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Abstract. The graphs with smallest, respectively largest, distance spectral radius among the

connected graphs, respectively trees with a given number of odd vertices, are determined. Also, the

graphs with the largest distance spectral radius among the trees with a given number of vertices

of degree 3, respectively given number of vertices of degree at least 3, are determined. Finally,

the graphs with the second and third largest distance spectral radius among the trees with all odd

vertices are determined.
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1. Introduction. Throughout this paper, we consider simple graphs. Let G be

a connected graph with vertex set V (G) and edge set E(G). The distance between ver-

tices u, v ∈ V (G), denoted by dG(u, v), is the length of a shortest path between them.

The distance matrix of G, denoted by D(G), is the matrix D(G) = (dG(u, v))u,v∈V (G).

SinceD(G) is real and symmetric, its eigenvalues are real. The distance spectral radius

of G, denoted by ρ(G), is the largest eigenvalue of D(G). Since D(G) is irreducible,

we have by the Perron-Frobenius theorem that ρ(G) is simple, and there is a unique

positive unit eigenvector x(G) of D(G) corresponding to ρ(G), which is called the

distance Perron vector of G.

The study of eigenvalues of the distance matrix of a connected graph dates back

to the classical work of Graham and Pollack [5], Graham and Lovász [4], and Edelberg

et al. [2]. For more details on spectra of distance matrices and especially on distance

spectral radius, one may refer to the recent survey of Aouchiche and Hansen [1].

A vertex is an odd vertex (respectively, even vertex) if its degree is odd (respec-

tively, even). It is well known that the number of odd vertices in a graph is always

even. A vertex in a tree with degree at least 3 is known as a branch vertex. The
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number of branch vertices may be used to analyze graph structures, see, e.g. [3, 7].

In this paper, we determine the graphs with smallest, respectively largest, distance

spectral radius among the connected graphs, respectively trees with a given number of

odd vertices. Also, we determine the graphs with the largest distance spectral radius

among the trees with a given number of vertices of degree 3, respectively given num-

ber of vertices of degree at least 3. Finally, we determine the graphs with the second

and third largest distance spectral radius among the trees with all odd vertices.

2. Preliminaries. Let G be a connected graph with V (G) = {v1, . . . , vn}. A

column vector x = (xv1 , . . . , xvn)
⊤ ∈ Rn (whether it is the distance Perron vector of

G or not) can be considered as a function defined on V (G) which maps vertex vi to

xvi , i.e., x(vi) = xvi for i = 1, . . . , n. Then

x⊤D(G)x =
∑

{u,v}⊆V (G)

2dG(u, v)xuxv,

and λ is an eigenvalue of D(G) with corresponding eigenvector x if and only if x 6= 0

and for each u ∈ V (G),

λxu =
∑

v∈V (G)

dG(u, v)xv.(2.1)

We call (2.1) the (λ, x)-eigenequation for G at u. For a unit column vector x ∈ Rn

with at least one nonnegative entry, by Rayleigh’s principle, we have

ρ(G) ≥ x⊤D(G)x

with equality if and only if x is the distance Perron vector of G.

For a connected graph G with v ∈ V (G), let δG(v) be the degree of v in G, and

let NG(v) be the set of neighbors of v in G.

Let Pn, Cn, Sn and Kn be respectively the path, the cycle, the star and the

complete graph on n vertices.

A caterpillar is a tree such that the deletion of all pendant vertices yields a path.

Obviously, Sn and Pn are caterpillars.

Let G be a connected graph. For V1 ⊂ V (G), G− V1 denotes the graph obtained

from G by deleting all vertices of V1 (and the incident edges). If V1 = {u}, then we

write G− u for G−{u}. For E1 ⊆ E(G), G−E1 denotes the graph obtained from G

by deleting all edges of E1. If E1 = {uv}, then we write G− uv for G − {uv}. If E′

is a subset of edges of the complement of G, then G+E′ denotes the graph obtained

from G by inserting all edges of E′. If E′ = {uv}, then we write G+uv for G+ {uv}.
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For a subgraph H of a connected graph G, let σG(H) be the sum of the entries

of the distance Perron vector of G corresponding to the vertices in V (H).

Lemma 2.1. [9] Let G be a connected graph with u, v ∈ V (G). If uv 6∈ E(G),

then ρ(G) > ρ(G+ uv).

Lemma 2.2. [10] Let G be a connected graph on n vertices with u, v ∈ V (G),

and let u′ and v′ be pendant neighbors of u and v, respectively. Let x = x(G). Then

xu′ − xv′ = ρ(G)
ρ(G)+2 (xu − xv).

