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Abstract. It is well known that every real or complex square matrix is unitarily similar to

an upper Hessenberg matrix. The purpose of this paper is to provide a constructive proof of the

result that every square matrix polynomial can be reduced to an upper Hessenberg matrix, whose

entries are rational functions and in special cases polynomials. It will be shown that the determinant

is preserved under this transformation, and both the finite and infinite eigenvalues of the original

matrix polynomial can be obtained from the upper Hessenberg matrix.
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1. Introduction. Recently, there has been a push to develop methods for find-

ing the eigenvalues and eigenvectors of a matrix polynomial that are similar to the

methods that have been used on real and complex matrices. For example, in [5], the

authors develop Arnoldi type methods that operate on the coefficient matrices, and

effectively project a large problem onto a smaller problem. In [7, 8] it is shown that

any matrix polynomial can be reduced to triangular or quasi-triangular form, while

preserving the degree and the finite and infinite elementary divisors of the matrix

polynomial; the constructive proof requires information on the finite and infinite el-

ementary divisors of the original matrix polynomial. Starting with the elementary

divisors of a matrix polynomial is not practical if our end goal is to solve for the

eigenvalues of the matrix polynomial. However, in [8], the authors also discuss using

structure preserving similarities acting on the linearization of the matrix polynomial,

in order to obtain a triangular form of the matrix polynomial. This is truly exciting

research, a reliable process for reducing a matrix polynomial to triangular form while

preserving the eigenvalues would have obvious benefits.

In this paper, we will show that every matrix polynomial can be reduced to an

upper Hessenberg matrix whose entries are rational functions and in special cases
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polynomials. Recall that every matrix polynomial P (z) admits the representation

P (z) = E(z)D(z)F (z),

where D(z) is a diagonal matrix polynomial whose diagonal entries are the invariant

polynomials of P (z); E(z) and F (z) are matrix polynomials with constant nonzero

determinants. This is known as the Smith form of the matrix polynomial P (z) [4].

This Smith form is attained through elementary row and column operations which

are stored in the matrix polynomials E(z) and F (z). With this result in mind, it is

not surprising that we can reduce a matrix polynomial to upper Hessenberg form.

Our approach to obtaining an upper Hessenberg form of a matrix polynomial is

unique, in that we choose to think of a matrix polynomial as a linear operator from

Fn to Fn, where F is the field of rational functions. In Section 2, we define a pseudo

inner product on Fn × Fn, and R-similarity of matrices in Fn×n. Armed with this

pseudo inner product, we are able to apply Arnoldi and Krylov subspace methods to

matrix polynomials. For a concise review on these methods, see [9]. In Section 3,

we use these familiar techniques to provide an elegant and constructive proof of the

result that every square matrix polynomial is similar to an upper Hessenberg matrix

A in Fn×n. We note that these results can be generalized for non-square matrix

polynomials and matrix rationals. The practical importance of this reduction is that

using Hyman’s method [3, 10] and the Ehrlich-Aberth method [1, 2, 6], we can develop

a numerical method for computing the eigenvalues of A. The theoretical importance

is that in proving this result we will show that many familiar techniques from linear

algebra can be applied directly to matrix polynomials, without using a linearization,

as long as we work over the field of rational functions. In Section 4, we show that,

in general, R-similarity transformations in Fn×n do not preserve the Smith form of

the original matrix polynomial. After identifying the problem, we provide sufficient

conditions for which the Smith form is preserved under such transformations.

2. The field of rational functions. A matrix polynomial of size n × n and

degree d is defined by

(2.1) P (z) =

d
∑

k=0

Akz
k,

where Ak ∈ Cn×n, z ∈ C, and Ad 6= 0. Let F denote the field of rational functions

over C and Fn denote the vector space of all n-tuples whose entries are rational

functions with complex coefficients. It will be useful to denote the matrix polynomial

as P = [pij ]
n

i,j=1, where pij is a scalar polynomial in z, whose k-th coefficient is given

by the (i, j)-th entry of the k-th coefficient matrix in (2.1). A matrix polynomial can

be considered as a linear transformation P : Fn → Fn. In this sense, the matrix

polynomial in (2.1) has been written in the standard basis. The definition of linear
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independence and a spanning set of vectors in Fn is the same as it would be in Cn,

except our scalars are rational functions. We are interested in representing a matrix

polynomial P with respect to other bases for Fn, with this in mind we note the

following definition.

