertex X 6= ∅ will reach the

vertex K. For a primitive map f , its primitive exponent is the minimum nonnegative
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integer i such that f i(x) = K for all x ∈ K, which coincides with  LPSf
[8, §3.5]. We

mention that coding theorists [37, Problem 14.4] define the minimum back-length of

an irreducible digraph f and this parameter coincides with the primitive exponent

when f is primitive.

To proceed, we further recall some concepts/results from combinatorial matrix

theory [8]. If f is a nontrivial strongly connected digraph, its cyclicity is the greatest

common divisor of the lengths of all cycles in f . Note that f is primitive if and only

if it is an irreducible map with cyclicity 1. For every positive integer t and every

strongly connected digraph f with cyclicity p, the digraph f t consists of gcd(p, t)

strongly connected components, every component of them inducing a digraph with

cyclicity p/ gcd(p, t). In particular, for a nontrivial strongly connected digraph f with

cyclicity p, the p strongly connected components of fp are called the cyclicity classes

of f . Fix a nontrivial strongly connected digraph f on K. Bear in mind that a set A

is recurrent for f if and only if it is the union of one or more cyclicity classes of f. An

important consequence, which we often use implicitly, is that, if Rf (x, i) is transient

for f , then so is any set A ⊆ Rf (x, h) for any h ∈ [i].

At the very beginning of the study of primitive exponent, Dulmage and Mendel-

sohn [21, Theorem 1] already found that  LPSf
≤ (k − 2) gf +k for every primitive

map f ∈ Bk; see the proof of Corollary 1.4. The next result is a slight generalization

of both this girth bound and Theorem 1.1 for primitive digraphs.

Theorem 1.2. Let k be a positive integer and let f be a nontrivial irreducible

map from Bk. Given h ∈ N and z ∈ [k] such that Rf (z, h) is transient for f , it holds

(1.1) (| Rf (z, h)| − 1) gf +k − 1 ≥ h.

If Eq. (1.1) occurs as an equality, then for any shortest cycle C of f and any y ∈

[k] \ {z}, Distf (z, C) > Distf (y, C).

For any integer k greater than 1, we define the k-vertex Wielandt digraph Wk [47]

to be the one consisting of a Hamilton cycle 1 → 2 → · · · → k → 1 plus an extra arc

k → 2; and we define the k-vertex near-Wielandt digraph W̃k to be the one obtained

from Wk by adding the arc 1 → 3 (mod k). As an illustration, we draw W2,W6, W̃2

and W̃6 in Fig. 1.1.

Example 1.3. In the Wielandt digraph Wk, C = (2 → 3 → · · · → k → 2) is

the unique shortest cycle and 1 is the unique vertex whose shortest distance to C

takes maximum value. According to Theorem 1.2, to get the equality in Eq. (1.1)

for f = Wk, it is impossible to have z 6= 1. In the near-Wielandt digraph W̃k,

C = (2 → 3 → · · · → k → 2) and C′ = (1 → 3 → 4 → · · · → k → 1) are the only

two shortest cycles and the union of them cover all elements of [k]. Therefore, by

Theorem 1.2, Eq. (1.1) is always a strict inequality for f = W̃k.
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Fig. 1.1. The Wielandt digraphs W2,W6 and the near-Wielandt digraphs W̃2, W̃6.

As an application of Theorem 1.2, we can deduce the classic Wielandt’s inequality

for primitive exponent [21, 40, 47].

Corollary 1.4 (Wielandt’s inequality). Take an integer k > 1 and let f ∈ Bk

be primitive. Then  LPSf
≤ (k − 1)2 + 1, with equality if and only if f is isomorphic

with the Wielandt digraph Wk.

Let K be a nonempty finite set and take a primitive digraph f ∈ BK . For any

m,n ∈ [|K|], let αm,n(f) be the minimum integer t such that

| ∩x∈X Rf (x, q)| ≥ n

holds for all q ≥ t and all X ∈
(
K
m

)
. Various special cases of this parameter αm,n

for primitive digraphs have been studied in the literature and we give a very quick

overview in the next example.

Example 1.5. Let K be a k-element set and let f ∈ BK be a primitive map.

• A map g ∈ BK is scrambling [24] if g(i) ∩ g(j) 6= ∅ for every i, j ∈ K. The

scrambling index [1, 34, 41] of f is the smallest positive integer s such that

f s is scrambling. It is clear that the scrambling index of f is α2,1(f).

• Let m ∈ [k]. Following Huang and Liu [25, Proposition 2.2], we define the

mth upper scrambling index of f to be the least positive integer t such that

∩x∈X Rf (x, q) 6= ∅

holds for all X ∈
(
K
m

)
and q ≥ t. This means that the mth upper scram-

bling index of f is just αm,1(f). This parameter was studied much earlier by

Schwartz, Liu and Bo [6, 29, 41, 42] in the context of common consequents.

• Pick n ∈ [k]. The n-competition index of f [14, 26] is the smallest integer t

such that

| Rf (x, q) ∩Rf (y, q)| ≥ n
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for all {x, y} ∈
(
K
2

)
and q ≥ t. This n-competition index of f equals α2,n(f).

When m = 2, the next result was derived earlier by Kim [26, Theorem 9].

Corollary 1.6. Let k be a positive integer and let f ∈ Bk be primitive. Then,

it holds for every m,n ∈ [k] that

αm,n(f) ≤

{
k +

(⌊
km−k+n

m

⌋
− 2

)
gf , if m | km− k + n;

k − 1 +
(⌊

km−k+n
m

⌋
− 1

)
gf , if m ∤ km− k + n.

The nice upper bound of the scrambling index of primitive digraphs given in

Corollary 1.7 was obtained by Schwarz [41, Theorem 2.3] and by Akelbek and Kirkland

[2, Theorem 3.18] independently. Schwarz [41, Theorem 4.1] extended the result to

more general digraphs. Two groups of researchers, Bo and Liu [6, Theorem 3.1],

and Akelbek and Kirkland [2, Theorem 3.18], further showed that the only extremal

digraph for which the equality happens in Eq. (1.2) is the Wielandt digraph Wk. We

shall make use of Theorem 1.2 to provide a new proof of Eq. (1.2) which is shorter

than the original proofs from [2, 41].

Corollary 1.7 (Schwarz-Akelbek-Kirkland). Let k be an integer greater than

1 and let f be a primitive map from Bk. Then

(1.2) α2,1(f) ≤

⌈
(k − 1)2 + 1

2

⌉
.