Lemma 2.3. [11, 12] Let G be a connected graph and u a cut vertex of G. Suppose

that G−u consists of vertex disjoint subgraphs G1, G2 and G3. Let G
′
3 be the subgraph

of G induced by V (G3) ∪ {u}. For v ∈ V (G2), let

G′ = G−
{

uw : w ∈ NG′

3
(u)
}

+
{

vw : w ∈ NG′

3
(u)
}

.

If σG(G1) ≥ σG(G2), then ρ(G′) > ρ(G).

Lemma 2.4. [10] Let G be a connected graph and uv a non-pendant cut edge of

G. Let G′ be the graph obtained from G by contracting uv to a vertex u and attaching

a pendant vertex v to u. Then ρ(G′) < ρ(G).

3. Distance spectral radius of graphs with given number of odd ver-

tices. For integers n and k with 0 ≤ k ≤ ⌊n
2 ⌋, let G(n, k) be the set of connected

graphs with n vertices and 2k odd vertices, and let Kn(k) be the graph obtained from

Kn by deleting k pairwise disjoint edges. In particular, Kn(0) = Kn.

Theorem 3.1. Let G ∈ G(n, k), where n ≥ 3 and 0 ≤ k ≤ ⌊n
2 ⌋.

(i) If n is odd, then ρ(G) ≥ ρ(Kn(k)) with equality if and only if G ∼= Kn(k).

(ii) If n is even, then ρ(G) ≥ ρ
(

Kn

(

n
2 − k

))

with equality if and only if

G ∼= Kn

(

n
2 − k

)

.

Proof. Let G be the graph in G(n, k) with minimum distance spectral radius.

If n is odd and k = 0, or n is even and k = n
2 , then by Lemma 2.1, G ∼= Kn(0).

If n is even and k = 0, then since G is a spanning subgraph of Kn

(

n
2

)

, we have by

Lemma 2.1 that G ∼= Kn

(

n
2

)

.

Suppose 1 ≤ k < n
2 . For z ∈ V (G), let Nz = V (G) \ (NG(z) ∪ {z}). Obviously,

|Nz| = n− 1− δG(z).

Let V1 (respectively, V2) be the set of odd (respectively, even) vertices of G.

Suppose that there are vertices u ∈ V1 and v ∈ V2 such that uv /∈ E(G). Let

G′ = G + uv. Note that δG′(u) = δG(u) + 1 is even and δG′(v) = δG(v) + 1 is odd.

We have G′ ∈ G(n, k). By Lemma 2.1, ρ(G′) < ρ(G), a contradiction. Thus, each
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vertex of V1 is adjacent to each vertex of V2.

Case 1. n is odd.

Suppose that there is a vertex u ∈ V2 with δG(u) < n−1. Then δG(u) ≤ n−3. Let

t = n−1−δG(u)
2 . Then t is a positive integer, and |Nu| = n− 1− δG(u) = 2t. Let Nu =

{u1, . . . , u2t}. Suppose that u1 is not adjacent to u2t. Let G
′ = G+{uu1, uu2t, u1u2t}.

Obviously, G′ ∈ G(n, k). By Lemma 2.1, ρ(G′) < ρ(G), a contradiction. Thus,

u1u2t ∈ E(G).

Let G′′ = G − u1u2t + {uu1, uu2t}. Obviously, G′′ ∈ G(n, k). Let H1 and H2 be

the subgraphs of G′′ induced by V1 and V2 \ (Nu∪{u}), respectively. Let x′ = x(G′′).

From (2.1) for G′′ at u and u1, we have

ρ(G′′)x′
u = σG′′(H1) + σG′′(H2) + x′

u1
+ 2x′

u2
+ · · ·+ 2x′

u2t−1
+ x′

u2t
,

ρ(G′′)x′
u1

≤ σG′′(H1) + 2σG′′(H2) + 2x′
u2

+ · · ·+ 2x′
u2t−1

+ 2x′
u2t

+ x′
u.

Thus,

(ρ(G′′) + 1)
(

2x′
u − x′

u1

)

≥ σG′′(H1) + x′
u1

+ 2x′
u2

+ · · ·+ 2x′
u2t−1

+ x′
u > 0,

which implies that 2x′
u − x′

u1
> 0. Similarly, 2x′

u − x′
u2t

> 0.

As we pass from G to G′′, the distance between u1 and u2t is increased by 1,

the distance between u and u1 is decreased by 1, the distance between u and u2t is

decreased by 1, and the distance between any other vertex pair remains unchanged.

Therefore,

1

2
(ρ(G)− ρ(G′′)) ≥

1

2
x⊤(D(G) −D(G′′))x

= x′
u

(

x′
u1

+ x′
u2t

)

− x′
u1
x′
u2t

=
1

2

((

2x′
u − x′

u2t

)

x′
u1

+
(

2x′
u − x′

u1

)

x′
u2t

)

> 0.

