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THE DISTANCE SPECTRAL RADIUS OF GRAPHS WITH
GIVEN NUMBER OF ODD VERTICES*
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Abstract. The graphs with smallest, respectively largest, distance spectral radius among the
connected graphs, respectively trees with a given number of odd vertices, are determined. Also, the
graphs with the largest distance spectral radius among the trees with a given number of vertices
of degree 3, respectively given number of vertices of degree at least 3, are determined. Finally,
the graphs with the second and third largest distance spectral radius among the trees with all odd
vertices are determined.
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1. Introduction. Throughout this paper, we consider simple graphs. Let G be
a connected graph with vertex set V(G) and edge set E(G). The distance between ver-
tices u,v € V(G), denoted by dg(u,v), is the length of a shortest path between them.
The distance matriz of G, denoted by D(G), is the matrix D(G) = (dg(u,v))uvev(a)-
Since D(G) is real and symmetric, its eigenvalues are real. The distance spectral radius
of G, denoted by p(G), is the largest eigenvalue of D(G). Since D(G) is irreducible,
we have by the Perron-Frobenius theorem that p(G) is simple, and there is a unique
positive unit eigenvector z(G) of D(G) corresponding to p(G), which is called the
distance Perron vector of G.

The study of eigenvalues of the distance matrix of a connected graph dates back
to the classical work of Graham and Pollack [5], Graham and Lovész [4], and Edelberg
et al. [2]. For more details on spectra of distance matrices and especially on distance
spectral radius, one may refer to the recent survey of Aouchiche and Hansen [1].

A vertex is an odd vertex (respectively, even vertex) if its degree is odd (respec-
tively, even). It is well known that the number of odd vertices in a graph is always
even. A vertex in a tree with degree at least 3 is known as a branch verter. The
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number of branch vertices may be used to analyze graph structures, see, e.g. [3] [7].
In this paper, we determine the graphs with smallest, respectively largest, distance
spectral radius among the connected graphs, respectively trees with a given number of
odd vertices. Also, we determine the graphs with the largest distance spectral radius
among the trees with a given number of vertices of degree 3, respectively given num-
ber of vertices of degree at least 3. Finally, we determine the graphs with the second
and third largest distance spectral radius among the trees with all odd vertices.

2. Preliminaries. Let G be a connected graph with V(G) = {vy,...,v,}. A
column vector x = (zy,,...,%y,) € R™ (whether it is the distance Perron vector of
G or not) can be considered as a function defined on V(G) which maps vertex v; to

Zyyy 160, (v;) = x4, for i =1,...,n. Then
:ETD(G):C = Z 2d e (u, V) Ty Ty,
{u,v}CV(G)

and A is an eigenvalue of D(G) with corresponding eigenvector z if and only if 2 # 0
and for each u € V(G),

(2.1) Az, = Z da(u, v)x,.

veV(G)

We call (2] the (A, x)-eigenequation for G at u. For a unit column vector z € R™
with at least one nonnegative entry, by Rayleigh’s principle, we have

p(G) > z" D(G)x

with equality if and only if x is the distance Perron vector of G.

For a connected graph G with v € V(G), let dg(v) be the degree of v in G, and
let N (v) be the set of neighbors of v in G.

Let P,, C,, S, and K, be respectively the path, the cycle, the star and the
complete graph on n vertices.

A caterpillar is a tree such that the deletion of all pendant vertices yields a path.
Obviously, S,, and P, are caterpillars.

Let G be a connected graph. For V; C V(G), G — V; denotes the graph obtained
from G by deleting all vertices of V; (and the incident edges). If Vi = {u}, then we
write G —u for G — {u}. For Ey C E(G), G — E; denotes the graph obtained from G
by deleting all edges of Ey. If E; = {uv}, then we write G — uv for G — {uv}. If E
is a subset of edges of the complement of G, then G + E’ denotes the graph obtained
from G by inserting all edges of E’. If E/ = {uv}, then we write G +uv for G + {uv}.
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For a subgraph H of a connected graph G, let og(H) be the sum of the entries
of the distance Perron vector of G corresponding to the vertices in V(H).

LEMMA 2.1. [9] Let G be a connected graph with u,v € V(G). If uv & E(G),
then p(G) > p(G + wv).

LEMMA 2.2. [I0] Let G be a connected graph on n vertices with u,v € V(G),
and let v’ and v' be pendant neighbors of u and v, respectively. Let x = x(G). Then
p(G)

Ty — Ty! = W(Iu —Iru).

LEMMA 2.3. [TIL[12] Let G be a connected graph and u a cut vertex of G. Suppose

that G —u consists of vertex disjoint subgraphs G1, G2 and G3. Let G be the subgraph
of G induced by V(Gs) U {u}. Forv € V(Gs), let

G'=G—{uw:we Ngy(u)} + {vw: w e Ngy(u)} .
If 0G(G1) > 06(G2), then p(G) > p(G).

LEMMA 2.4. [10] Let G be a connected graph and uv a non-pendant cut edge of
G. Let G' be the graph obtained from G by contracting uv to a verter u and attaching
a pendant vertex v to u. Then p(G') < p(G).

3. Distance spectral radius of graphs with given number of odd ver-
tices. For integers n and k with 0 < k < [, let G(n, k) be the set of connected
graphs with n vertices and 2k odd vertices, and let K, (k) be the graph obtained from

K,, by deleting k pairwise disjoint edges. In particular, K, (0) = K.
THEOREM 3.1. Let G € G(n, k), wheren >3 and 0 < k < | 5].
(i) If n is odd, then p(G) > p(Kn(k)) with equality if and only if G = K, (k).

(it) If n is even, then p(G) > p (K, (% —k)) with equality if and only if
G2K,(%—k).