We present below two diameter bounds of the expansion property for irreducible

Boolean linear maps (Theorem 1.8 and Theorem 1.10). Roughly speaking, they tell

us that for a strongly connected digraph f , the vertices that appear in the unique

walk starting from a singleton set in PSf will increase size by at least 1
Df

per step

in average before falling into the final periodic part of its trajectory in PSf . Our

deduction of the diameter bounds in Theorem 1.8 will be much more nontrivial than

the proof of the girth bound in Theorem 1.2.

Theorem 1.8. Let k be a positive integer and let f be an irreducible map from

Bk. Take z ∈ [k] and a positive integer h such that Rf (z, h) is transient for f . Then

the following hold.

(A) h ≤ |Rf (z, h)|Df .

(B) If | Rf (z, h)| > | Rf (u, h− 1) holds for all u ∈ f(z), then

h ≤ (| Rf (z, h)| − 1) Df .

Fix a positive integer k and a primitive map f ∈ Bk. For every m ∈ [k], Liu [29,
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Theorem 3.8] discovered that

(1.3) αm,1(f) ≤

⌊
m− 1

m
k

⌋
(k − 1) + 1.

The following corollary of Theorem 1.8 is a strengthening of Eq. (1.3). As with the

estimate of αk,1(f), we should mention that Schwartz [42, Theorem 1] provided a very

short proof of a better bound of αk,1(f) ≤ k2 − 3k + 3.

Corollary 1.9. Let k be a positive integer and let f ∈ Bk be a primitive map.

For any m,n ∈ [k], it holds

αm,n(f) ≤

⌊
k −

k − n + 1

m

⌋
Df +1.

In Theorem 1.8, we deal with transient reachable sets; the forthcoming Theo-

rem 1.10 will be about recurrent reachable sets. Wielandt’s inequality in Corollary 1.4

also follows directly from Theorem 1.10.

Theorem 1.10. Let k be a positive integer and let f be a nontrivial irreducible

map from Bk with cyclicity p. Let C1, . . . , Cp be the cyclicity classes of f . Take z ∈ [k]

and h ∈ N. If Rf (z, h− p) ( Rf (z, h) = Cs for some s ∈ [p], then

| Rf (z, h)| = |Cs| ≥

⌈
h− p

Df

⌉
+ 1.

Finally, we can get to the main theorem of our paper, which again generalizes the

afore-mentioned result of Coxson, Larson and Schneider (Theorem 1.1). The proof of

Theorem 1.11 will be based on Theorems 1.8 and 1.10.

Theorem 1.11. Let k be a positive integer and let f ∈ Bk be a digraph. Let

Y = fh(X) where X ⊆ [k] and h ∈ N.

(A) If Y falls into a strongly connected component of f, then there exists h′ ∈ N

such that h′ ≤ |Y | Lf and Y = fh′

(X).

(B) If f itself is irreducible, then there exists h′ ∈ N such that h′ ≤ |Y |Df and

Y = fh′

(X).

Consider the phase space of an irreducible map f ∈ BK . For any Y ⊆ K, we

learn from Theorem 1.11(B) that we will either reach Y in |Y |Df steps, or will never

run into it at all throughout our endless life in PSf . If f is assumed to be primitive,

Neufeld [33] and Shen [44] independently proved that we will always arrive at Y = K

in D2
f +1 steps, which is better than our previous bound of |Y |Df = |K|Df . This

result is among the very few estimates of  LPSf
in terms of Df and is regarded as

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 381-407, June 2016

http:/repository.uwyo.edu/ela



ELA

388 Y. Wu, Z. Xu, and Y. Zhu

one of the best work in the area of exponents for nonnegative matrices [30, p. 3537].

It may be interesting to see if there is a bound for the number of steps to reach a

reachable set Y which, when specified to Y = K, can match the diameter bound

given by Neufeld and Shen.

xa1

a2

ap

b1

b2

bq

Fig. 1.2. A digraph f with p + q + 1 vertices and two cycles.

Example 1.12. Let f be the digraph in Fig. 1.2. Assume that p and q are

coprime and q > p. The distance from the vertex X = {x} to the vertex Y = {ap, bq}

in PSf is pq, which can be much bigger than |Y | Lf = 2q when p is much bigger than

2. Note that Y is not contained in any strongly connected component of f and so

this fact does not violate Theorem 1.11(A).

Example 1.13. Let f be the digraph shown in Fig. 1.3. Observe that (4, 3) =

( Lf ,Df ) and

{a} → {b, d} → {c, e} → {d} → {e}

is a length 4 path in PSf . This illustrates the necessity of the irreducibility assump-

tion in Theorem 1.11(B) and that we cannot replace  Lf by Df in Theorem 1.11(A).

c

b

d

a

e

Fig. 1.3. A digraph f for which PSf contains a path of length  Lf > Df ending at a singleton set.

We have established bounds for the expansion property of a Boolean linear map

which involve both girth and diameter. If we compare Theorem 1.2 with Theorem 1.8,

say, we see that the diameter bound will be better for those irreducible f satisfying

gf ∈ {Df ,Df +1} unless f is a cycle. Similarly, Corollary 1.9 improves Corollary 1.6

for digraphs f satisfying gf = Df +1. It seems that no characterization of those

digraphs f with gf = Df +1 is known. But one such primitive digraph is the lexico-

graphic product of two n-cycles. In general, we have the following construction.

Example 1.14. Let G1, . . . , Gn be n nontrivial strongly connected digraphs on

disjoint vertex sets with girth n and diameter n−1. Let G be the digraph whose vertex
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set is ∪i∈[n]V (Gi) and whose arc set is the the union of those arcs of Gi, i ∈ [n], and

those pairs u → v where u ∈ V (Gi) and v ∈ V (Gi+1), i ∈ [n], using the convention

that Gn+1 = G1. It is clear that G is primitive and its diameter and girth are n− 1

and n, respectively. Note that G may not be obtained from a lexicographic product

construction.

Example 1.15. Recall the definition of the Wielandt digraphs given before

Example 1.3. Here are some well-known basic properties of f = Wk.

1) gf = Df = k − 1 and the cyclicity of f is p = 1.

2) For any positive integer h and any z ∈ [k],

Rf (z, h) =

{
z + h, z + h + 1, . . . , z + h +

⌊
h + z − 2

k − 1

⌋}
,

where q refers to the number q −
⌊
q−1
k

⌋
k.

3) For any positive integer h and any z ∈ [k], | Rf (z, h)| = min{k,
⌊
h+z−2
k−1

⌋
+1}.