This leads to the contradiction that ρ(G) > ρ(G′′). Thus, the degree of each vertex

in V2 is n− 1.

Suppose that there is a vertex u ∈ V1 with δG(u) < n − 2. Then δG(u) ≤

n − 4. Let t = n−2−δG(u)
2 . Then t is a positive integer, and |Nu| = 2t + 1. Let

Nu = {u1, . . . , u2t+1}. Arguing as above we see u1u2t+1 ∈ E(G). Let G′′ = G −

u1u2t+1 + {uu1, uu2t+1}. Obviously, G′′ ∈ G(n, k). As above, we have ρ(G) > ρ(G′′),

a contradiction. Thus, the degree of each vertex in V1 is n− 2.

Since each even degree is n− 1 and each odd degree is n− 2, we have G ∼= Kn(k).
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Case 2. n is even.

Similarly to the proof in Case 1, we have that each odd degree is n− 1 and each

even degree is n− 2. Thus, G ∼= Kn

(

n
2 − k

)

.

Lemma 3.2. Let T be a tree with u ∈ V (T ), and let NT (u) = {u1, . . . , uk},

where k ≥ 3. Let Ti be the component of T − u containing ui for 1 ≤ i ≤ k. Let

T ′ = T − {uui : 2 ≤ i ≤ t}+ {wui : 2 ≤ i ≤ t}, where 2 ≤ t ≤ k − 1 and w ∈ V (Tk).

If σT (T1) ≥ σT (Tk), then ρ(T ′) > ρ(T ).

Proof. Let x = x(T ). As we pass from T to T ′, the distance between a vertex

of V (T2) ∪ · · · ∪ V (Tt) and a vertex of V (T1) ∪ {u} is increased by dT (u,w), the

distance between a vertex of V (T2) ∪ · · · ∪ V (Tt) and a vertex of V (Tk) is decreased

by at most dT (u,w), and the distance between any other vertex pair is increased or

remains unchanged. Thus,

1

2
(ρ(T ′)− ρ(T )) ≥

1

2
x⊤(D(T ′)−D(T ))x

≥ dT (u,w)

t
∑

i=2

σT (Ti) (σT (T1)− σT (Tk) + xu)

> 0.

Therefore, ρ(T ′) > ρ(T ).

Let G1(s, t) be the graph shown in Fig. 1, where G1 is a nontrivial connected

graph, and s, t ≥ 1.

✧✦
★✥
s
s
us+1

vs+1

s
s
s. . . s s
s svs+2 vs+3 vs+t

us+2 us+3 us+t us+t+1

ss. . .ss
sss vsvs−1v2

usus−1u2u1

G1

Fig. 1. Graph G1(s, t).

Lemma 3.3. Let G1 be a nontrivial connected graph. For s ≥ t ≥ 2, we have

ρ(G1(s+ 1, t− 1)) > ρ(G1(s, t)).

Proof. Let G = G1(s, t). Let G2 and G3 be the components of G−us+1 containing

u1 and us+t+1, respectively. Let

G′ = G− {us+2vs+2, us+1vs+1}+ {us+2vs+1, us+1vs+2}.
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Obviously, G1(s+ 1, t− 1) ∼= G′. Let x = x(G).

Claim 1. σG(G1)− xvs+2
> 0.

Choose z ∈ V (G1) such that dG(z, vs+1) = maxv∈V (G1) dG(v, vs+1). Let d =

dG(z, vs+1). Since |V (G1)| ≥ 2, d ≥ 1, and z 6= vs+1. From (2.1) for G at vs+1, z and

vs+2, we have

ρ(G)xvs+1
= dxz + 3xvs+2

+
∑

w∈V (G1)\{z,vs+1}

dG(vs+1, w)xw

+
∑

w∈V (G)\(V (G1)∪{vs+2})

dG(vs+1, w)xw ,

ρ(G)xz = dxvs+1
+ (d+ 3)xvs+2

+
∑

w∈V (G1)\{z,vs+1}

dG(z, w)xw

+
∑

w∈V (G)\(V (G1)∪{vs+2})

dG(z, w)xw ,

ρ(G)xvs+2
= 3xvs+1

+ (d+ 3)xz +
∑

w∈V (G1)\{z,vs+1}

(dG(vs+1, w) + 3)xw

+
∑

w∈V (G)\(V (G1)∪{vs+2})

dG(vs+2, w)xw .

Note that for w ∈ V (G)\ (V (G1)∪{vs+2}), dG(vs+1, w)+dG(z, w)−dG(vs+2, w) ≥ 0.