Proof. Let G be the graph in G(n, k) with minimum distance spectral radius.

If n is odd and k = 0, or n is even and k = %, then by Lemma 2.1l G = K, (0).
If n is even and k = 0, then since G is a spanning subgraph of K, (%), we have by
Lemma 2.l that G = K, (%)

Suppose 1 < k < Z. For z € V(G), let N, = V(G) \ (Ng(z) U{z}). Obviously,
IN.|=n—1-4da(2).

Let Vi (respectively, V5) be the set of odd (respectively, even) vertices of G.
Suppose that there are vertices u € V4 and v € Va2 such that uwv ¢ E(G). Let
G’ = G 4+ uv. Note that dg(u) = dg(u) + 1 is even and d¢r (v) = dg(v) + 1 is odd.
We have G’ € G(n,k). By Lemma 2] p(G’) < p(G), a contradiction. Thus, each
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vertex of V; is adjacent to each vertex of V5.
Case 1. n is odd.

Suppose that there is a vertex u € V5 with d¢(u) < n—1. Then ég(u) < n—3. Let
t= %‘SG(“). Then ¢t is a positive integer, and |N,| =n—1—0dg(u) = 2t. Let N,, =
{u1,...,uz}. Suppose that u; is not adjacent to ugs. Let G/ = G+{uuy, uugr, ujugs .
Obviously, G’ € G(n,k). By Lemma 21 p(G’) < p(G), a contradiction. Thus,
ULU2t € E(G)

Let G = G — uyugt + {uuy, uug}. Obviously, G” € G(n, k). Let Hy; and Hs be
the subgraphs of G" induced by Vi and Va2 \ (N, U{u}), respectively. Let 2’ = z(G").
From 21) for G” at u and uq, we have

/

p(G”)x; =og”r (Hl) +ogr (H2) + .ﬁ;l + QI’IIM +oe Tt 2$;2t—1 + Lz

p(G")xy, < ogr(Hy) + 2060 (Ha) + 22, + -+ + 23y, | + 2z, + 2.
Thus,
(p(G")+ 1) (22, — a,) > ogr(Hy) + 2, + 2, +- -+ 2,  +al, >0,

which implies that 2z, — z;, > 0. Similarly, 22] —z;_ > 0.

u2t

As we pass from G to G”, the distance between u; and wuo; is increased by 1,
the distance between u and wu; is decreased by 1, the distance between u and ug; is
decreased by 1, and the distance between any other vertex pair remains unchanged.
Therefore,

L(0(G) — (@) = 52T (D(G) — DG ))a

[\

/ ’ / ro
u (xul + Ium) T Ty Ly,

(2, — @y, @, + (22, — 20,) 20,,,)

I
8

(=Y

This leads to the contradiction that p(G) > p(G”). Thus, the degree of each vertex
inVyisn—1.

Suppose that there is a vertex v € Vi with dg(u) < n — 2. Then dg(u) <
n—4. Let t = %‘sc(“). Then ¢ is a positive integer, and |N,| = 2t + 1. Let
Ny = {u1,...,u9ty1}. Arguing as above we see ujugy1 € E(G). Let G = G —
Uy tge1 + {uug, uuger1}. Obviously, G” € G(n, k). As above, we have p(G) > p(G"),
a contradiction. Thus, the degree of each vertex in V; is n — 2.

Since each even degree is n — 1 and each odd degree is n — 2, we have G = K, (k).
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Case 2. n is even.

Similarly to the proof in Case 1, we have that each odd degree is n — 1 and each
even degree is n — 2. Thus, G 2 K, (% — k) O

LEMMA 3.2. Let T be a tree with w € V(T'), and let Np(u) = {u1,...,us},
where k > 3. Let T; be the component of T — u containing u; for 1 < i < k. Let
T =T —{uu; :2<i<t}+{wu;: 2<i<t}, where2<t<k—1andw € V(T}).
If or(Th) > o7 (Tk), then p(T") > p(T).

Proof. Let x = x(T). As we pass from T to T”, the distance between a vertex
of V(Tz) U --- U V(T}) and a vertex of V(Ty) U {u} is increased by dr(u,w), the
distance between a vertex of V(Tz) U--- UV (T}) and a vertex of V(T}) is decreased
by at most dr(u,w), and the distance between any other vertex pair is increased or
remains unchanged. Thus,

~(olT) — p(T) 2 327 (D(T) ~ D))

t

> dr(u,w) ZUT(Ti) (or(Th) — or(Tk) + xu)
> 0. =

Therefore, p(T7) > p(T). O

Let G1(s,t) be the graph shown in Fig. 1, where G is a nontrivial connected
graph, and s,t > 1.

V2 Vs—1 Us Vs+2 Us+3 Us+t
U1 U2 Us—1 Us Us41l Us42 Us43 Ust Ustt+1

Fig. 1. Graph Gy (s,t).
LEMMA 3.3. Let G1 be a montrivial connected graph. For s >t > 2, we have

p(Gi(s+1,t—1)) > p(Gy(s,t)).

Proof. Let G = G1(s,t). Let G3 and G3 be the components of G—1us41 containing
w1 and w441, respectively. Let

U
G' = G — {Usq2Vsq2, Us1 10511} + {Usq2Vsq1, Usp 10542}
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Obviously, G1(s + 1,t — 1) 2 G'. Let z = z(G).
Claim 1. 0G(G1) — %y, > 0.