Definition 2.1. We say that two matrices A, B ∈ Fn×n are R-similar, if there

exists a matrix S ∈ Fn×n, such that detS is a nonzero rational function and AS =

SB.

Let S ∈ F
n×n and consider the elementary transformations of interchanging two

rows, and adding to some row another row multiplied by a rational function. With this

in mind, it is not hard to show that the matrix S has linearly independent columns

if and only if detS is a nonzero rational function.

In Section 3, we will use the Arnoldi method to show that every matrix polynomial

is similar to an upper Hessenberg matrix A in F
n×n.

Definition 2.2. Define the pseudo inner product 〈·, ·〉 : Fn × Fn → F by

〈u, v〉 = u1 · v1 + · · ·+ un · vn,

where (·) and (+) are multiplication and addition of rational functions. The complex

conjugate is taken over the coefficients of vi, for i = 1, . . . , n.

The function in Definition 2.2 is not a traditional inner product, since the output

is a rational function. However, the following theorem will show that the pseudo inner

product satisfies linearity in the first argument, and 〈u, u〉 = 0 if and only if u = 0.

Theorem 2.3. Let u, v, z ∈ F
n and c ∈ F. Then

〈cu, v〉 = c 〈u, v〉 ,

〈u+ v, z〉 = 〈u, z〉+ 〈v, z〉 ,

〈u, u〉 = 0 if and only if u = 0.

Proof. Since Fn is a vector space over the field of rational functions F we have

〈cu, v〉 = cu1v̄1 + · · ·+ cunv̄n = c 〈u, v〉 ,

and

〈u+ v, z〉 = (u1 + v1) · z̄1 + · · ·+ (un + vn) · z̄n

= (u1 · z̄1 + · · ·+ un · z̄n) + (v1 · z̄1 + · · ·+ vn · z̄n) = 〈u, z〉+ 〈v, z〉 .

If u = 0, then it is clear that 〈u, u〉 = 0. To prove the converse, first note that each

element of u can be expressed as ui =
pi

qi
, where pi is a polynomial of degree di. Let
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d = max
1≤i≤n

di, then write pi = ai,dz
d+ · · ·+ ai,1z+ ai,0. Therefore, u can be written as

u =









a1,dz
d

q1
...

an,dz
d

qn









+ · · ·+









a1,0

q1
...

an,0

qn









:= vd + · · ·+ v0.

By linearity of the inner product,

〈u, u〉 = 〈v0, v0〉+ 〈v0, v1〉+ · · ·+ 〈vd, vd〉 ,

where

〈vi, vi〉 = z2i
(

|a1,i|
2

|q1|2
+ · · ·+

|an,i|
2

|qn|2

)

.

If 〈u, u〉 = 0, then the highest degree term 〈vd, vd〉 = 0. But this implies that

max
1≤i≤n

di < d, and we can apply the same argument to vi for i = d−1, . . . , 0. Therefore,

〈vi, vi〉 = 0 for i = 0, 1, . . . , d and it follows that u = 0.

In addition to the properties in Theorem 2.3, the pseudo inner product satisfies

conjugate symmetry, if the complex conjugate is taken over the coefficients of the

rational function. We proceed to define orthogonality in Fn with respect to our

pseudo inner product.

Definition 2.4. Two vectors u, v ∈ Fn are orthogonal, if 〈u, v〉 = 0.

The properties that we have proven our inner product possesses are all we need

to obtain upper Hessenberg form. This is because the Arnoldi process which we

will employ is truly the Gram-Schmidt process in disguise. Consider the following

example.