Thus,

ρ(G)
(

xvs+1
+ xz − xvs+2

)

≥ (d− 3)xvs+1
− 3xz + (d+ 6)xvs+2

+
∑

w∈V (G1)\{z,vs+1}

(dG(z, w)− 3)xw,

and

(ρ(G) + 3)
(

σG(G1)− xvs+2

)

≥ ρ(G)
(

xvs+1
+ xz − xvs+2

)

+ 3
(

σG(G1)− xvs+2

)

≥ (d− 3)xvs+1
− 3xz + (d+ 6)xvs+2

+
∑

w∈V (G1)\{z,vs+1}

(dG(z, w)− 3)xw

+3



xvs+1
+ xz +

∑

w∈V (G1)\{z,vs+1}

xw − xvs+2





= dxvs+1
+ (d+ 3)xvs+2
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+
∑

w∈V (G1)\{z,vs+1}

dG(z, w)xw

> 0.

Therefore, Claim 1 follows.

Claim 2. σG(G2) ≥ σG(G3).

Let yk = xuk
+ xvk for 2 ≤ k ≤ s+ t, y1 = xu1

, and ys+t+1 = xus+t+1
. Suppose

s
∑

i=1

yi <
t
∑

i=1

ys+1+i.(3.1)

From (2.1) for G at uk with 1 ≤ k ≤ s+ t+ 1, we have

ρ(G)
(

xus+2
− xus

)

= 2





s
∑

j=1

yj −
t
∑

j=1

ys+1+j



(3.2)

and

ρ(G)
(

xus+1+i
− xus+1−i

)

− ρ(G)
(

xus+i
− xus+2−i

)

= 2





s
∑

j=i

ys+1−j −
t
∑

j=i

ys+1+j



(3.3)

= 2





s
∑

j=1

yj −
t
∑

j=1

ys+1+j



− 2





i−1
∑

j=1

ys+1−j −
i−1
∑

j=1

ys+1+j





for 2 ≤ i ≤ t− 1. We now prove that xus+1+i
− xus+1−i

< 0 for 1 ≤ i ≤ t by induction

on i. If i = 1, then from (3.1) and (3.2), we have xus+2
−xus

< 0, and by Lemma 2.2,

ys+2 = xus+2
+xvs+2

< xus
+xvs = ys. Suppose 2 ≤ i ≤ t−1 and xus+1+j

−xus+1−j
< 0

for 1 ≤ j ≤ i−1. In particular, xus+i
−xus+2−i

< 0. By Lemma 2.2, ys+1+j = xus+1+j
+

xvs+1+j
< xus+1−j

+ xvs+1−j
= ys+1−j . Thus,

∑i−1
j=1 ys+1+j −

∑i−1
j=1 ys+1−j < 0. Now

from (3.1) and (3.3), we have xus+1+i
− xus+1−i

< xus+i
− xus+2−i

< 0 for 2 ≤ i ≤ t.

It follows that xus+1−i
− xus+1+i

> 0 for 1 ≤ i ≤ t. Thus,

s
∑

i=1

yi −
t
∑

i=1

ys+1+i ≥
t
∑

i=1

yi −
t
∑

i=1

ys+1+i > 0,

which leads to the contradiction that
∑s

i=1 yi ≥
∑t

i=1 ys+1+i. Hence,
∑s

i=1 yi −
∑t

i=1 ys+1+i ≥ 0, from which Claim 2 follows.

As we pass from G to G′, the distance between a vertex of V (G1) and a vertex

of V (G2) ∪ {us+1} is increased by 1, the distance between a vertex of V (G1) and a
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vertex of V (G3)\{vs+2} is decreased by 1, the distance between vs+2 and a vertex of

V (G3)\{vs+2} is increased by 1, the distance between vs+2 and a vertex of V (G2) ∪

{us+1} is decreased by 1, and the distance between any other vertex pair remains

unchanged. Thus,

1

2
(ρ(G′)− ρ(G)) ≥

1

2
x⊤(D(G′)−D(G))x

= σG(G1)
(

σG(G2) + xus+1

)

− σG(G1)
(

σG(G3)− xvs+2

)

+xvs+2

(

σG(G3)− xvs+2

)

− xvs+2

(

σG(G2) + xus+1

)

=
(

σG(G2)− σG(G3) + xvs+2
+ xus+1

) (

σG(G1)− xvs+2

)

,

which, together with Claims 1, 2, implies that ρ(G′) > ρ(G).

For b ≥ a ≥ 0 with 2(a+ b) ≤ n, let C(n, a, b) be the tree obtained from the path

Pn−a−b with consecutive vertices u0, u1, . . . , un−a−b−1 by attaching a pendant vertex

vi to vertex ui for i ∈ {1, . . . , a} ∪ {n− a− 2b− 1, . . . , n− a− b− 2}. In particular,

C(n, 0, 0) is just the path Pn.