Choose z € V(G1) such that dg(z,vs11) = maxyev(q,) da(v,vsr1). Let d =
da(z,vs41). Since |V(G1)| > 2,d > 1, and z # vsy1. From (ZT) for G at vsy1, 2z and
Vst2, We have

o =t 3t Y doleenwn.
weV(G1)\{z,vs+1}
+ > de (Vs 1, )T,

weV(G)\(V(G1)U{vs12})

AC)rs =day,, + (A4 Do+ Y. dalzw)zy
weV (G1)\{z,vs+1}

+ Z de(z,w) 2y,

weV(G)\(V(G1)U{vs12})

p(G)ao,,, = 3T0,,, + (d+3)z. + > (dG (Vs 1, w) + 3)w
weV(G)\{z,vs41}
+ Z de(Vsq2, W)Ly .

weV(G)\(V(G1)U{vss2})

Note that for w € V(G)\ (V(G1) U{vst2}), dg(vst1, w) +da(z, w) —dg(vsy2, w) > 0.
Thus,

p(G) (xﬂs+1 + T — xﬂs+2) 2> (d - 3)xﬂs+1 - 31’2 + (d + 6)mvs+2

+ Z (da(z,w) — 3) Ty,
weV(G1)\{2z,vs+1}
and

(p(G) + 3) (UG(Gl) - xU‘s+2) Z p(G) (l‘”s+1 +z, - x’Us-m) +3 (UG(GI) - $v5+2)

> (d—3)zy,,, — 32+ (d+ 6)z0,,,

+ > (de(2,w) — 3)ay

weV(G1)\{z,vs+1}

+3 | oy T2+ Z Ty — T,y
weV(G1)\{z,vs41}

= d‘/'L"Us+1 + (d + 3)$’US+2
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Y da(mw),
weV(G1)\{z,vs+1}
> 0.
Therefore, Claim 1 follows.
Claim 2. 0 (G2) > 0¢(Gs).

Let yp = 2y, + @y, for 2 <k < s+, y1 = oy, and Ysi441 = Tu,y,,, - SUPpOse

s t
(3.1) Zyz < ZstrlJri-
i=1 i=1

From (Z1]) for G at u with 1 <k < s+t + 1, we have

s t
(32) p(G) (:L'us+2 - xus) =2 Zyj - ZstrlJrj
j=1 j=1

and

p(G) (xus+1+i - xus+1ﬂ') - p(G) (mus+i - xu5+27’i)

s t
(3.3) =2 Z Ys+1—j5 — Z Ys+1+j
j=i j=i

s ¢ i1 i1
=2 =D ysrig | =2 D s = Y Ystiuy
Jj=1 Jj=1 Jj=1 j=1

for 2 <4 <t—1. We now prove that z,,,,,, — Ty,,,_, <0 for 1 <i <t by induction
oni. If i = 1, then from (&I)) and 32), we have x,,,_, —x,, <0, and by Lemma [Z2]
Ysh2 = Tuy o TTu,pn < Tu, T2y, = Ys. Suppose 2 < i <t—land Ty, —Ty,,,_; <0
for1 < j <i—1. In particular, ,,,, —2u,,, , <0. By Lemmal2.2 y,y11; = @u, ., +
Tvoprry < Pugpa; + Logp1y = Ys+1—j- Thus, Z;;ll Ys+1+5 — Z;;ll Ys+1—j < 0. Now
from @.I) and @3), we have x4, — Tu,py_; < Tusy; — Turo, < 0for 2 <i <t
It follows that 2., , — 2y, ,,, > 0 for 1 < < ¢ Thus,

s ¢ ¢ ¢
Zyi - Zys+1+i > Zyz — Zys+1+i > 0,
i=1 i=1 i=1 i=1

which leads to the contradiction that 35y > S.'_| ysi144. Hence, S°_ y; —
Zle Ys+1+4i > 0, from which Claim 2 follows.

As we pass from G to G', the distance between a vertex of V(G1) and a vertex
of V(G2) U{us41} is increased by 1, the distance between a vertex of V(G1) and a
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vertex of V(G3)\{vs42} is decreased by 1, the distance between v,12 and a vertex of
V(G3)\{vst2} is increased by 1, the distance between vgy2 and a vertex of V(Ga) U
{ust+1} is decreased by 1, and the distance between any other vertex pair remains
unchanged. Thus,

=06(G1) (06(G2) + 2u,.,) = 06(G1) (06(Gs) — Tu.,,)
+Ty, (O‘G (G3) — vasﬁ) — Ty, ,, (UG (G2) + $u5+1)
= (06(G2) — 06(G3) + Ty s + 2u.,y) (06(G1) — T0,.s)
which, together with Claims 1, 2, implies that p(G’) > p(G). O

For b > a > 0 with 2(a+b) < n, let C(n,a,b) be the tree obtained from the path
P, _q—p with consecutive vertices ug, %1, ..., Un—q—p—1 by attaching a pendant vertex
v; to vertex u; for i € {1,...,a}U{n—a—2b—1,...,n—a —b—2}. In particular,
C(n,0,0) is just the path P,.

LEMMA 3.4. [10] Let T be a tree with n > 4 vertices. If T % P, and C(n,0,1),
then p(T) < p(C(n,0,1)) < p(Py).

LEMMA 3.5. Ifa>0,b>a+2, and 2(a+b) +2 < n, then

p(C(n,a+1,b—1)) > p(C(n,a,b)).

Proof. Let T = C(n,a,b), p = [2=%2=2| and ¢ = [2=%=2]. Let z = z(T).
For0<i<n—a—0b—1,let s; = x,, if u; has no pendant vertex, and s; = x,, + xy,
otherwise.

Claim 1. Ty, ) — Tup_ oy y oy > Tuy — Tupy_oq_y_y_; > 0for 0 <i <oa.

