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REALIZING SULEIMANOVA SPECTRA VIA
PERMUTATIVE MATRICES*

PIETRO PAPARELLAT

Abstract. A permutative matriz is a square matrix such that every row is a permutation of
the first row. A constructive version of a result attributed to Suleimanova is given via permutative
matrices. A well-known result is strenghthened by showing that all realizable spectra containing
at most four elements can be realized by a permutative matrix or by a direct sum of permutative
matrices. The paper concludes by posing a problem.

Key words. Suleimanova spectrum, Permutative matrix, Real nonnegative inverse eigenvalue
problem.

AMS subject classifications. 15A18, 15A29, 15B99.

1. Introduction. Introduced by Suleimanova in [I3], the longstanding real non-
negative inverse eigenvalue problem (RNIEP) is to determine necessary and sufficient
conditions on a set o = {A1,..., A\p} C R so that o is the spectrum an n-by-n entry-
wise nonnegative matrix.

If A is an n-by-n nonnegative matrix with spectrum o, then o said to be realizable
and the matrix A is called a realizing matriz for o. It is well-known that if o is
realizable, then

n

(1.1) se(0) =Y M >0,VkeN
=1

(1.2) p(o):= max |\l € o

For additional background and results, see, e.g., [2, [9] and references therein.

A set o0 = {A1,...,\} C Ris called a Suletimanova spectrum if s1(o) > 0 and
o contains exactly one positive element. Suleimanova [I3] announced (and loosely
proved) that every such spectrum is realizable. Fiedler [3] showed that every Suleima-
nova spectrum is symmetrically realizable (i.e., realizable by a symmetric nonnegative
matrix), however, his proof is by induction and does not explicitly yield a realizing
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matrix for all orders. In [6], Johnson and Paparella provide a constructive version of
Fiedler’s result for Hadamard orders.

Friedland [4] and Perfect [10] proved Suleimanova’s result via companion matrices
(for other proofs, see references in [4]). In particular, the coefficients cg,c1, ..., cn-1
of the polynomial p(t) := [[{_, (t — \x) = t" + -7, cxt® are nonpositive so that the
companion matrix of p is nonnegative. As noted in [IT] p. 1380], the construction of
the companion matrix of p requires evaluating the elementary symmetric functions at
(A1, A2y ..., An), a computation with O(2™) complexity.

The computation of a realizing matrix for a realizable spectrum is of obvious
interest for numerical purposes, but for many known theoretical results, a realizing
matrix is not readily available. Indeed, according to Chu:

Very few of these theoretical results are ready for implementation to actually
compute [the realizing] matrix. The most constructive result we have seen is
the sufficient condition studied by Soules [I2]. But the condition there is still
limited because the construction depends on the specification of the Perron
vector — in particular, the components of the Perron eigenvector need to satisfy
certain inequalities in order for the construction to work. [Il p. 18].

In this work, we provide a constructive version of Suleimanova’s result via per-
mutative matrices. The paper is organized as follows: Section [2] contains notation
and definitions; Section [B] contains the main results; in Section @l we show that if
o={A1,..., \n}, n < 4, satisfies (ILT)) and ([2]), then o is realizable by a permuta-
tive matrix or by a direct sum of permutative matrices; and we conclude by posing a
problem in Section

2. Notation. The set of m-by-n matrices with entries from a field F (in this
paper, I is either C or R) is denoted by My, »(F) (when m = n, M, ,(IF) is abbreviated
to M,,(IF)). For A = [ai;] € M,,(C), 0 (A) denotes the spectrum of A.

The set of n-by-1 column vectors is identified with the set of all n-tuples with
entries in F and thus denoted by F". Given = € F", x; denotes the i'" entry of z.

For the following, the size of each object will be clear from the context in which
it appears:

e ] denotes the identity matrix;

e ¢ denotes the all-ones vector; and

e J denotes the all-ones matrix, i.e., J =ee'.
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DEFINITION 2.1. For 2 € C" and permutation matrices Ps,..., P, € M,(R), a
permutative matri is any matrix of the form

IT

T T
(PQ_ ) € M, (C).
(Pyz)T

According to Definition 2.I] all one-by-one matrices are considered permutative.

3. Main results. We begin with the following lemmas.

LEMMA 3.1. For x € C", let

1 2 [ n
1 ry X ot Xy ot I IT
-
2 To Ty o+ Ty 0 Tp (Pa,)
P="P, = —
. T
i T; Tog - Ty - T (Py, )
.
n| T w2 - mp o-e- T | (Pa, )" |

where Py, is the permutation matriz corresponding to the permutation o; defined by
ai(x) = (1i), i = 2,...,n. Then o(P) = {s,02,...,0,}, where s := > . x; and
5i =T — Ty, 2:2,,71

Proof. Since every row sum of P is s, it follows that Pe = se, i.e., s € o(P).