They allow us to show the sharpness of some previous results in this section.

• Take s ∈ [k−1]. For z = 1 and h = s(k−1), it holds | Rf (z, h)| =
⌊
s(k−1)−1

k−1

⌋
+

1 = s, namely h = | Rf (z, h)|Df = (| Rf (z, h)| − 1) gf +k− 1. This indicates

the sharpness of Theorem 1.2 and Theorem 1.8(A).

• Take s ∈ [k − 1]. For z = k and h = (s − 1)(k − 1), it holds | Rf (z, h)| =⌊
(s−1)(k−1)+k−2

k−1

⌋
+ 1 = s, namely h = (| Rf (z, h)| − 1) Df . Moreover, f(z) =

{1, 2}, | Rf (1, h− 1)| =
⌊
(s−1)(k−1)−1+1−2

k−1

⌋
+ 1 = s− 1 and | Rf (2, h− 1)| =

⌊
(s−1)(k−1)−1+2−2

k−1

⌋
+ 1 = s− 1. So, | Rf (z, h)| > | Rf (u, h− 1) does hold for

all u ∈ f(z). This shows the sharpness of Theorem 1.8(B).

• Let z = 1 and h = (k− 1)2 + 1. Observe that | Rf (z, h)| =
⌊
(k−1)2+1+1−2

k−1

⌋
+

1 = k and | Rf (z, h−p)| =
⌊
(k−1)2+1−2

k−1

⌋
+1 = k−1. Consequently, Rf (z, h−

1) ( Rf (z, h) = [k]. It is readily checked that h−p
Df

+ 1 = (k−1)2

k−1 + 1 = k,

demonstrating the sharpness of Theorem 1.10.

In the next section, we provide the proofs of our results mentioned above. In

Section 3, we discuss several interesting variants and generalizations of our work here.

The discussions in Section 3 also provide more background for our work.

2. Proofs. We call f ∈ Bk non-shrinking provided, for every A ∈ 2[k] and every

i ∈ N, f i(A) is never a proper subset of A. It is easy to see that if f ∈ Bk is strongly

connected then it is non-shrinking. If f is non-shrinking and A is transient for f , then
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f t(A) \A is always nonempty for all positive integers t.

Lemma 2.1. Let k and ℓ be two positive integers and let f ∈ Bk be non-shrinking.

Take z ∈ [k] and j ∈ N such that Rf (z, ℓ+ j) is transient for f . If z ∈ Rf (z, ℓ), then

Rf (z, j) ( Rf (z, ℓ + j).

Proof. As Rf (z, ℓ + j) is transient for the non-shrinking map f , so is Rf (z, j).

This tells us

Rf (z, j) 6= f ℓ(Rf (z, j)) = Rf (z, ℓ + j).

In addition, from z ∈ Rf (z, ℓ) we derive that

Rf (z, j) ⊆ f j(Rf (z, ℓ)) = Rf (z, ℓ + j),

completing the proof.

Proof of Theorem 1.2. If h < k − 1, Eq. (1.1) surely holds as a strict inequality.

We proceed under the assumption that

(2.1) h ≥ k − 1.

Since Rf (z, h) is transient, we know that f cannot be a cycle, implying that

(2.2) gf ∈ [k − 1].

Let C be a cycle of f of length gf . Write ℓz for Distf (z, C) and let a be a vertex

on C such that ℓz = Distf (z, a). We let Pza be one shortest path from z to a in f .

Walking from z to a along Pza and then going around the cycle C for gf −1 steps

gives rise to a path of f , which we denote by P. Let ℓP be the length of P . It surely

holds

(2.3) k − 1 ≥  Lf ≥ ℓP = ℓz + gf −1.

Since a ∈ Rf (z, ℓz), we find that

(2.4) Rf (a, h− ℓz) ⊆ fh−ℓz(Rf (z, ℓz)) ⊆ Rf (z, h),

and thus, as Rf (z, h) is transient for f, so is Rf (a, h− ℓz). Let

m =

⌈
h− ℓz + 1

gf

⌉
,

which, according to Eq. (2.1), is a positive integer. By virtue of a ∈ Rf (a, gf ),

Lemma 2.1 applies now to give

Rf (a, h− ℓz) ) Rf (a, h− ℓz − gf ) ) · · · ) Rf (a, h− ℓz − (m− 1) gf ) 6= ∅.
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This together with Eq. (2.4) forces m − 1 ≤ |Rf (a, h − ℓz)| − |Rf (a, h − ℓz − (m −

1) gf )| ≤ |Rf (z, h)| − 1, whence

(2.5) m ≤ |Rf (z, h)|.

Substituting
⌈
h−ℓz+1

gf

⌉
for m in Eq. (2.5) yields

h ≤ ℓz + | Rf (z, h)| gf −1 = (| Rf (z, h)| − 1) gf +(ℓz + gf −1).

This along with Eq. (2.3) establishes Eq. (1.1).

Now assume that Eq. (1.1) holds as an equality. Then checking the above proof

yields that h ≥ k − 1 and that equality holds throughout Eq. (2.3). In view of

Eq. (2.2), this tells us that z must be outside of C and the path P contains all

vertices of f . Since Pza is a shortest path from z to the cycle C in f , we find that

Distf (z, C) > Distf (y, C) for every y ∈ [k] \ {z}. Since C is chosen to be any cycle of

f of length gf , the proof is complete.

Proof of Corollary 1.4. For any z ∈ [k] and h ∈ N with | Rf (z, h)| ≤ k − 1,

Theorem 1.2 tells us

h ≤ (| Rf (z, h)| − 1) gf +k − 1 ≤ (k − 2) gf +k − 1.

So z will reach the vertex [k] in PSf in at most (k− 2) gf +k steps. This means that

(2.6)  LPSf
≤ (k − 2) gf +k,

which is exactly the Dulmage-Mendelsohn bound [21, Theorem 1] mentioned before

Theorem 1.2. Because f is primitive, we can deduce that gf ≤ k− 1, and so Eq. (2.6)

gives  LPSf
≤ (k − 1)2 + 1.

To have  LPSf
= (k − 1)2 + 1, the girth of f must be k − 1. But it is not hard to

check that, up to isomorphism, Wk and W̃k are the only two primitive digraphs from

Bk with girth k − 1 [21, Theorem 6] [30, Lemma 2.3]. From Example 1.3 we see that

 LPSf
< (k − 1)2 + 1 for f = W̃k. On the other hand, it is straightforward to check

that  LPSf
= (k − 1)2 + 1 for f = Wk (See Example 1.15).