?:_q%r_lb_l s;. We prove
that @, , < Ty, for 0 < i < p by induction on . For i = 0, we have

First we prove that z,, > @, ,. Suppose >\ _;s; > >

n—a—b—1 P

(3'4) p(T) (xup - muqH) = (q +1 _p) Z S; — Zsz s

i=q+1 i=0

and thus, z,, < x,,.,. Suppose i > 1 and z,,_; < Tugiri; for0<j<i—1. 1If

J
Or(up—j) = 2, then s, = Ty, ; < Ty, < Sqr14j. I 07(up—j) = 3, then by

Lemma 22 @y, ; < .y, and thus, sp—j = Ty, ; + Tu,_; < Tugpry, T Togpy, =

Sq+14;- In either case, sp_; < sq4145. Hence,

p(T) (xupfq, - qu+1+q,) - p(T) ($UP+177, - qu+i)
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n—a—b—1 p—1i
SIS SR o
Jj=q+1+1 7=0
n—a—b—1 P i—1
=2 D s s | =2 (sqr1ei — spi)
i=q+1 =0 =0
<0,
and thus, oy, ; — Tug1y; < Tupio; — Tugy,- 1t follows that zy,_, < @y, ., for

0 < < p, and thus, sp_; < sq4144 for 0 <7 < p. Since b > a + 2, there exists an ¢
with 0 <4 < p such that 07 (up—;) = 2 and dr(ugr144) = 3, and thus, s, = 2, , <

Ty, 1y, < Sqt14i- This leads to the contradiction that Y7 js; < Z?;q‘rlb*l Sie
—a—b—1
Hence, Y7 _os; < 3,177 83, and by B4), we have z,, > zy,,, .

Suppose z,, < %y, , , .- We prove that z,, <z, , , , , for 0 <i <pby
induction on i. Suppose i > 1 and Tuy < Tupy_ oy for 0 < j <i—1. As above, we
have by Lemma [Z2] that s; < $,_q—p—1—;. It follows that

p(T) (xuq, - ‘/'Cunfafbflfi) - p(T) (xuq,—l - xun—a—b—i)
1—1

= 22 (5j - Sn—a—b—l—j)

=0
<0.

Hence, Luj = Ly _a_p_1-4 < Lujo1 = Lup_a—b_i < 0. Thus, Lo, < Lty 0 p_1-4 for
0 <4 < p. In particular, x,, < @y,,,, which is a contradiction. It follows that
Tuy > Tu,_,_,_,, and as above, we have by induction that @, — u, ., , , , >
Ty — Ty gy1,; f0r 0 <4 <a.

Claim 2. %o, | 0ot < Tupuop + Tvyo_op-
Let V! = V(T)\{vn-—a—2b—1, Un—a—2b, Un—a—2b}. Since for u € V',
dr(Un—g—2b,u) + dr(Vn—q—2p, u) — dr (Vp—q—20—1,u) > 0,
we have from (1)) for T at w,—q—2p, Vn—q—26 and Vy_q_2p—1 that

p(T) (xun—a—2b T Loy qop — mvn—a—2b—1) = " Lup_q_2p — 2xﬂn,—a—2b + 5mvn—a—2b—1

+ Z (dT (Un7a72b; U) + dT(Un7a72b; U)
ueV’

—dr ('Un—a—Qb—la u)) Ty

> Ty g2 T 2xv71.7a72b + 5I”7L7u72b71'
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Thus,
(p(T) + 2) (l‘u'lLfU,be + $”7L7a72b - ‘/L"Unfu.72b71) Z {L‘unfaf2b + 3xv71.7a72b71 > 0’
from which Claim 2 follows.

Claim 3. Tugyiti ™ Pup_q_op—1-4 > Tugyori = Pup_q_op_2_ > 0 for 0 < i < \_ 2 J -
b—a—1.

It is sufficient to prove that xu, — Tu, 5, > Tu;yy — Tu,_ oy, > 0 for a +

1< z‘ < L”_IJ —b. Lett = L"T_lj and t; = [”T_W By the proof of Claim 1,

n—a—b—1 .
Z] b < > i—qi1  Sj- Sincet —b < q— 1, we have
n—a—b—1 n—a—b—1 n—a—b—1
ZSJ < 2w ) ws )
S = j=n—b—t

We prove that z,, > z,, , for a+1 <4<t —1b by induction on ¢. For 7 =1t —b,

—2b—

we have
n—a—b—1 —b
p(T) (Zut—b - xuw,fbft) = (tl +1- t) Z S5 — Z s | > 0.
j=n—b—t 7=0

Hence, zy,_, > Zu,_,_,- Suppose a +1 < i <t —b—1 and z,; > Tty g for
i+1<j<t—0b. Then

p(T) (xuq, - ‘/L‘un72b7i) - p(T) (qu—l - xun—2b—1—i)

n—a—b—1 i
=2 E S5 — E Sj
j=n—2b—i j=0
n—a—b—1 t—b t—b
=2 D s s =2 ) (su-a-y— )
j=n—b—t §=0 j=i+1

> 0,
and thus, Ty, — Tu, 2, ; > Tujy — Tup_g_,_; > 0. This proves Claim 3.
Claim 4. Tu, ., 5y < Tu, g4y o

By Claim 1, @y, > @, _,_,_,_, for 0 <i < a. As above, we have by Lemma [Z2]

that s; > sp_q—p—1-5. Thus, Y5 18 > >t Sn—a—b-1-i = Z;Zs:;(:bq s;. Let
m = %52 and m; = [252].

Suppose Yl iR < Sz el ;. We prove that z,,

i=n—2a—b—1-m 5
Tty 9oy 1_; fOT 1 <z<mby induction on 3. Forzfm we have

—a—2b—2+i >

p(T) (xu71.7a72b72+7n - xun72a7b7177n)
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n—a—b—1 n—a—2b—24+m
=(m +1-—m) Z Si — Z s
i=n—2a—b—1—m 1=0
> 0.