Example 2.5. Let v1(z) =

[

1

i

]

and v2(z) =

[

iz

1

]

. With the inner product

in Definition 2.2, we can use the Gram-Schmidt process to find an orthogonal basis

for F2. Let u1(z) = v1(z) and

u2(z) = v2(z)−
〈v2, u1〉

〈u1, u1〉
u1(z) =

[

iz

1

]

−
i(z − 1)

2

[

1

i

]

=

[

i
2 (z + 1)
1
2 (z + 1)

]

.

One can easily verify that 〈u1, u2〉 = 0.

In general, we may have a set of linearly independent vectors {v1, . . . , vn} in Fn.

Let u1 = v1 and proceed to define

uk+1 = vk+1 −

k
∑

i=1

〈vk+1, ui〉

〈ui, ui〉
ui,
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for k = 1, . . . , n−1. Suppose we have created a set of orthogonal vectors {u1, . . . , uk}

in Fn. By linearity of our inner product

〈uk+1, uj〉 = 〈vk+1, uj〉 −

k
∑

i=1

〈vk+1, ui〉

〈ui, ui〉
〈ui, uj〉 ,

for j = 1, . . . , k. Since 〈ui, uj〉 = 0 for all i 6= j, it follows that 〈uk+1, uj〉 = 0

for j = 1, . . . , k. Therefore, with the properties proved in Theorem 2.3, we can be

sure that the Gram-Schmidt process under our inner product will produce orthogonal

vectors in Fn.

3. Arnoldi and Krylov subspace methods. In Section 2, we saw that we

could build an orthogonal basis for Fn by using n linearly independent vectors in Fn

and the Gram-Schmidt process. In this section, we will give a practical method for

finding an orthogonal basis for a Krylov subspace of Fn.

3.1. The Arnoldi method. Let P be an n × n matrix polynomial, and let

v ∈ Fn be a nonzero vector. Then the sequence of vectors

(3.1) v, Pv, P 2v, . . .

is known as a Krylov sequence generated by the vector v and matrix polynomial

P . Since the vector space F
n is an n−dimensional space over the field F, it follows

that the above Krylov sequence can produce at most n linearly independent vectors.

Suppose that the vectors

v, Pv, . . . , P k−1v, k ≤ n

are linearly independent. Then these vectors form a basis for the k−dimensional

Krylov subspace

Kk(P, v) = span
{

v, Pv, . . . , P k−1v
}

.

We are after an orthogonal basis for the Krylov subspace Kk(P, v). To this end,

consider the Arnoldi method which starts with the nonzero vector v1 = v and then

produces

(3.2) v̂j+1 = Pvj −

j
∑

i=1

〈Pvj , vi〉

〈vi, vi〉
vi and vj+1 =

1

βj+1
v̂j+1

for j = 1, . . . , k − 1. We will refer to βj+1 ∈ F as a scaling factor. We have some

freedom in how we choose our scaling factor, but for now we let βj+1 = 1. We will

consider other scaling factors and how they affect our transformation in Section 4.
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Note that the vectors that (3.2) produces are proportional, with respect to our scaling

factor, to the vectors we would obtain from applying the Gram-Schmidt process to

the vectors v, Pv, . . . , P k−1v. Therefore,

span
{

v, Pv, . . . , P jv
}

= span {v1, v2, . . . , vj+1} ,

for j = 1, . . . , k − 1.

The Arnoldi process combined with our inner product has provided us a way of

computing an orthogonal basis for the Krylov subspace Kk(P, v). Let k be the largest

number of linearly independent vectors that the Krylov sequence in (3.1) can produce.

If k = n, then the Arnoldi process will produce an orthogonal basis for Fn, and the

matrix representation of P with respect to this basis will be upper Hessenberg.