Lemma 2.2. If S1, . . . , Sm are m subsets of a k-element set K such that |Si| ≥ s

and ms− (m− 1)k ≥ n, then | ∩i∈[m] Si| ≥ n.

Proof. This follows from the pigeon hole principle.

Proof of Corollary 1.6. Let s =
⌊
km−k+n

m

⌋
and let t = km − k + n − ms. We

verify the claim in two cases separately.

Case 1. m | km− k + n, namely t = 0.
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Let h ≥ (s − 2) gf +k. Pick any z ∈ [k]. If Rf (z, h) = [k], then it is immediate

that | Rf (z, h)| = k ≥ s. If Rf (z, h) ( [k], then Rf (z, h) is transient and thus it

follows from Theorem 1.2 that | Rf (z, h)| ≥ s. It is clear that ms − (m − 1)k = n.

So, the claim is readily verified using Lemma 2.2.

Case 2. m ∤ km− k + n, namely t > 0 and s ≤ k − 1.

Let h ≥ (s − 1) gf +k − 1 and let z1, . . . , zm be m elements from [k]. We claim

that

(2.7) | Rf (zi, h)| ≥ s

for every i ∈ [m]. Indeed, if Rf (zi, h) is transient for f , Eq. (2.7) is a consequence of

Theorem 1.2; if Rf (zi, h) is not transient for f , it is direct that | Rf (zi, h)| = k > s

and so Eq. (2.7) still follows. Applying Theorem 1.2 again, we know that there exists

at most one i ∈ [m] such that | Rf (zi, h)| = s. This gives

m∑

i=1

| Rf (zi, h)| ≥ ms + m− 1 ≥ ms + t = (m− 1)k + n.

By the pigeon hole principle, we derive

∣∣∣∣∣∣

⋂

i∈[m]

Rf (zi, h)

∣∣∣∣∣∣
≥ n,

which shows that αm,n(f) ≤ k − 1 +
( ⌊

km−k+n
m

⌋
− 1

)
gf , as wanted.

Proof of Corollary 1.7. As f is primitive, we see that gf ≤ k − 1. Now we

distinguish two cases.

Case 1. gf ≤ k − 2.

By Corollary 1.6,

α2,1(f) ≤

{
k + (k+1

2 − 2) gf ≤ (k2 − 3k + 6)/2, if 2 | k + 1;

k − 1 + (k2 − 1) gf ≤ (k2 − 2k + 2)/2, if 2 | k.

Since gf ≤ k − 2, we know that k ≥ 3 and so
⌈
(k2 − 3k + 6)/2

⌉
≤

⌈
(k2 − 2k + 2)/2

⌉
.

This then leads to

α2,1(f) ≤

⌈
k2 − 2k + 2

2

⌉
=

⌈
(k − 1)2 + 1

2

⌉
.

Case 2. gf = k − 1.
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In this case, f is isomorphic to either Wk or W̃k [21, Theorem 6] [30, Lemma 2.3].

Since Wk is a subgraph of W̃k, it holds α2,1(W̃k) ≤ α2,1(Wk). Let h =
⌈
(k−1)2+1

2

⌉
, f =

Wk and take a, b so that 1 ≤ a ≤ b ≤ k. It remains to show Rf (a, h) ∩ Rf (b, h) 6= ∅.

By property 3) in Example 1.15,

(2.8) | Rf (z, h)| =

⌊
h + z − 2

k − 1

⌋
+ 1 =



⌈
k2

2

⌉
+ z − 2

k − 1

 ≥

⌈
k

2

⌉

holds for z ∈ [k] and

(2.9) | Rf (z, h)| =

⌊
h + z − 2

k − 1

⌋
+ 1 =



⌈
k2

2

⌉
+ z − 2

k − 1

 ≥

⌈
k

2

⌉
+ 1

holds when k is even and z ∈ [k] \ [k/2]. If b ≤ ⌈k/2⌉ , property 2) in Example 1.15

along with Eq. (2.8) shows that Rf (a, h) ∩Rf (b, h) 6= ∅. If b ≥ ⌈k/2⌉ + 1, combining

Eq. (2.8) and Eq. (2.9) yields | Rf (a, h)| + | Rf (b, h)| > k, finishing the proof.

Lemma 2.3. Let k be a positive integer, f be a non-shrinking map from Bk and

T ∈ 2[k] be a transient set for f . Suppose that there exist x, z ∈ [k] and i, j ∈ N such

that Rf (z, i + j) = Rf (x, i) = T and x ∈ R∗
f (z). Then j ≤ Distf (z, x) ≤ Df .

Proof. Let t = Distf (z, x). Assume, for the sake of contradiction, that j > t.

Noting that x ∈ Rf (z, t), we obtain

f j−t
(
Rf (z, t + i)

)
= Rf (z, i + j) = T = Rf (x, i) ⊆ f i

(
Rf (z, t)

)
= Rf (z, t + i).

Since f is non-shrinking, equalities must hold throughout the above formula and so

f j−t(T ) = T . But this then contradicts the fact that T is transient for f.

Lemma 2.4. Let k be a positive integer and f be a nontrivial irreducible map

from Bk. Take z ∈ [k] and h ∈ N such that Rf (z, h) is transient for f . Let ℓ be the

length of a shortest cycle of f containing z. If there exists one vertex a ∈ f(z) such

that Rf (z, h) ) Rf (a, h− 1) holds, then h ≤ (| Rf (z, h)| − 1)ℓ.

Proof. We write m for the positive integer ⌈(h + 1)/ℓ⌉. By assumption, we have

z ∈ Rf (z, ℓ). Applying Lemma 2.1 yields

Rf (z, h) ) Rf (z, h− ℓ) ) · · · ) Rf (z, h− (m− 1)ℓ) 6= ∅,

which implies that

(2.10) m− 1 ≤ |Rf (z, h)| − |Rf (z, h− (m− 1)ℓ)|.

Case 1. | Rf (z, h− (m− 1)ℓ)| ≥ 2.
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It follows from Eq. (2.10) that m − 1 ≤ |Rf (z, h)| − 2 and so h < mℓ ≤

(| Rf (z, h)| − 1)ℓ, as desired.

Case 2. | Rf (z, h− (m− 1)ℓ)| = 1.

By Eq. (2.10), m ≤ |Rf (z, h)|. Therefore, it suffices to verify h = (m− 1)ℓ.