> Tup_ny_y1-m- Suppose 1 < i <m —1and @y, , 4 _,,; =

Tup_gy_ypy,; for i+ 1 <5 < m. By Lemma 22 sp o224 > Spn—24—b-1—; for
i+ 1 < j <m. Hence,

Hence7 $u7L7a72b72+7n

p(T) ($U7L7a72b72+i - xun72a7b717i) - p(T) (xunfa.72b71+i - xu71.72a7b727i)

n—a—b—1 n—a—2b—2+1
=2 E S5 — E Sj
j=n—2a—b—1—1 7=0
n—a—b—1 n—a—2b—2+m m
=2 E 85 — E 55| —2 E (Sn—2a—b—1—j — Sn—a—2b—2+;)
j=n—2a—b—1—m j=0 Jj=i+1
>0,
and thus’ Ly _a—op—24i — LUn_2a—b_1-i 2 Lup_a_ob—14i — Lun_2a—p_2-i > 0. It fol-
lows that for 1 < i < m, Tu,_, 5, 0ii = Tup_oe_p_1_,- As above, s,_q 2p-21i >

m m n—2a—b—2
Sn—2a—b—1—i- ThUS, Zi:l Sn—a—2b—2+i > Zi:l Sn—2a—b—1—i — Zi:n—2a—b—1—m Siy

and

n—a—2b—2+m

a m
E 8i = E Si + E Sn—a—2b—24i
i=0 i=1

=0
n—a—b—1 n—=2a—b—2
> E S; + E Si
i=n—2a—b—1 i=n—2a—b—1—m
n—a—b—1

= E Si,

i=n—2a—b—1—m

. . —a—2b—2 —a—b—1 . .
a contradiction. Thus, 1" b=2dm o Z?zs_;a_b_l_m s;. This proves Claim 4.

Let 7" = C(n,a+ 1,b —1). It is easily seen that

(3.5) (p(T") = p(T)) = %xT(D(T’) = D(T))x = v, o o W,

where
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b—a—1

a
W=r E (Sn—a—b—1—i — 8i) + 7 E Sn—a—2b—1+i
i=0 i=1

rg1-1
+ (T - 22) (Zun—a—2b—1—% - Zua+1+i) )
i=0
and r =n — 2a — 2b — 2.
From Claim 1, sp — Sn—a—b6-1 = Tug — Tup_u_p1 < Tuayr — Tup_se_p_z- BY

Lemma, and Claim 1, s; — Sp_qp-1-i < (1 + 2D ) (:cua+1 — :cunf%fb&) <

p(T)+2
2 (Tugry = Tup_a_y_p) for 1 <i < a. Let

0 ifb=a+ 2,
F:

b—a—1 .
r 21:2 Sp—a—2b+14i ifb>a+ 2.

By Claims 2, 3 and 4,
p(T) (xu(wl - Iunfu,72b71) =W HrTo, o
<W+r (zun,(k% + x”nfa*%)

=2W + Z (T - 22) (Zua+1+i - xun—a—?b—l—i)
1=0

a
+r Z(Sz — Sp—a—b-1-i) — F
i=0

[31-1
< OW + Z (r —2i) (Iua+1 - $u,ﬁa72b—1)
=0

+7’(2a + 1) (mua+1 - xun—2a—b—2)

< 2W
[£1-1
+ (T - Qi) + (20' + 1)T (xua+1 - xunﬂk%fl) .
1=0
Hence,
[51-1

(3.6) 2W > | p(T) — (r—2i) + (2a + 1)r (Tuas = T azpi) -

1=0

Claim 5. The minimum row sum of D(T) is larger than ZEJ{I (r—2i)+(2a+1)r.
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For0<j<a,
n—a—2b—2
Z dT(ujv u) > Z dT(“a; uz) + dT(um Un—a—b—l)
ueV(T) i=a+1
n—a—b—2

+ Z (dT(Ua,ui)‘i’dT(uavvi))

i=n—2a—b—1

n—=2a—2b—2 n—a—b—2
> > itr+ > 2
=1 i=n—2a—b—1
[51-1
> (r—2i) + (2a+ 1)r.
1=0

If a > 1, then for 1 < j < a,

Z dr(vj,u) > Z dr(uj,u) > Z (r—2i)+ (2a + )r.

weV (T) weV (T) i=0

Fora+1<j<n-—a-—2b—2,

n—a—2b—2
Z dr(uj,u) > Z dr(uj, u;) + dr(uj, ug)
uweV(T) i=a+1

+ Z (dr(uj,wi) + dr(uz,vi) + dr(uj, Un—a—b-1-i)
=1
+dT(uj7 Un—a—b—l—i)) + dT(Uj, Un—a—b—l)

n—a—2b—2

> Z dr (uaﬂ%],ui)—i—@a—i—l)r
i=a+1

—1

[z

(VR

(r—2i)+ (2a + )r.

(=)

1=

Forn—a—-2b—-1<j<n—-a-b-1,

n—a—2b—2
Z dr(uj,u) > Z dr (Un—a—20-1, i) + dr(Un—a—2b—1,Uo)
uweV(T) i=a+1

+ Z(dT(un7a72b71; u;) + dr(Un—a—20—1,Vi))
=1
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n—=2a—2b—2

> Y i+ Qa1

> (r—2i) + (2a + 1)r.
i=0

Forn—a—-2b—-1<j<n—a—-b-2,

Z dr(vj,u) > Z dr(uj,u) > Z (r—2i)+ (2a + 1)r.

ueV (T) ueV (T) 1=0
Thus, Claim 5 follows.