Lemma 3.4. [10] Let T be a tree with n ≥ 4 vertices. If T 6∼= Pn and C(n, 0, 1),

then ρ(T ) < ρ(C(n, 0, 1)) < ρ(Pn).

Lemma 3.5. If a ≥ 0, b ≥ a+ 2, and 2(a+ b) + 2 < n, then

ρ(C(n, a+ 1, b− 1)) > ρ(C(n, a, b)).

Proof. Let T = C(n, a, b), p = ⌊n−a−b−2
2 ⌋, and q = ⌈n−a−b−2

2 ⌉. Let x = x(T ).

For 0 ≤ i ≤ n− a− b− 1, let si = xui
if ui has no pendant vertex, and si = xui

+ xvi

otherwise.

Claim 1. xui+1
− xun−a−b−2−i

> xui
− xun−a−b−1−i

> 0 for 0 ≤ i ≤ a.

First we prove that xup
> xuq+1

. Suppose
∑p

i=0 si ≥
∑n−a−b−1

i=q+1 si. We prove

that xup−i
≤ xuq+1+i

for 0 ≤ i ≤ p by induction on i. For i = 0, we have

ρ(T )
(

xup
− xuq+1

)

= (q + 1− p)





n−a−b−1
∑

i=q+1

si −

p
∑

i=0

si



 ,(3.4)

and thus, xup
≤ xuq+1

. Suppose i ≥ 1 and xup−j
≤ xuq+1+j

for 0 ≤ j ≤ i − 1. If

δT (up−j) = 2, then sp−j = xup−j
≤ xuq+1+j

≤ sq+1+j . If δT (up−j) = 3, then by

Lemma 2.2, xvp−j
≤ xvq+1+j

, and thus, sp−j = xup−j
+ xvp−j

≤ xuq+1+j
+ xvq+1+j

=

sq+1+j . In either case, sp−j ≤ sq+1+j . Hence,

ρ(T )
(

xup−i
− xuq+1+i

)

− ρ(T )
(

xup+1−i
− xuq+i

)
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= 2





n−a−b−1
∑

j=q+1+i

sj −

p−i
∑

j=0

sj





= 2





n−a−b−1
∑

j=q+1

sj −

p
∑

j=0

sj



 − 2

i−1
∑

j=0

(sq+1+j − sp−j)

≤ 0,

and thus, xup−i
− xuq+1+i

≤ xup+1−i
− xuq+i

. It follows that xup−i
≤ xuq+1+i

for

0 ≤ i ≤ p, and thus, sp−i ≤ sq+1+i for 0 ≤ i ≤ p. Since b ≥ a + 2, there exists an i

with 0 ≤ i ≤ p such that δT (up−i) = 2 and δT (uq+1+i) = 3, and thus, sp−i = xup−i
≤

xuq+1+i
< sq+1+i. This leads to the contradiction that

∑p
i=0 si <

∑n−a−b−1
i=q+1 si.

Hence,
∑p

i=0 si <
∑n−a−b−1

i=q+1 si, and by (3.4), we have xup
> xuq+1

.

Suppose xu0
≤ xun−a−b−1

. We prove that xui
≤ xun−a−b−1−i

for 0 ≤ i ≤ p by

induction on i. Suppose i ≥ 1 and xuj
≤ xun−a−b−1−j

for 0 ≤ j ≤ i− 1. As above, we

have by Lemma 2.2 that sj ≤ sn−a−b−1−j . It follows that

ρ(T )
(

xui
− xun−a−b−1−i

)

− ρ(T )
(

xui−1
− xun−a−b−i

)

= 2

i−1
∑

j=0

(sj − sn−a−b−1−j)

≤ 0.

Hence, xui
− xun−a−b−1−i

≤ xui−1
− xun−a−b−i

≤ 0. Thus, xui
≤ xun−a−b−1−i

for

0 ≤ i ≤ p. In particular, xup
≤ xuq+1

, which is a contradiction. It follows that

xu0
> xun−a−b−1

, and as above, we have by induction that xui+1
− xun−a−b−2−i

>

xui
− xun−a−b−1−i

for 0 ≤ i ≤ a.

Claim 2. xvn−a−2b−1
< xun−a−2b

+ xvn−a−2b
.