Example 3.1. Let P (z) =





z2 1 z

1 z2 1

z 1 z2



 and v1(z) =





1

0

0



. Applying the

Arnoldi process, with scalar factor 1, we obtain

v2(z) = P (z)v1(z)− z2v1(z) =





0

1

z



 ,

v3(z) = P (z)v2(z)−
z
(

z3 + z + 2
)

z2 + 1
v2(z)−

(

z2 + 1
)

v1(z) =







0
z(z2−1)
z2+1
1−z2

z2+1






,

v4(z) = P (z)v3(z)−
z
(

z3 + z − 2
)

z2 + 1
v3(z)−

(

z2 − 1
)2

(z2 + 1)2
v2(z)− 0v1(z) = 0.

Therefore, we have

V (z) =







1 0 0

0 1
z(z2−1)
z2+1

0 z 1−z2

z2+1






and A(z) =









z2 z2 + 1 0

1
z(z3+z+2)

z2+1

(z2−1)
2

(z2+1)2

0 1
z(z3+z−2)

z2+1









,

such that P (z)V (z) = V (z)A(z).

The matrix V (z) in Example 3.1 has orthogonal columns, and it follows from

Definition 2.1 that P (z) is R-similar to A(z). Therefore, the fact that

detP (z) = detA(z) is not surprising. We generalize this result in the following

theorem.
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Theorem 3.2. Suppose that P (z), A(z) ∈ Fn×n are R-similar. Then

det
(

zαP (zβ)
)

= det
(

zαA(zβ)
)

for all α, β ∈ Z.

Proof. If P (z) is R-similar to A(z), then there exists a V (z) ∈ Fn×n with lin-

early independent columns such that P(z)V(z)=V(z)A(z). Therefore, detV (z) is a

nonzero rational function, and it follows that detP (z) = detA(z). Moreover, by

multiplicativity of the determinant, det
(

zαP (zβ)
)

= det
(

zαA(zβ)
)

.

The finite eigenvalues of P (z) are the roots of detP (z). Therefore, by Theorem

3.2 that the finite eigenvalues of P (z) and A(z) are equal. The infinite eigenvalues

of P (z) are defined as the zero valued roots of det
(

zdP (z−1)
)

. If we let α = d and

β = −1, then Theorem 3.2 implies that

det
(

zdP (z−1)
)

= det
(

zdA(z−1)
)

,

and we can obtain the infinite eigenvalues of P (z) from A(z).

Example 3.3. Let P (z) =





z2 z i

z z2 z

−i z z



. Applying the Arnoldi process we

find

V (z) =

[

0 z
1

2
z(z2 − z + 2i)

1 0 0

0 z −

1

2
z(z2 − z + 2i)

]

, A(z) =

[

z
2 2z2 0

1 1

2
z(z + 1) 1

4
(z4 − 2z3 + z

2 + 4)

0 1 1

2
z(z + 1)

]

,

such that P (z)V (z) = V (z)A(z). The finite eigenvalues of P (z) are the roots of

detA(z) = z5 − z4 − z3 − z2.

The infinite eigenvalues of P (z) are the zero valued roots of

det
(

z2A(z−1)
)

= z − z2 − z3 − z4.

Since there is one zero valued root of the above polynomial, P (z) has one infinite

eigenvalue.

There are several important points from Example 3.3 to make. First, we are able

to obtain the finite and infinite eigenvalues of P (z) from A(z). Second, P (z) was

self-adjoint, a matrix polynomial is self-adjoint if all of its coefficient matrices are

self-adjoint, and the resulting matrix rational was tridiagonal. Finally, the elements

of A(z) were all polynomials. It seems that there are starting vectors for the Arnoldi

process which force the elements of A(z) to be polynomials. For example, if the

starting vector in Example 3.1 were v =
[

1 1 1
]T

, then the elements of A(z)

would have been polynomials. Existence and identification of these starting vectors

for any matrix polynomial is a topic of future research.
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Theorem 3.4. Let P (z) be an n × n matrix polynomial and v(z) ∈ Fn be a

nonzero vector such that the vectors

v(z), P (z)v(z), . . . , Pn−1(z)v(z)

are linearly independent. Then the Arnoldi process outlined in (3.2) will produce an

orthogonal basis, v1, v2, . . . , vn, for Fn. Moreover, the matrix representation of P (z)

with respect to this basis is upper Hessenberg, and if P (z) is self-adjoint then the

matrix representation is tridiagonal.