If h = (m− 1)ℓ were not true, then h > (m− 1)ℓ and so from a ∈ f(z) we deduce

that Rf (a, h− (m− 1)ℓ− 1) is a subset of the singleton set Rf (z, h− (m− 1)ℓ). This

implies that Rf (a, h− (m− 1)ℓ− 1) = Rf (z, h− (m− 1)ℓ). Consequently,

Rf (a, h− 1) = f (m−1)ℓ
(
Rf (a, h− (m− 1)ℓ− 1)

)

= f (m−1)ℓ
(
Rf (z, h− (m− 1)ℓ)

)

= Rf (z, h),

a contradiction with the assumption that Rf (z, h) ) Rf (a, h− 1).

Proof of Theorem 1.8. If Df = 1, a routine check confirms both (A) and (B). In

the following, we always assume that Df ≥ 2.

Let j be the maximum nonnegative integer t such that

• t ≤ h, and

• Rf (z, t) contains an element x for which Rf (x, h− t) = Rf (z, h).

Let i = h − j. Pick x ∈ Rf (z, j) such that Rf (x, i) = Rf (z, h). By setting T =

Rf (z, h), we can deduce from Lemma 2.3 that

(2.11) j ≤ Df .

Let us use (Aα) and (Bα) to stand for the statements in claim (A) and claim (B),

respectively, under the additional assumption of | Rf (z, h)| = α. Our goal is to verify

(Aα) for all positive integers α and (Bα) for all integers α greater than 1. We proceed

by induction on | Rf (z, h)| = α and divide the proof into the following three steps.

Step 1. Verify (A1).

If | Rf (z, h)| = 1, we have i = 0 and so

h = i + j

= j

≤ Df (By Eq. (2.11))

= | Rf (z, h)|Df .

This proves (A1).
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Step 2. For α ≥ 2, verify (Bα) under the assumption that (Bβ) holds for all possible

β ∈ {2, . . . , α− 1} and (Aβ) holds for all positive integers β ≤ α− 1.

We assume | Rf (z, h)| = α ≥ 2 and

(2.12) | Rf (z, h)| > | Rf (u, h− 1)|

for all u ∈ f(z). If h ≤ Df , there is nothing to prove. So, assume

(2.13) h ≥ Df +1

hereafter.

Case 1. The vertex z is on a cycle of f whose length is no more than Df .

Thanks to Lemma 2.4, h ≤ (α− 1) Df .

Case 2. All cycles of f passing through z have lengths at least Df +1.

Take two vertices a and b from f(z) such that it holds

(2.14)





Rf (a, h− 1) ( Rf (z, h);

Rf (b, h− 1) ( Rf (z, h);

Rf (a, h− 1) 6= Rf (b, h− 1).

Let

β = min{|Rf (a, h− 1)|, | Rf (b, h− 1)|}.

Eq. (2.14) says that β ≤ α−1 and so our task is to address both the case of β ≤ α−2

and the case of β = α− 1.

Case 2.1. β ≤ α− 2.

Without loss of generality, assume that β = | Rf (a, h − 1)|. It follows from

(Aβ) that h − 1 ≤ |Rf (a, h − 1)|Df = β Df ≤ (α − 2) Df . Clearly, this gives

h ≤ (α− 2) Df +1 < (α − 1) Df .

Case 2.2. β = | Rf (a, h− 1)| = | Rf (b, h− 1)| = α− 1.

Since max{Distf (a, z),Distf (b, z)} ≤ Df , we conclude from our standing assump-

tion for Case 2 that

(2.15) z ∈ Rf (a,Df ) ∩Rf (b,Df ).

In view of Eqs. (2.13) and (2.15), we have

(2.16)

{
Rf (a, h− 1) = fh−Df −1(Rf (a,Df )) ⊇ Rf (z, h− Df −1);

Rf (b, h− 1) = fh−Df −1(Rf (b,Df )) ⊇ Rf (z, h− Df −1).
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Combining (2.12), (2.14) and (2.16) yields

(2.17) | Rf (z, h− Df −1)| ≤ α− 2.

This means that we only need to treat the following two cases.

Case 2.2.1. | Rf (z, h− Df −1)| ≤ α− 3.

Applying (Aγ) for γ = | Rf (z, h−Df −1)| ≤ α− 3, we have h−Df −1 ≤ γ Df ≤

(α− 3) Df and so h ≤ (α− 3) Df + Df +1 = (α − 2) Df +1 < (α− 1) Df .

Case 2.2.2. | Rf (z, h− Df −1)| = α− 2.

It follows from Eq. (2.17) that α ≥ 3. So, (Bα) holds trivially when h ≤ 2 Df .

Let us assume below that

(2.18) h ≥ 2 Df +1 ≥ Df +2.

Eq. (2.18) allows us to derive from a ∈ f(z) that

(2.19) Rf (a, h− Df −2) ⊆ Rf (z, h− Df −1).

If | Rf (a, h−Df −2)| = α−2, then it holds Rf (a, h−Df −2) = Rf (z, h−Df −1)

and hence

Rf (a, h− 1) = fDf +1
(
Rf (a, h− Df −2)

)

= fDf +1
(
Rf (z, h− Df −1)

)

= Rf (z, h),

a contradiction to Eq. (2.14). Recalling that | Rf (z, h−Df −1)| = α− 2, we can now

infer from Eq. (2.19) that | Rf (a, h− Df −2)| ≤ α− 3.

Applying (Aγ) for γ = | Rf (a, h − Df −2)| ≤ α − 3, we acquire h − Df −2 ≤

γ Df ≤ (α− 3) Df . This implies

h ≤ (α− 3) Df + Df +2 ≤ (α− 1) Df ,

as was to be shown.

Step 3. For α ≥ 2, verify (Aα) under the assumption that (Bα) holds.

We assume | Rf (z, h)| = α > 2 and so i ≥ 1. According to our choice of i and

j, we see that | Rf (x, i)| = | Rf (z, h)| = α while | Rf (u, i − 1)| < | Rf (z, h)| = α for

every u ∈ f(x). Utilizing (Bα) gives i ≤ (| Rf (x, i)| − 1) Df = αDf . Together with

Eq. (2.11), this implies

h = i + j ≤ (α− 1) Df + Df = αDf ,
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proving (Aα).

Proof of Corollary 1.9. Let s =
⌊
k − k−n+1

m

⌋
+ 1. Take any z ∈ [k] and any

h ≥ (s−1) Df +1. By Lemma 2.2, our task boils down to showing that | Rf (z, h)| ≥ s

and ms− (m− 1)k ≥ n.