Since p(T) is bounded below by the minimum row sum of D(T) [0 p. 24], we
have by Claim 5 that p(T") > Zgﬁ;_l(r —2i)+ (2a+ 1)r. Now by ([B6) and Claim 3,
W > 0, and thus by &3), p(T") — p(T) > 0. O

Let A(G) be the maximum degree of a graph G.

LEMMA 3.6. Let T be a caterpillar with n vertices and k pendant vertices, where
k>3. If A(T) =3, then p(T) < p (C’ (n, L%J, (%])) with equality if and only if

T=C (n, [52],[52]).

Proof. If n is even and k = % + 1, then the result is trivial. If £ = 3, then the
result follows from Lemma [3.4]

Suppose 4 < k < 5. Let T be a caterpillar with maximum distance spectral

radius satisfying the hypothesis in the lemma.

Let U be the set of vertices of degree 2 in T. Then k + 2|U| + 3(n — k — |U]) =
2(n —1), and thus, |U| =n —2k+2 >0, i.e., U #0.

Obviously, the diameter of T'is n— (k—2)—1=n—k+1. Let upuy ... up—_k41 be
a diametrical path of T. Assume without loss of generality that d7(u1) < o7 (tn—g).
Then 2 < dp(u1) < 0 (up—x) < 3.

Suppose 07 (un—x) = 2. Then dr(ui) = 2 and there is u; with 2 < j < n —
k — 1 such that dr(u;) = 3. Let v; be the pendant neighbor of u;. Let 77 and
T5 be the nontrivial components of T' — u; containing ug and w,_j41, respectively.
Assume without loss of generality that op(Th) > or(T2). Let TV = T — ujv; +
Un—kv;. Obviously, 7" is a caterpillar with n vertices and k pendant vertices, and
A(T') = 3. By Lemma 23 p(T) < p(T”), a contradiction. Thus, dp(up—r) = 3.
Suppose dr(uy) = 2. If T — U has exactly one nontrivial component, then 7' =
C(n,0,k—2), and by Lemma B3], p(T) = p(C(n,0,k—2)) < p (C (n, [E52], [552])),
a contradiction. If T—U has at least two nontrivial components, then there are vertices
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u; and uj with 2 <4 < j <n —k —1 such that dp(u;) = 3 and dr(u;) = 2. Let v; be
the pendant neighbor of u;. Let T} and T be the components of T'— u; containing ug
and up_j41, respectively. Assume without loss of generality that op(T1) > or(T3).
Let T" = T — w;v; + u;jv;. Obviously, T” is a caterpillar with n vertices and k
pendant vertices, and A(T") = 3. By Lemma 23] p(T) < p(T"), a contradiction.
Thus, d7(u1) = 3, and T'— U has at least two nontrivial components.

Suppose that T'— U has at least three nontrivial components. There are three
vertices w;, u;,w; with 2 < i < j <l <n—k—11in T such that dp(u;) = 3 and
{ui,w;} C U. Let T1 and T be the nontrivial components of T — u; containing u;
and uy, respectively. Let v; be the pendant neighbor of u;. Assume without loss of
generality that op(T1) > or(T). Let T" =T — u;v; + wv;. By Lemma 23] p(T) <
p(T"), a contradiction. Thus, T'— U contains exactly two nontrivial components,
implying that T = C(n,a,b), where a +b = k — 2, and a,b > 1. By Lemma [31]
T=C(n [552),[552]). O

For integers n and k with 1 < k < [§], let T(n,k) be the set of trees with n
vertices and 2%k odd vertices.

THEOREM 3.7. Let T' € T(n, k), where 1 <k < |§]. Then

k—1 k—1
T) < C —_— —_—
i =o(e(n 5] [5)
with equality if and only if T = C (n, \_%J, f%])
Proof. If k = 1,2, then the result follows from Lemma [3.4]

Suppose k > 3. Let T be a tree in T(n, k) with maximum distance spectral radius.

Suppose that the maximum odd degree is larger than 3. Then 7 (u) = 2t + 1 for
some u € V(T) and t > 2. Let Np(u) = {u,...,u2e41}. Let T; be the component
of T'— u containing wu;, where 1 < i < 2t + 1. Assume without loss of generality
that or(Th) > or(Tetq1). Let w be a pendant vertex of T in V(Toy1). Let TV =
T —{uu,; : 3 <i<2t}+ {wu; : 3 <4< 2t}. Note that the degrees of u and w remain
odd in T’. Then 7" € T(n, k). By Lemma B2 p(T") > p(T), a contradiction. Thus,
the maximum odd degree is 3.

If n is even, and k = %, then by Lemma B3, T'= C (n, L%J, ]'%])

Suppose k < %. Let U be the set of even vertices of 7. Then |U| > 1. Suppose
that the maximum even degree is larger than 2. Then dr(u) = 2t for some u € V(T)
and ¢t > 2. Let Np(u) = {u1,...,ua}. Let T; be the component of T'— u containing
u;, where 1 < ¢ < 2¢. Assume without loss of generality that o (Th) > or(T5:). Let
w be a pendant vertex of T in V(Ty;). Let T/ = T — uug + wus. Note that the degree
of w is odd and the degree of w is even in T”. Then T” € T(n,k). By Lemma 23]
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p(T") > p(T'), a contradiction. Thus, the maximum even degree is 2, and each vertex
in U is of degree 2 in T'.

Suppose that T is not a caterpillar. Since A(T) = 3, there is a vertex u of
degree 3 in the graph obtained from T by deleting all pendant vertices. Let Np(u) =
{u1,u2,us}. Obviously, dr(u;) > 2 for ¢ = 1,2,3. Let T; be the component of T — u
containing u;, where 1 <4 < 3.

Claim. U C V(T;) for some i with i = 1,2, 3.