Proof. Let V (z) =
[

v1(z) · · · vn(z)
]

and define A(z) = [aij(z)]
n
i,j=1, where

aij(z) =















〈P (z)vj(z), vi(z)〉
〈vi(z), vi(z)〉

if j ≥ i

βj+1 if j = i− 1

0 if j < i− 1

.

Then the columns of V (z) are linearly independent and (3.2) assures that P (z)V (z) =

V (z)A(z).

Suppose now that P (z) is self-adjoint, and consider the generalized Fourier coef-

ficients

aij(z) =
〈P (z)vj(z), vi(z)〉

〈vi(z), vi(z)〉
,

when j > i. From Definition 2.1 and the fact that P (z) is self-adjoint we have

〈P (z)vj(z), vi(z)〉 = 〈vj(z), P (z)vi(z)〉. By (3.2),

P (z)vi(z) =
i+1
∑

k=1

aki(z)vk(z).

Therefore, aij(z) = 0 whenever j > i+ 1, and it follows that A(z) is tridiagonal.

Let P (z) be an n× n matrix polynomial and v(z) be a nonzero vector for which

Theorem 3.4 holds. Then we can use the Arnoldi process to find an upper Hessenberg

matrix A(z) ∈ Fn×n that is R-similar to P (z), and by Theorem 3.2 we can obtain

the finite and infinite eigenvalues of P (z) from A(z). If the matrix polynomial P (z)

is self-adjoint, then (3.2) becomes the three term recurrence.

(3.3) βj+1vj+1 =

(

P −
〈Pvj , vj〉

〈vj , vj〉
I

)

vj −
〈Pvj , vj−1〉

〈vj−1, vj−1〉
vj−1.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 321-334, May 2016

http:/repository.uwyo.edu/ela



ELA

On the Reduction of Matrix Polynomials to Hessenberg Form 329

3.2. Invariant subspaces. We are not guaranteed to be able to form an n−

dimensional Krylov subspace from every starting vector v. It may happen that k

orthogonal vectors have been produced, where k < n, and applying (3.2) gives vk+1 =

0. In this case, the Krylov subspace Kk(P, v) is a subspace of Fn which is invariant

under multiplication by P . That is, PKk(P, v) ⊆ Kk(P, v). We begin with an example

of a one dimensional invariant subspace.

Example 3.5. Let P (z) =





z2 + 1 0 1

0 z2 + 1 0

1 0 z2 + 1



 and v =





0

1

0



. Then

P (z)v = (z2 + 1)v.

It follows that S = span {v} forms a 1−dimensional subspace of Fn, which is invariant

under multiplication by P (z). Moreover, v is an eigenvector corresponding to the

eigenvalues λ = ±i.

Example 3.5 provides important insight into the eigenvalue problem for matrix

polynomials. We have chosen to define finite eigenvalues as the roots of detP (z),

as was done in [1, 2, 4, 6] and the references therein. However, if we consider the

matrix polynomial P (z) from Example 3.5 and let f(z) = z2+1, then there is a sense

in which f(z) is an eigenvalue of P (z). This idea gains traction when one considers

the matrix polynomial P (z) as a linear operator from Fn to Fn. Moreover, the roots

of f(z) are zeros of detP (z), so there seems to be a correlation between the two

competing definitions of an eigenvalue of P (z). Studying these definitions and their

relationships is a topic of future research.

For our current discussion, what is important is that invariant subspaces can arise

while performing the Arnoldi process, as the following example illustrates.

Example 3.6. Let P (z) =









z2 z 1 0

z z2 z 1

1 z z2 z

0 1 z z2









, v1 =









1

1

1

1









, v2 =









− z
2

z
2
z
2

− z
2









.