Let V ′ = V (T )\{vn−a−2b−1, un−a−2b, vn−a−2b}. Since for u ∈ V ′,

dT (un−a−2b, u) + dT (vn−a−2b, u)− dT (vn−a−2b−1, u) ≥ 0,

we have from (2.1) for T at un−a−2b, vn−a−2b and vn−a−2b−1 that

ρ(T )
(

xun−a−2b
+ xvn−a−2b

− xvn−a−2b−1

)

= −xun−a−2b
− 2xvn−a−2b

+ 5xvn−a−2b−1

+
∑

u∈V ′

(dT (un−a−2b, u) + dT (vn−a−2b, u)

−dT (vn−a−2b−1, u))xu

≥ −xun−a−2b
− 2xvn−a−2b

+ 5xvn−a−2b−1
.
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Thus,

(ρ(T ) + 2)
(

xun−a−2b
+ xvn−a−2b

− xvn−a−2b−1

)

≥ xun−a−2b
+ 3xvn−a−2b−1

> 0,

from which Claim 2 follows.

Claim 3. xua+1+i
−xun−a−2b−1−i

> xua+2+i
−xun−a−2b−2−i

> 0 for 0 ≤ i ≤ ⌊n−1
2 ⌋−

b− a− 1.

It is sufficient to prove that xui
− xun−2b−i

> xui+1
− xun−2b−1−i

> 0 for a +

1 ≤ i ≤ ⌊n−1
2 ⌋ − b. Let t = ⌊n−1

2 ⌋ and t1 = ⌈n−1
2 ⌉. By the proof of Claim 1,

∑t−b
j=0 sj <

∑n−a−b−1
j=q+1 sj . Since t− b ≤ q − 1, we have

t−b
∑

j=0

sj <
n−a−b−1
∑

j=q+1

sj ≤
n−a−b−1
∑

j=t−b+2

sj ≤
n−a−b−1
∑

j=n−b−t

sj .

We prove that xui
> xun−2b−i

for a+ 1 ≤ i ≤ t− b by induction on i. For i = t− b,

we have

ρ(T )
(

xut−b
− xun−b−t

)

= (t1 + 1− t)





n−a−b−1
∑

j=n−b−t

sj −
t−b
∑

j=0

sj



 > 0.

Hence, xut−b
> xun−b−t

. Suppose a + 1 ≤ i ≤ t − b − 1 and xuj
> xun−2b−j

for

i+ 1 ≤ j ≤ t− b. Then

ρ(T )
(

xui
− xun−2b−i

)

− ρ(T )
(

xui+1
− xun−2b−1−i

)

= 2





n−a−b−1
∑

j=n−2b−i

sj −
i
∑

j=0

sj





= 2





n−a−b−1
∑

j=n−b−t

sj −
t−b
∑

j=0

sj



− 2

t−b
∑

j=i+1

(sn−2b−j − sj)

> 0,

and thus, xui
− xun−2b−i

> xui+1
− xun−2b−1−i

> 0. This proves Claim 3.

Claim 4. xun−a−2b−1
< xun−2a−b−2

.

By Claim 1, xui
> xun−a−b−1−i

for 0 ≤ i ≤ a. As above, we have by Lemma 2.2

that si > sn−a−b−1−i. Thus,
∑a

i=0 si >
∑a

i=0 sn−a−b−1−i =
∑n−a−b−1

i=n−2a−b−1 si. Let

m = ⌊ b−a
2 ⌋ and m1 = ⌈ b−a

2 ⌉.

Suppose
∑n−a−2b−2+m

i=0 si ≤
∑n−a−b−1

i=n−2a−b−1−m si. We prove that xun−a−2b−2+i
≥

xun−2a−b−1−i
for 1 ≤ i ≤ m by induction on i. For i = m, we have

ρ(T )
(

xun−a−2b−2+m
− xun−2a−b−1−m

)
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= (m1 + 1−m)

(

n−a−b−1
∑

i=n−2a−b−1−m

si −
n−a−2b−2+m

∑

i=0

si

)

≥ 0.

Hence, xun−a−2b−2+m
≥ xun−2a−b−1−m

. Suppose 1 ≤ i ≤ m − 1 and xun−a−2b−2+j
≥

xun−2a−b−1−j
for i + 1 ≤ j ≤ m. By Lemma 2.2, sn−a−2b−2+j ≥ sn−2a−b−1−j for

i+ 1 ≤ j ≤ m. Hence,

ρ(T )
(

xun−a−2b−2+i
− xun−2a−b−1−i

)

− ρ(T )
(

xun−a−2b−1+i
− xun−2a−b−2−i

)

= 2





n−a−b−1
∑

j=n−2a−b−1−i

sj −
n−a−2b−2+i

∑

j=0

sj





= 2





n−a−b−1
∑

j=n−2a−b−1−m

sj −
n−a−2b−2+m

∑

j=0

sj



− 2
m
∑

j=i+1

(sn−2a−b−1−j − sn−a−2b−2+j)