Otherwise, there are two vertices of degree 2 in T', one in V(7T;) and the other
in V(Tj), where 1 < i < j < 3. Assume without loss of generality that ér(v1) =
5T(U3) = 2 with v; € V(Tl) and vy € V(Tg), and that O’T(Tl) > O’T(Tg). Let
T = T —uuz+vsuz. Obviously, d7(u) is even and o7/ (v3) is odd. Thus, T7 € T(n, k).
By Lemma 23 p(T”) > p(T'), a contradiction. This proves the Claim.

Since A(T') = 3, we have by the Claim that T = G(s,t) for some s and ¢ with
s> 1> 2. Obviously, G1(s+1,t —1) € T(n, k). By LemmaB3] p(G1(s+1,t —1)) >
p(T), a contradiction. Thus, T is a caterpillar with A(T) = 3. By Lemma B.6] we

have T = C (n, 552 ], [552]). O

4. Distance spectral radius of trees with given number of vertices of
degree 3 or of degree at least 3. Let T be a tree with n vertices, in which &
vertices of degree at least 3. Let 7 be the number of pendant vertices in T. Then
r+2(n—r—k)+3k <2(n—1), ie., r > k+2. This implies that 2k+2 < k+r <mn,
and thus, k < & — 1. As an application of Theorem [3.7] we have

THEOREM 4.1. Let T be a tree on n vertices with k vertices of degree 3, where
n>2 and0 <k < [2]—1. Then p(T) < p(C (n,|%],[%])) with equality if and
only if T = C (n, L%J, ]'g])

Proof. If k = 0,1, then the result follows from Lemma [3.4]

Suppose k > 2. Let T be a tree with maximum distance spectral radius on n
vertices with k vertices of degree 3. Let A = A(T).

Case 1. A > 5. Let u € V(T) and Np(u) = {u1,...,ua}. Let T; be the
component of T'—u containing u;, where 1 < ¢ < A. Assume without loss of generality
that o7 (T1) > or(Ta). Let w be a pendant vertex of T'in V(Ta). Let T/ = T —{uwu; :
2<i<A—-1}+{wu;:2<i<A—1}. Note that the number of vertices of degree
3 in 7" remains k. By Lemma B2 p(T") > p(T'), a contradiction.

Case 2. A = 4. Let u € V(T) and Nr(u) = {u1,ug,us,us}. Let T; be the
component of T'—u containing u;, where 1 <4 < 4. Assume without loss of generality
that op(Th) > or(Ty). Let v be a pendant vertex of T in V(T}), and 7' = T — uuz +
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vug. Let Ty be the component of 77 — u containing us. Note that d7(u) = 3 and u
is a cut vertex. Assume without loss of generality that o/ (T1) > o7/ (T}). Let w be
a pendant vertex of 77 in V(T}) and T = T’ — uuz + wusz. Note that the number
of vertices of degree 3 in 7" remains k. By Lemma 23] p(T") > p(T") > p(T), a
contradiction.

Now we have proven that A = 3. Let r be the number of pendant vertices in T'.
Since r+2(n —k —r) + 3k = 2(n — 1), we have r = k+ 2, and thus, T' € T(n, k + 1).
By Theorem B.7, we have T = C (n, [ £],[£]). O

THEOREM 4.2. Let T be a tree with n vertices and k vertices of degree at least 3,
where 0 < k < [2] — 1. Then p(T) < p(C (n,|%],[%])) with equality if and only if
T=C(n,[5],[51)

Proof. If k = 0, then the result follows from Lemma [3.4]

Suppose k > 1. Let T be a tree with maximum distance spectral radius among
trees with n vertices and k vertices of degree at least 3. Let A = A(T).

Suppose A > 4. Let v € V(T) and Np(u) = {u1,...,ua}. Let T; be the
component of T'—u containing u;, where 1 < ¢ < A. Assume without loss of generality
that or(T1) > or(Ta). Let w be a pendant vertex of T in V(Ta). Let T/ =T —
uug +wus. Obviously, 7" is a tree with n vertices and k vertices of degree at least 3.
By Lemma B2 p(T") > p(T), a contradiction. Hence, A < 3, implying that T is a
tree with k vertices of degree 3. By Theorem [41] T = C (n, LgJ, [%1) d

5. Distance spectral radius of trees with all odd vertices. For n > 2,
let T(2n) be the set of all trees with 2n vertices, which are all odd. Let Es, =
C(2n,0,n —1).

Let T be a tree with n vertices. Then p(T) > p(S,) with equality if and only if
T 25, see [9]. By this result and Theorem B7, we have

THEOREM 5.1. Let T € T(2n). Then p(S2n) < p(T) < p(Eay) with left equality
if and only if T = Sa,, and right equality if and only if T = Es,.

For integers n and a with 1 < a < L"T*QJ, let D, o be the double star obtained
by adding an edge between the center u of S,4+1 and the center v of S;,_4_1.

LEMMA 5.2. [8] Fora > 2, p(Dy.q) > p(Dna—1)-

THEOREM 5.3. Let T € T(2n) and T 2 Say,, where n > 3. Then p(T) > p(Dan,2)
with equality if and only if T = Day, 5.

Proof. Let T be the tree with minimum distance spectral radius in T(2n)\ {Sa2n }.
Let ¢ be the diameter of T'. Obviously, ¢ > 3. Let u; ... u;41 be a diametrical path of
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T. Suppose t > 4. Let T = T —{vuy : v € Np(uq)\{us}}+{vus : v € Np(us)\{us}}.
Obviously, T € T(2n) \ {S2,}. By Lemma 24 p(T) > p(T”’), a contradiction. Thus,
t =3, ie., T is a double star. By Lemma 5.2 T = Dy, 5. O

For n > 3 and 2 < i < [2H ], let B(2n,i) be the caterpillar obtained from the
path P, with consecutive vertices ui, ..., u, by attaching a pendant vertex v; to u;
for 2 < j <n—1 with j # ¢ and attaching three pendant vertices w1, w2, w3 to u;.