Then S = span {v1, v2} is a 2−dimensional subspace of Fn which is invariant under

multiplication by P (z). In fact, we found this invariant subspace by applying the

Arnoldi process to starting vector v1. Therefore, we have V (z) =
[

v1(z) v2(z)
]

and

A(z) =

[

1 + 3
2z + z2 z2

4

1 −1− z
2 + z2

]

,

such that P (z)V (z) = V (z)A(z).
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Example 3.6 highlights the fact that coming across an invariant subspace while

performing the Arnoldi process is a good thing. Since detA(z) divides detP (z), see

Theorem 3.8, it follows that all the finite eigenvalues of A(z) are also finite eigenvalues

of P (z).

3.3. Continue the Arnoldi process. Suppose that after k < n steps of the

Arnoldi process outlined in Section 3.1, we find that vk+1 = 0. Then the Krylov

subspace Kk(P, v) is k−dimensional subspace of Fn which is invariant under mul-

tiplication by P . We can continue the Arnoldi process, but not with the vector

vk+1 = 0. So, choose vk+1 to be a nonzero vector that is orthogonal to each vector

in Kk(P, v) and continue on. In this way we can complete our task of finding an

orthogonal basis of Fn such that the matrix representation of P with respect to this

basis is upper Hessenberg.

Example 3.7. Here we continue Example 3.6. We choose v3 to be orthogonal to
v1 and v2 and the continue the Arnoldi process to obtain

V (z) =









1 − z
2

1

2
0

1 z
2

0 1

2
(z − 1)

1 z
2

0 − 1

2
(z − 1)

1 − z
2

− 1

2
0









, A(z) =









z2 + 3z
2

+ 1 z2

4
0 0

1 z2 − z
2
− 1 0 0

0 0 z2 (z − 1)2

0 0 1 z(z − 1)









.

Note that in Example 3.7 we effectively split the problem of finding the eigenvalues

of P (z) into two smaller problems. This is known as deflation and we summarize this

result in the following theorem.

Theorem 3.8. Let P (z) be a n × n matrix polynomial. Let V1(z) ∈ F
n×k be a

matrix whose columns form a basis for a k−dimensional subspace which is invariant

under multiplication by P (z). Let V2(z) ∈ Fn×(n−k) be a matrix whose columns are

additional vectors, such that the columns of V (z) =
[

V1(z) V2(z)
]

form a basis of

Fn. Let A(z) ∈ Fn×n be a matrix such that P (z)V (z) = V (z)A(z), then

A(z) =

[

A11(z) A12(z)

0 A22(z)

]

,

where A11(z) ∈ Fk×k and A22(z) ∈ F(n−k)×(n−k). Moreover, det
(

zαP (zβ)
)

=

det
(

zαA(zβ)
)

for all α, β ∈ Z.

Proof. The form of A(z) follows readily from the fact that the columns of V1(z)

form a basis for a k−dimensional invariant subspace which is invariant under mul-

tiplication by P (z). The fact that det
(

zαP (zβ)
)

= det
(

zαA(zβ)
)

for all α, β ∈ Z,

follows from Theorem 3.2.

Theorem 3.8 can easily be extended to multiple invariant subspaces. Moreover,

if the vectors in V (z) come from the Arnoldi process described in Section 3.1, then

A11(z) and A22(z) will be upper Hessenberg.
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In conclusion, every n × n matrix polynomial P (z) is R-similar to an upper

Hessenberg A(z) ∈ Fn×n. Moreover, by Theorem 3.2, the finite eigenvalues of P (z)

and A(z) are equal and we can obtain the infinite eigenvalues of P (z) from A(z). Areas

of future research include developing efficient numerical methods for computing A(z),

and methods for computing subspaces of Fn, which are invariant under multiplication

by P (z), directly.

4. Scaling factors and Smith form. In Section 3, we proved that every n×n

matrix polynomial P (z) is R-similar to an upper Hessenberg A(z) in Fn×n. We know

that the finite eigenvalues of P (z) are preserved under this transformation. In this

section, we assume that A(z) is an upper Hessenberg matrix polynomial. Example

4.1 will show that, in general, the Smith form of A(z) and P (z) are not the same.