≥ 0,

and thus, xun−a−2b−2+i
− xun−2a−b−1−i

≥ xun−a−2b−1+i
− xun−2a−b−2−i

≥ 0. It fol-

lows that for 1 ≤ i ≤ m, xun−a−2b−2+i
≥ xun−2a−b−1−i

. As above, sn−a−2b−2+i ≥

sn−2a−b−1−i. Thus,
∑m

i=1 sn−a−2b−2+i ≥
∑m

i=1 sn−2a−b−1−i =
∑n−2a−b−2

i=n−2a−b−1−m si,

and

n−a−2b−2+m
∑

i=0

si ≥
a
∑

i=0

si +

m
∑

i=1

sn−a−2b−2+i

>
n−a−b−1
∑

i=n−2a−b−1

si +
n−2a−b−2
∑

i=n−2a−b−1−m

si

=
n−a−b−1
∑

i=n−2a−b−1−m

si,

a contradiction. Thus,
∑n−a−2b−2+m

i=0 si >
∑n−a−b−1

i=n−2a−b−1−m si. This proves Claim 4.

Let T ′ = C(n, a+ 1, b− 1). It is easily seen that

1

2
(ρ(T ′)− ρ(T )) ≥

1

2
x⊤(D(T ′)−D(T ))x = xvn−a−2b−1

W,(3.5)

where
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W = r

a
∑

i=0

(sn−a−b−1−i − si) + r

b−a−1
∑

i=1

sn−a−2b−1+i

+

⌈ r
2
⌉−1
∑

i=0

(r − 2i)
(

xun−a−2b−1−i
− xua+1+i

)

,

and r = n− 2a− 2b− 2.

From Claim 1, s0 − sn−a−b−1 = xu0
− xun−a−b−1

< xua+1
− xun−2a−b−2

. By

Lemma 2.2 and Claim 1, si − sn−a−b−1−i ≤
(

1 + ρ(T )
ρ(T )+2

)

(

xua+1
− xun−2a−b−2

)

<

2
(

xua+1
− xun−2a−b−2

)

for 1 ≤ i ≤ a. Let

F =

{

0 if b = a+ 2,

r
∑b−a−1

i=2 sn−a−2b+1+i if b > a+ 2.

By Claims 2, 3 and 4,

ρ(T )
(

xua+1
− xun−a−2b−1

)

= W + rxvn−a−2b−1

< W + r
(

xun−a−2b
+ xvn−a−2b

)

= 2W +

⌈ r
2
⌉−1
∑

i=0

(r − 2i)
(

xua+1+i
− xun−a−2b−1−i

)

+r

a
∑

i=0

(si − sn−a−b−1−i)− F

< 2W +

⌈ r
2
⌉−1
∑

i=0

(r − 2i)
(

xua+1
− xun−a−2b−1

)

+r(2a+ 1)
(

xua+1
− xun−2a−b−2

)

< 2W

+





⌈ r
2
⌉−1
∑

i=0

(r − 2i) + (2a+ 1)r





(

xua+1
− xun−a−2b−1

)

.

Hence,

2W >



ρ(T )−





⌈ r
2
⌉−1
∑

i=0

(r − 2i) + (2a+ 1)r









(

xua+1
− xun−a−2b−1

)

.(3.6)

Claim 5. The minimum row sum of D(T ) is larger than
∑⌈ r

2
⌉−1

i=0 (r−2i)+(2a+1)r.
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For 0 ≤ j ≤ a,

∑

u∈V (T )

dT (uj , u) >
n−a−2b−2
∑

i=a+1

dT (ua, ui) + dT (ua, un−a−b−1)

+

n−a−b−2
∑

i=n−2a−b−1

(dT (ua, ui) + dT (ua, vi))

>

n−2a−2b−2
∑

i=1

i+ r +

n−a−b−2
∑

i=n−2a−b−1

2r

>

⌈ r
2
⌉−1
∑

i=0

(r − 2i) + (2a+ 1)r.

If a ≥ 1, then for 1 ≤ j ≤ a,

∑

u∈V (T )

dT (vj , u) >
∑

u∈V (T )

dT (uj , u) >

⌈ r
2
⌉−1
∑

i=0

(r − 2i) + (2a+ 1)r.

For a+ 1 ≤ j ≤ n− a− 2b− 2,

∑

u∈V (T )

dT (uj , u) >

n−a−2b−2
∑

i=a+1

dT (uj , ui) + dT (uj , u0)

+

a
∑

i=1

(dT (uj, ui) + dT (uj, vi) + dT (uj, un−a−b−1−i)

+dT (uj, vn−a−b−1−i)) + dT (uj, un−a−b−1)

>

n−a−2b−2
∑

i=a+1

dT

(

ua+⌈ r+1

2
⌉, ui

)

+ (2a+ 1)r

=

⌈ r
2
⌉−1
∑

i=0

(r − 2i) + (2a+ 1)r.