Firstly, if Rf (z, h) is transient for f , then Theorem 1.8(A) asserts

| Rf (z, h)| ≥

⌊
k −

k − n + 1

m

⌋
+ 1 = s;

while if Rf (z, h) is recurrent for f , then

| Rf (z, h)| = k ≥ s.

Secondly, letting p =
⌊
k−n+1

m

⌋
and q = k − n + 1 − pm, we have

ms− (m− 1)k = m(k −

⌈
k − n + 1

m

⌉
+ 1) − (m− 1)k

= k + m−m

⌈
k − n + 1

m

⌉

= k + m−mp−m
⌈ q

m

⌉

= n + q − 1 + m(1 −
⌈ q

m

⌉
)

≥ n.

Proof of Theorem 1.10. We may assume that z ∈ C1 and that f(Ci) ⊆ Cj holds

for all i, j ∈ [p] satisfying j − i ≡ 1 (mod p). From Rf (z, h) = Cs we derive that

s ≡ h + 1 (mod p).

Taking into account Rf (z, h − p) ( Cs, we know that Rf (z, h − p) is transient

for f . Therefore, Theorem 1.8 gives

| Rf (z, h− p)| ≥
h− p

Df

,

and so it holds | Rf (z, h)| ≥ |Rf (z, h− p)| + 1 ≥ h−p
Df

+ 1, as wanted.

Lemma 2.5. Let f be a strongly connected digraph with cyclicity p. If G has at

least p + 1 vertices, then  Lf ≥ Df ≥ p.

Proof. The digraph f has p cyclicity classes and so one of them must have size

larger than 1. Take two different vertices x and y from this cyclicity class. The shortest

path from x to y has length at least p and so we are done.

Proof of Theorem 1.11. Claim (B) is immediate from Theorem 1.8, Theorem 1.10

and Lemma 2.5. We now focus on claim (A).
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Let h′ be the minimum number such that fh′

(X) = fh(X). We aim to show that

h′ ≤ |Y | Lf .

Let C be the strongly connected component of f which contains Y. Let f be the

Boolean linear map on C such that f(y) = f(y) ∩ C for every y ∈ C. Let p be the

cyclicity of f . Let

j = min{t ∈ N : f t(X) ⊆ C}.

Case 1. There exists y ∈ f j(X) such that fh′−j(y) = f
h′−j

(y) is transient for f.

Take the maximum nonnegative integer i ≤ h′ − j such that we can find z ∈

f i(y) satisfying fh′−j−i(z) = fh′−j(y). From Lemma 2.3 we get i ≤ Distf (y, z) =

Distf (y, z) and hence

(2.20) i + j ≤  Lf

follows. In light of Theorem 1.8 (B), we have h′ − j − i ≤ (|fh′−j−i(z)| − 1) Df ≤

(|Y | − 1) Df . This combined with Eq. (2.20) leads to

(2.21) h′ ≤ (|Y | − 1) Df + Lf

and so h′ ≤ |Y | Lf , as desired.

Case 2. For every y ∈ f j(X), fh−j(y) = f
h−j

(y) is recurrent for f.

Case 2.1. h′ − j < p.

It is clear that h′ < j + p− 1 ≤  Lf .

Case 2.2. h′ − j ≥ p.

By the minimality of h′, there exists y ∈ f j(X) such that

(2.22) fh′−j(y) ) fh′−j−p(y).

This means that fh′−j−p(y) is transient for f and so the argument deployed to obtain

Eq. (2.21) demonstrates that

h′ − p ≤ (|fh′−j−p(y)| − 1) Df + Lf

≤ (|fh′−j(y)| − 2) Df + Lf(2.23)

≤ (|Y | − 2) Df + Lf .

As a consequence of Eq. (2.22), |C| > p holds and so we could apply Lemma 2.5 to

get p ≤  Lf . It then follows from Eq. (2.23) that h′ ≤ |Y | Lf .

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 381-407, June 2016

http:/repository.uwyo.edu/ela



ELA

An Expansion Property of Boolean Linear Maps 399

3. Further research. The problem considered in this paper leaves vast possi-

bilities of further research. We close this paper by addressing some related topics in

the sequel.

3.1. Inhomogeneous. Given a finite set K, a Markov chain on the finite state

space K is governed by a probability transition map, which naturally corresponds

to a Boolean linear map f for which y ∈ f(x) if and only if the Markov chain has

positive probability to get to state y ∈ K from state x ∈ K in one step. For an

inhomogeneous Markov chain, we will have several probability transition maps and

so we need to consider Boolean linear dynamical system generated by several Boolean

linear maps.

Let K be a nonempty finite set and let F be a subset of BK . The phase space of

F has 2K as its vertex set and has the union of the arc set of PSf , f ∈ F , as its arc

set. The Boolean linear dynamical system (2K ,F) is primitive provided every walk

of length 2k − 2 in PSF starting from a vertex inside 2K \ {∅} will reach K. If F is

primitive,  LPSF
is called the primitive exponent of F . A Boolean linear map f on

K is essential if f(i) 6= ∅ for every i ∈ K. The next conjecture is an inhomogeneous

version of Theorem 1.11.

Conjecture 3.1. Let F be a primitive set of essential Boolean linear maps on

[k]. For any A,B ∈ 2[k], it holds DistPSF
(A,B) ≤ |B|k| F | as long as A can reach B

in PSF .

If Conjecture 3.1 is correct, then for every integer k ≥ 2 we can obtain

k ≥ γk ≥

⌈
log2(2k − 2)

log2 k

⌉
− 1,

where γk is the minimum size of a primitive set F of essential maps from 2[k] to

2[k] satisfying  LPSF
= 2k − 2 [15, 49]. We suggest another conjecture which is a bit

stronger than Conjecture 3.1 for the case of |B| = 1.

Conjecture 3.2. Let k be a positive integer. Let F be a primitive set of essential

Boolean linear maps on [k] and take x ∈ [k]. Assume that

X1 → X2 → · · · → Xs+1

is a walk of length s in PSF such that x /∈ Xi for i ∈ [s + 1]. Then s ≤ k| F |.

The ensuing example shows that we cannot improve the claim s ≤ k| F | in Con-

jecture 3.2 to s ≤
∏

f∈F Df .