Since
1 2 ] n
1 Tr; X9 €T; Ty
2 To xX; xX; I
P - (SLI = 9
i Tr; X9 T; Ty
n l‘n 1‘2 DY x’L DY l"L

it follows that the homogeneous linear system (P —§;I)# = 0 has a nontrivial solution
(notice that the first and i rows of P — §;I are identical). Thus, §; € o(P).

I Terminolgy due to Charles R. Johnson.
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Moreover, if
1 [ ox ]
i—1 T
Vi = i r1—8 |,1=2,...,n
i+1 xT;
n L ZT; |
then
1 [ zi(s—x) +xi(z1 —8) ] [z ]
i1 | wi(s—x;) +xi(x1 — 8) Z;
Pv;, = $i(8—$1)+$1(I1—S) :(1‘1*1'1') r1 — S :51'1)1'7
i+1 | wi(s—x;) +xi(x1 — 8) x5
n | xi(s—xi)+zi(zr —s) | | x|

so that (d;,v;) is a right-eigenpair for P. O
LemMmaA 3.2. If

then

Proof. Clearly,

1 el 1 el n el +e'(J—nl)
MM~ = : =
" [e —I] [e J— nI] [O nl } ’

but e" +e"(J —nl)=e’ + (n—1)e” —ne' = 0; dividing through by n establishes
the result. O
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THEOREM 3.3 (Suleimanova [13]). Every Suleimanova spectrum is realizable.

Proof. Let 0 = {A1,...,Ax} be a Suleimanova spectrum and assume, without
loss of generality, that A\y > 0> Xy > - > \,. If Ai=[A\; Ag --- A\,]T € R" then,
following Lemma 3.2 the solution z of the linear system

rn + 2 + 0+ Ty = A
1T — X2 = )\2
r1 - ZTn = M
is given by
s1(o)
1 | s1(0) —nAg
r=M'h==
n

s1(o) —nA,
which is clearly nonnegative. Following Lemma [B.I], the nonnegative matrix P, real-
izes 0. O

ExaMPLE 3.4. If o = {10, —1,—2, —3}, then o is realizable by

1 2 3 4
2 1 3 4
3 2 1 4
4 2 3 1
COROLLARY 3.5. Ifo = {1, = A2, ..., —An} is a Suleimanova spectrum such that
s1(0) =0 and A\ > 0, then the n-by-n nonnegative matriz
[0 A - N o A
X 0 o N oA,
po_ | : . :
N X - 0 A,
R DI VRS
realizes o.
EXAMPLE 3.6. If 0 = {6,—1,—2, —3}, then o is realizable by
01 2 3
1 0 2 3
2 1 0 3
3 1 2 0
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4. Connection to the RNIEP. It is well-known that for 1 < n < 4, conditions
(TI) and ([T2) are also sufficient for realizability (see, e.g., [6l [7]). In this section, we
strengthen this result by demonstrating that the realizing matrix can be taken to be
permutative or a direct sum of permutative matrices.

THEOREM 4.1. If o = {A1,..., A} CR and 1 < n < 4, then o is realizable if
and only if o satisfies (1)) and ([L2). Futhermore, the realizing matriz can be taken
to be permutative or a direct sum of permutative matrices.

Proof. Without loss of generality, assume that p (o) = 1.

The case when n = 1 is trivial, but it is worth mentioning that o = {1} is realized
by the permutative matrix [1].

If o0 = {1, A}, =1 < XA < 1, then the permutative matrix

If1+A 1-x
2[1-A 1+A

realizes o.

As established in [6], if o = {1, u, A}, where —1 < u, A < 1, then the matrix

(1+X)/2 (1-X/2 0
(1—X)/2 (1+X)/2 0
0 0

realizes 0 when 1 > pu > A > 0or 1 > p > 0 > A Notice that this matrix is a
direct sum of permutative matrices. If 0 > pu > A, then, following Theorem B3 o is
realizable by a permutative matrix.

When n = 4, all realizable spectra can be realized by matrices of the form

a+b a—> 0 0 a b ¢ d
a—b a-+bd 0 0 b a d c
0 0 c+d c—d or c d a b
0 0 c—d c+d d ¢ b a

(for full details, see [6, pp. 10-11]). O

5. Concluding remarks. In [4], Fiedler posed the symmetric nonnegative in-
verse eigenvalue problem (SNIEP), which requires the realizing matrix to be symmet-
ric. Obviously, if o = {A1,..., Ay} is a solution to the SNIEP, then it is a solution to
the RNIEP. In [5], Johnson, Laffey, and Loewy that showed that the RNIEP strictly
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contains the SNIEP when n > 5. It is in the spirit of this problem that we pose the
following.

PROBLEM 5.1. Can all realizable real spectra be realized by a permutative matriz
or by a direct sum of permutative matrices?

At this point there is no evidence that suggests an affirmative answer to Problem
BT} however, a negative answer could be just as difficult: one possibility, commu-
nicated to me by R. Loewy, is to find an extreme nonnegative matriz [8] with a
real spectrum that can not be realized by a permutative matrix, or a direct sum of
permutative matrices.
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