However, the problems that cause the Smith form to not be preserved seem to be

alleviated by a proper choice of scaling factor βj+1, introduced in (3.2). Finally,

we provide sufficient conditions under which two similar matrix polynomials have

equivalent Smith forms.

Example 4.1. Let P (z) =





z2 z 1

z z2 z

1 z z



. Using the Arnoldi process outlined

in (3.2), with a scaling factor of 1, we find

V (z) =





0 z 1
2z

2(z − 1)

1 0 0

0 z − 1
2z

2(z − 1)



 , A(z) =





z2 2z2 0

1 1
2 (z

2 + z + 2) 1
4z

2(z − 1)2

0 1 1
2 (z + 2)(z − 1)



 ,

such that P (z)V (z) = V (z)A(z). The Smith Form of P (z) and A(z) are

P (z) ∼





1 0 0

0 z − 1 0

0 0 z2(z − 1)(z + 1)



 , A(z) ∼





1 0 0

0 1 0

0 0 z2(z − 1)2(z + 1)



 .

Moreover, P (z) has only one infinite eigenvalue, while A(z) has seven infinite eigen-

values.

Example 4.1 shows that, in general, similarity transformations in Fn×n do not pre-

serve the Smith form of a matrix polynomial. It is important to note that detV (z) = 0

when z = 0 and z = 1. Moreover, the elementary divisors of P (z) and A(z), corre-

sponding to z = 1, are different. We can use our scaling factor βj+1 to simplify the

columns of V (z), so that this is no longer a problem.
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Example 4.2. Let P (z) =





z2 z 1

z z2 z

1 z z



 and v1(z) =





0

1

0



. Using the

Arnoldi process, with scaling factor βj+1 defined to be the greatest common divisor

among the entries of v̂j+1 in (3.2), we find

V (z) =





0 1 1

1 0 0

0 1 −1



 , A(z) =





z2 2z 0

z 1
2 (z

2 + z + 2) z
2 (z − 1)

0 z
2 (z − 1) 1

2 (z + 2)(z − 1)



 ,

such that P (z)V (z) = V (z)A(z). Since detV (z) is a nonzero constant, we know that

the Smith form of A(z) and P (z) are the same [4]. In fact, both the finite and infinite

elementary divisors of P (z) and A(z) are equal.

Whether or not it is always possible to choose a scaling factor βj+1 in (3.2), so

that the matrix A(z) has the same Smith form as the original matrix polynomial

P (z) is a topic of future research. In what follows we will provide sufficient conditions

under which the Smith form of two similar matrix polynomials are equivalent.

Recall that every matrix polynomial P (z) admits the representation

P (z) = E(z)D(z)F (z).

It is common to refer to the diagonal matrix polynomial D(z) as the Smith form of

P (z). The diagonal entries of D(z) are the invariant polynomials. Moreover, if we

represent each invariant polynomial as a product of linear factors

di(z) = (z − λi1)
αi1 · · · (z − λi,ki

)αi,ki ,

then the factors (z − λij)
αij , j = 1, . . . , ki, i = 1, . . . , r, are called the elementary

divisors of P (z) [4]. The invariant polynomials and elementary divisors are closely

related to the Jordan chains of a matrix polynomial. In what follows we will use

several results from Sections 1.4–1.6 of [4] to prove our main result (Theorem 4.6).

Lemma 4.3. Let P (z) be an n×n matrix polynomial and let S(z) and V (z) be n×n

matrix polynomials such that S(λ) and V (λ) are nonsingular for some λ ∈ C. Then

y0, . . . , yk is a Jordan chain of the matrix polynomial S(z)P (z)V (z) corresponding

to λ if and only if the vectors

zj =

j
∑

i=0

1

i!
V (i)(λ)yj−i, j = 0, 1, . . . , k

form a Jordan chain of P (z) corresponding to λ.