Example 3.3. [Ziqing Xiang] Let m and n be two positive integers. Consider

digraphs fm,n and gm,n on the same vertex set V = {x} ∪ {wi,j : i ∈ [m], j ∈ [n]}

with arc sets as specified below:
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w1,1

w1,2

w1,3

w2,1

w2,2

w2,3

x

f3,2:

w1,1

w1,2

w1,3

w2,1

w2,2

w2,3

x

g3,2:

Fig. 3.1. The two digraphs f3,2 and g3,2 as described in Example 3.3.

• fm,n(wi,j) = {wi,j+1} for i ∈ [m], j ∈ [n− 1];

• fm,n(wi,n) = {x} for i ∈ [m];

• fm,n(x) = gm,n(x) = V ;

• gm,n(wi,n) = {wi+1,1} for i ∈ [m− 1];

• gm,n(wi,j) = {x} for i ∈ [m], j ∈ [n− 1];

• gm,n(wm,n) = {x}.

It is easy to check that Dfm,n
= m, Dgm,n

= 2 and {fm,n, gm,n} is primitive. In

PSfm,n,gm,n
,

(3.1) X1 → X2 → · · · → Xmn

is a path of length mn, where

Xt = {w⌈ t
m⌉,t−(⌈ t

m⌉−1)m}

for t ∈ [mn]. Note that x /∈ Xt for all t ∈ [mn] and the length of the path displayed

in Eq. (3.1) is larger than Dfm,n
Dgm,n

provided n > 2.

3.2. Higher-order. In an order-t Markov chain [36, 45], the future state of the

process depends on the past t states linearly. When t = 1, an order-t Markov chain

becomes the usual Markov chain. To be more precise, an order-t Markov chain on a

finite set K is specified by a probability transition hypermatrix

(3.2) M = (Mp1,...,pt+1)p1,...,pt+1∈K ∈ R

K × · · · ×K︸ ︷︷ ︸
t+1 ,

where Mp1,...,pt+1 are nonnegative numbers such that
∑

p1∈K

Mp1,...,pt+1 = 1
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for all p2, . . . , pt+1 ∈ K. If the probability distribution of states at time T +1, . . . , T +

t are x1, . . . , xt and if xk represents the probability of taking state k ∈ K in the

distribution x, then in the order-t Markov chain governed by M, the probability

distribution vector at time T + t + 1 is given by Mxt · · ·x1, where

(3.3) (Mxt · · ·x1)k =
∑

k1,...,kt∈K

Mkkt...k1x
t
kt
· · ·x1

k1

for all k ∈ K.

Replacing those vectors in Eq. (3.3) by their supports, we naturally yield the

concept of Boolean multilinear maps as a models of a nonparametric version of higher-

order Markov chains. A Boolean t-linear map on a finite set K is a map f from (2K)t

to 2K such that

f(A1, . . . , At) = ∅

as long as one of A1, . . . , At is empty, and that

∪i1···it∈[2]tf
(
Ai1(1), . . . , Ait(t)

)
= f

(
A1(1) ∪ A2(1), . . . , A1(t) ∪ A2(t)

)

for all A1(1), A2(1), . . . , A1(t), A2(t) ∈ 2K . We write Bt
K for the set of all Boolean

t-linear maps on K.

Pick f ∈ Bt
K . Let us extend several definitions for Boolean linear maps to the

multilinear case so that we can consider possible generalizations of those results in

Section 1. Let Rf be the map from Kt × N to 2K , called the range map of f , such

that Rf (k1, . . . , kt; i− 1) = ki for i ∈ [t] and Rf (k1, . . . , kt; i) = f
(
Rf (k1, . . . , kt; i−

t), . . . ,Rf (k1, . . . , kt; i − 1)
)

for i ≥ t. The digraph of f, denoted by Γf , has vertex

set Kt and arc set

{(x1, . . . , xt) → (x2, . . . , xt, xt+1) : x1, . . . , xt ∈ K,xt+1 ∈ f(x1, . . . , xt)}.

For A = (A1, . . . , At) ∈ (2K)t, let

−→
f (A) =

(
A2, . . . , At, f(A1, . . . , At)

)
.

The phase space of f , denoted by PSf , has (2K)t as its vertex set and has

{X →
−→
f (X) : X ∈ (2K)t}

as its arc set. The Boolean t-linear map f is called primitive if every vertex from

(2K \ {∅})t will reach (K, . . . ,K) in PSf . If f is primitive, the length of a longest

path ending at (K, . . . ,K) in PSf is called the primitive exponent of f. Note that

(∅, . . . , ∅) and (K, . . . ,K) are the only two vertices lying on a cycle of PSf when f
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is primitive. For primitive Boolean t-linear maps, Chen and Wu [13] have recently

obtained generalizations of Theorems 1.2 and 1.8.

It is worth mentioning that {Γf : f ∈ Bt
K} coincides with the set of spanning

subdigraphs of the |K|-nary t-dimensional De Bruijn digraph [9, 19]. In symbolic

dynamics, the construction of Γf from a f ∈ Bt
K appears when recoding a t-step shift

of finite type as a 1-step shift of finite type (edge shift) [28, Theorem 2.3.2] and is

used as a symbolic trajectory of a higher-order Markov chain [28, §2.3]. Indeed, for

this multilinear map f , letting

F = {x1 · · ·xt+1 ∈ Kt+1 : xt+1 /∈ f(x1, . . . , xt)},

the shift of finite type "F [28, Chapter 2] and its dynamical properties should have

close relation with the expansion property of f and this connection deserves further

study. For given f ∈ Bt
K , Γf itself is a Boolean linear map on Kt and, in essence,

everything about the t-linear map f can be deduced from the knowledge of the linear

map Γf . However, it seems nontrivial to tell the shape of PSf even after knowing

the shape of PSΓf
.

Example 3.4. We specify a Boolean 2-linear map f on K = [2] by depicting Γf

in Fig. 3.2. Its phase space PSf is given in Fig. 3.3. Viewing Γf as a Boolean 1-linear

map on K2, we draw its phase space PSΓf
in Fig. 3.4.

11 12

21 22

Fig. 3.2. The digraph Γf of a Boolean 2-linear map f on K = [2].

For any f ∈ Bt
K , it is not hard to find that f is primitive whenever Γf is primitive.

The next example says that the converse is not true. It also reflects the difficulty of

really understanding an order-t Markov chain on K from its encoded order-1 Markov

chain on Kt.

Example 3.5. Let K = [2] and let f ∈ B3
K be the one whose digraph Γf is as

shown on the left hand side of Fig. 3.5. Note that Γf is even not strongly connected.