Forn > 5 and 3 <i < |2L], let F(2n,i) be the caterpillar obtained from the
path P, with consecutive vertices u1,...,u, by attaching a pendant vertex v; to u;
for 2 < j <n—1with j # i and adding an edge between u; and the center of Ss.

LEMMA 5.4. Forn >5, and 2 <i <[], p(F(2n,i+ 1)) > p(B(2n,1)).

Proof. Let G = B(2n,i) and G’ = B(2n,1) — {uwa, u;w3} + {vi1w2, vip1ws}.
Obviously, G' = F(2n,i+ 1). Let x = 2(G). As we pass from G to G’, the distance
between a vertex of {ws, w3} and a vertex of {uy,...,u;,va,...,v;—1,w; } is increased
by 2, the distance between a vertex of {ws,ws} and v;11 is decreased by 2, and the
distance between any other vertex pair remains unchanged. Hence,

~(0(@) ~ p(@)) 2 22T (D(E) ~ D@

=2 (T, + Tuws) (:L'u + T, — :L'vi+1) )

From (Z1)) for G at u;, wy and v;41, we have

i—1
P(G)Tu;, = Towy + Ty + Tupy + 220, + Z de (Wi, W) Lo,
k=1
i—1 n
+3 da(uivp)te, + Y (da(tirr, ug) + 1)y,
k=2 k=i+1
n—1
+ Z (dG(ui+17Uk) + 1)ka7
k=i+2
i1
P(G) Ty = Ty + 2wy + 2Ty + 3Ty, + Z(dc(ui, ug) + 1)y,
k=1
i—1 n
+3 (do(uive) + Da, + D (do (i1, ur) + 2)zu,
k=2 k=i+1
n—1

+ (dG(ui+17vk‘) + 2)ka7
k 2

+

3
i1

(G, = 220, + 3T, + 3T, + 3T, + Z(d@(ui, Ug) + 2) Ty,

k=1
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1—1
+Z da (ui, vi) +2)xy, + Z (da(tit1, ur) + 1)y,
2

k= =i+1
n—1
Z (dG(ui+17Uk) + 1)ka7
k=i+2
and thus,
i—1
(p(G) + 2) (:L'm + Ty, — Z'U-H»l) = Ty, + 3x”i+1 + Z(dG(uivuk) - ].)l‘uk
k=1

i—1
+Z (de(ui; ve) = 1)@y,
2

n
+ Z (dc(uﬂ_l, Uk) + Q)Iuk
k=i+1
n—1
+ (dG(wiv1,vk) +2)Ty,
k=i+2
>0,

implying that x,, + Zw, — %y, > 0. Therefore, p(G’") > p(G), i.e., p(F(2n,i+ 1)) >
p(B(2n,i)). O

THEOREM 5.5. Let T € T(2n) and T 2 Eay,, where n > 3.
(i) For n = 3,4, p(T) < p(B(2n,2)) with equality if and only if T = B(2n,2);
(i) Forn > 5, p(T) < p(F(2n,3)) with equality if and only if T = F(2n,3).

Proof. For n = 3,4, we have T(2n) = {Ea,,, B(2n,2)}, and thus, the result follows
from Theorem [5.11

Suppose n > 5. Let T be a tree with maximum distance spectral radius in
T(2n)\{E2,}. Let A = A(T).

Suppose A > 7. Let uw € V(T) and Np(u) = {u1,...,ua}. Let T; be the
component of T'—u containing u;, where 1 < 7 < A. Assume without loss of generality
that or(T1) > or(Ta). Let w be a pendant vertex of T in V(Ta). Let T/ =T —
{uug, uug} + {wug, wuz}. Then TV € T(2n) and T’ Z Ea,. By Lemma B2 p(T") >
p(T), a contradiction. Thus, A = 3 or 5.

Suppose A = 5. By similar argument as above, there is exactly one vertex of
degree 5. Let up---usy1 be a longest path passing the vertex of degree 5, say wu;,
where 2 < ¢ < t. Let v1,v2,v3 be the other three neighbors of u; outside the above
path. We claim that vy, v9, v3 are pendant vertices. Otherwise, suppose that v is not
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a pendant vertex. Let T7 and T3 be the components of T'—wu; containing u;—; and u;41,
respectively. Assume without loss of generality that o (Th) > or(Te). Let T/ =T —
{uive, u;vs} +{us41v2, ur41v3}. Obviously, TV € T(2n) and T' 2 Ea,. By Lemmal[3.2]
p(T") > p(T), a contradiction. Since each vertex different from w; is of degree 1 or
3 in T, we have by Lemma that T" = B(2n,d) with 2 < i < L”T'HJ Suppose
3<1 < \_nTHJ Let T' = B(2n,i) — {ui’Ug,ui’Ug} + {UQ’UQ,UQ’U;J,} if O'T(Tl) < UT(TQ),
and T" = B(2n, i) — {uv2, ujvz} + {un—1v2, un_1vs} if or(Th) > or(T2). It is easily
seen that 7" = B(2n,2). By Lemma B2 p(T) = p(B(2n,i)) < p(T') = p(B(2n, 2)),
a contradiction. Then i = 2, and thus, T = B(2n, 2).

Suppose A = 3. By Lemmal33] T = F(2n,i) with 3 < i < %t |. By Lemmal[3.3]
p(F(2n,3)) > p(F(2n,4)) > --- > p (F (2n, |2 ])). Thus, T = F(2n,3).

By Lemma B4 p(B(2n,2)) < p(F(2n,3)). Thus, T = F(2n,3). 0
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