Proof. See Proposition 1.11 of [4].
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From Lemma 4.3, it follows that the matrix polynomials A(z) and V (z)A(z) have

the same set of Jordan chains corresponding to λ ∈ C, if det V (λ) 6= 0. We will use

this fact in the following theorem.

Theorem 4.4. Suppose P (z)V (z) = V (z)A(z), where P (z), V (z), A(z) are n×n

matrix polynomials. The length of the Jordan chains of A(z) corresponding to λ are

equal to the lengths of the Jordan chains of P (z) corresponding to λ, if det V (λ) 6= 0.

Proof. Let y0, . . . , yk be a Jordan chain of A(z) corresponding to λ ∈ C, where

detV (λ) 6= 0. By Lemma 4.3, y0, . . . , yk is a Jordan chain of V (z)A(z) corresponding

to λ. Therefore, y0, . . . , yk is a Jordan chain of P (z)V (z) corresponding to λ. Again

by Lemma 4.3, it follows that the vectors

zj =

j
∑

i=0

1

i!
V (i)(λ)yj−i, j = 0, 1, . . . , k

form a Jordan chain of P (z) corresponding to λ.

As a consequence of Theorem 4.4 we have the following result.

Corollary 4.5. Let P (z)V (z) = V (z)A(z), where P (z), V (z), A(z) are n × n

matrix polynomials. The degree of the elementary divisors of A(z) corresponding to

λ are equal to the degree of the elementary divisors of P (z) corresponding to λ, if

detV (λ) 6= 0.

Proof. It follows from Theorem 4.4 that the lengths k1, . . . , kr of the Jordan

chains of A(z), corresponding to λ, are equal to the lengths of Jordan chains of P (z),

corresponding to λ. Therefore, by Proposition 1.131, the nonzero partial multiplicities

of A(z) at λ are equal to the nonzero partial multiplicities of P (z) at λ. Since the

nonzero partial multiplicities coincide with the degrees of the elementary divisors

corresponding to λ [4], the result follows.

One can use the number of invariant polynomials and the elementary divisors to

uniquely determine the Smith form of a matrix polynomial. We will use this fact to

prove the following.

Theorem 4.6. Let P (z) be a regular n × n matrix polynomial. Let A(z) be a

matrix polynomial that is R-similar to P (z). Then the Smith form of P (z) and A(z)

are equivalent, if none of the finite eigenvalues of P (z) are also eigenvalues of V (z).

Proof. Since P (z) is regular, we know that detP (z) is nonzero and therefore

P (z) has n invariant polynomials. The matrix polynomial A(z) is R-similar to P (z),

therefore A(z) also has n invariant polynomials. Let λ ∈ C be an eigenvalue of A(z),

1Many results in Sections 1.4–1.6 of [4], including Proposition 1.13, have been stated for monic

matrix polynomials, but monotonicity is not used in their proofs.
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then λ is also an eigenvalue of P (z). If the detV (λ) is nonzero, then it follows from

Corollary 4.5 that the elementary divisors of A(z) and P (z) corresponding to λ are

the same. Therefore, if none of the finite eigenvalues of P (z) are also eigenvalues

of V (z), then A(z) and P (z) have the same number of invariant polynomials and

the same elementary divisors. It follows that the Smith form of P (z) and A(z) are

equivalent.

In conclusion, we have introduced an pseudo inner product suitable for the vector

space F
n, where F is the field of rational functions. Armed with this pseudo inner

product, we defined orthogonality of vectors in Fn and showed that we can apply

the Arnoldi method directly to matrix polynomials. This allowed us to construct an

upper Hessenberg matrix in Fn×n that is similar to the original matrix polynomial.

We proved that this transformation preserves the determinant, and we saw scenarios

in which the finite and infinite elementary divisors are also preserved. Future research

includes developing numerical methods for computing this transformation efficiently,

finding optimal starting vectors for the Arnoldi process, and determining if we can

always do this transformation in such a way that preserves the Smith form of the

original matrix polynomial.
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