On the right hand side of Fig. 3.5 we display part of the phase space PSf of f , namely

the subdigraph spanned by (2K \ {∅})3. It can be seen there that the longest path

ending at KKK in PSf has length 7 and so we conclude that f is primitive with

primitive exponent 7.

To comprehend those slowly expanding Boolean t-linear maps as well as the links
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22

∅2 2∅ ∅∅

K∅∅K

1∅ ∅1

1121 12 2K K1 1K KK

K2

Fig. 3.3. The phase space PSf for the Boolean 2-linear map f on K = [2] indicated in Fig. 3.2.

22 ∅

21 11 12 21, 22 12, 22

11, 12, 2211, 22

12, 21 11, 21, 22 11, 12 12, 21, 22 11, 21

11, 12, 21 11, 12, 21, 22

Fig. 3.4. The phase space PSΓf
for the Boolean 1-linear map Γf on the set K × K =

{11, 12, 21, 22} shown in Fig. 3.2.

KKK

1KK

2KK12K

K2K1K2

KK2

21K

K1K

11KK11

211

1K1

2K122KK22

221

121

222122

112111

K21

K12212

2K2

KK1

112

111

211

121

212

221

222

122

Fig. 3.5. The digraph and part of the phase space of the 3-linear map in Example 3.5.

between them and other objects [3, 5, 13, 39, 48], it may be important to search for

a generalization of Wielandt’s inequality.

Conjecture 3.6. For any positive integer k, the maximum primitive exponent

for which a primitive Boolean 2-linear map on [k] can achieve is O(k2).
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The hypermatrix M in Eq. (3.2) is often defined in terms of tensors [11]. Both the

spectral and combinatorial properties of tensors have been subjects of recent interest.

Following the popular usage of notation, we may thus call the elements of Bt
K Boolean

tensors. Chang, Pearson and Zhang initiated a study of primitive nonnegative tensors

[10, Definition 2.6]. Since the primitiveness of a nonnegative tensor only relies on the

zero pattern of the tensor, their definition naturally yields a definition of a class of

Boolean tensors, which we call CPZ-primitive Boolean tensors. Our definition of

primitive Boolean multilinear maps (Boolean tensors) is different from the definition

of CPZ-primitive Boolean tensors. Indeed, the primitive Boolean tensor f given in

Example 3.5 is not a CPZ-primitive Boolean tensor, which can be seen by appealing

to [18, Theorem 4], not mentioning to be a strongly primitive Boolean tensor as

defined in [43, Definition 4.3]. The primitivity concept introduced in this section will

be systematically examined in the framework of multivariable graph theory in [48].

3.3. Increasing paths. Let K be a finite nonempty set and let f ∈ BK be an

irreducible map. A path in PSf is increasing if the sizes of the vertices along the

path never decreases. Motivated by Seymour’s second neighborhood conjecture [12],

we may want to estimate the length of a longest increasing path in PSf . We say that

a transient vertex X is lucky if there exists an increasing path in PSf which contains

X and a recurrent vertex. A Garden-of-Eden in PSf is a vertex X of PSf for which

there exists no Y such that f(Y ) = X . Let Tf denote the set of transient vertices for

f. It is not hard to see that there exists a set S of Garden-of-Edens in PSf such that

{f i+1(X) : X ∈ S, i ∈ N} ∩ Tf are all the lucky vertices. What is the distribution

of the lucky vertices in PSf? Is there any nontrivial lower bound for the number of

lucky vertices in PSf?

3.4. An extremal problem. For any f ∈ Bk and any positive integer t, let us

define

σt(f) =
∑

i∈[k]

| Rf (i, t)|.

To understand the expansion property of f, the prior subsection examines the increas-

ing paths in PSf . We now look at the sequence (σ1(f), σ2(f), . . .). We say that f is

strictly expanding if for every positive integer t, either σt(f) < σt+1(f) or σt(f) = k2;

we say that f is weakly expanding if σt(f) ≤ σt+1(f) for every positive integer t.

Conjecture 3.7. Let k be an integer no smaller than 4 and let f ∈ Bk be a

primitive map.

• If σ1(f) > k2 − 4k + 7, then f is strictly expanding.

• If σ1(f) > k2 − 5k + 10, then f is weakly expanding.
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For any R,C ∈ 2[k−1], define fk;R,C to be the element in Bk so that

fk;R,C(i) =





[k − 1], if i = k;

C ∪ {k}, if i ∈ R;

{k}, if i ∈ [k − 1] \R.

When {|R|, |C|} = {k − 3, k − 4}, we can check that σ1(fk;R,C) = k2 − 5k + 10,

σ2(fk;R,C) = k2 − 5, σ3(fk;R,C) = k2 − 6, σ4(fk;R,C) = k2. When |R| = |C| = k − 3,

we can check that σ1(fk;R,C) = k2 − 4k + 7, σ2(fk;R,C) = k2 − 4, σ3(fk;R,C) = k2 − 4,

σ4(fk;R,C) = k2. Computer experiments suggest that these constructions essentially

give all those primitive maps f from Bk with σ1(f) = k2 − 5k + 10 which are not

weakly expanding and all those primitive maps f from Bk with σ1(f) = k2 − 4k + 7

which are not strictly expanding.

3.5. Tropical. For a Boolean linear map f , an interesting parameter is the

largest height of the in-trees attached to the cycles in PSf – this turns out to be

the primitive exponent when f is primitive. Generalizing many results about this

parameter in the Boolean case, some results about it in the tropical case have been

established [32]. Analogously, it should be an interesting project to extend the ex-

pansion property for Boolean linear maps to the tropical setting.

3.6. Beyond. Besides expansion property, some shrinking properties, say zero

controllability and synchronizing property, also attract lots of attentions. Actually, by

relaxing the linear condition f(A ∪B) = f(A) ∪ f(B) to the supermodular condition

f(A ∪ B) ⊇ f(A) ∪ f(B) for all set A and B, almost all results regarding expansion

property in this paper are still valid. We emphasize here the Boolean linear maps as

many interesting shrinking properties can be studied on them as well.

From the viewpoint of the phase space structure of a discrete dynamical system,

a wide range of active research field, whose background vary from positive switched

system in control theory to models of biological regulation networks and others, can

be put in a unified setting [3, 4, 5, 7, 20, 22, 23, 27, 35, 38, 39, 46, 49]. It should be

safe to conclude that the reachability problem of the phase spaces of various discrete

dynamical systems is a world with many secrets to be explored.
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