For n− a− 2b− 1 ≤ j ≤ n− a− b− 1,

∑

u∈V (T )

dT (uj , u) >
n−a−2b−2
∑

i=a+1

dT (un−a−2b−1, ui) + dT (un−a−2b−1, u0)

+

a
∑

i=1

(dT (un−a−2b−1, ui) + dT (un−a−2b−1, vi))
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>

n−2a−2b−2
∑

i=1

i+ (2a+ 1)r

>

⌈ r
2
⌉−1
∑

i=0

(r − 2i) + (2a+ 1)r.

For n− a− 2b− 1 ≤ j ≤ n− a− b− 2,

∑

u∈V (T )

dT (vj , u) >
∑

u∈V (T )

dT (uj , u) >

⌈ r
2
⌉−1
∑

i=0

(r − 2i) + (2a+ 1)r.

Thus, Claim 5 follows.

Since ρ(T ) is bounded below by the minimum row sum of D(T ) [6, p. 24], we

have by Claim 5 that ρ(T ) >
∑⌈ r

2
⌉−1

i=0 (r− 2i)+ (2a+1)r. Now by (3.6) and Claim 3,

W > 0, and thus by (3.5), ρ(T ′)− ρ(T ) > 0.

Let ∆(G) be the maximum degree of a graph G.

Lemma 3.6. Let T be a caterpillar with n vertices and k pendant vertices, where

k ≥ 3. If ∆(T ) = 3, then ρ(T ) ≤ ρ
(

C
(

n, ⌊k−2
2 ⌋, ⌈k−2

2 ⌉
))

with equality if and only if

T ∼= C
(

n, ⌊k−2
2 ⌋, ⌈k−2

2 ⌉
)

.

Proof. If n is even and k = n
2 + 1, then the result is trivial. If k = 3, then the

result follows from Lemma 3.4.

Suppose 4 ≤ k ≤ n
2 . Let T be a caterpillar with maximum distance spectral

radius satisfying the hypothesis in the lemma.

Let U be the set of vertices of degree 2 in T . Then k + 2|U |+ 3(n− k − |U |) =

2(n− 1), and thus, |U | = n− 2k + 2 > 0, i.e., U 6= ∅.

Obviously, the diameter of T is n− (k−2)−1 = n−k+1. Let u0u1 . . . un−k+1 be

a diametrical path of T . Assume without loss of generality that δT (u1) ≤ δT (un−k).

Then 2 ≤ δT (u1) ≤ δT (un−k) ≤ 3.

Suppose δT (un−k) = 2. Then δT (u1) = 2 and there is uj with 2 ≤ j ≤ n −

k − 1 such that δT (uj) = 3. Let vj be the pendant neighbor of uj. Let T1 and

T2 be the nontrivial components of T − uj containing u0 and un−k+1, respectively.

Assume without loss of generality that σT (T1) ≥ σT (T2). Let T ′ = T − ujvj +

un−kvj . Obviously, T ′ is a caterpillar with n vertices and k pendant vertices, and

∆(T ′) = 3. By Lemma 2.3, ρ(T ) < ρ(T ′), a contradiction. Thus, δT (un−k) = 3.

Suppose δT (u1) = 2. If T − U has exactly one nontrivial component, then T ∼=
C(n, 0, k− 2), and by Lemma 3.5, ρ(T ) = ρ(C(n, 0, k− 2)) < ρ

(

C
(

n, ⌊k−2
2 ⌋, ⌈k−2

2 ⌉
))

,

a contradiction. If T−U has at least two nontrivial components, then there are vertices
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ui and uj with 2 ≤ i < j ≤ n− k− 1 such that δT (ui) = 3 and δT (uj) = 2. Let vi be

the pendant neighbor of ui. Let T1 and T2 be the components of T −ui containing u0

and un−k+1, respectively. Assume without loss of generality that σT (T1) ≥ σT (T2).

Let T ′′ = T − uivi + ujvi. Obviously, T ′′ is a caterpillar with n vertices and k

pendant vertices, and ∆(T ′′) = 3. By Lemma 2.3, ρ(T ) < ρ(T ′′), a contradiction.

Thus, δT (u1) = 3, and T − U has at least two nontrivial components.

Suppose that T − U has at least three nontrivial components. There are three

vertices ui, uj, ul with 2 ≤ i < j < l ≤ n − k − 1 in T such that δT (uj) = 3 and

{ui, ul} ⊆ U . Let T1 and T2 be the nontrivial components of T − uj containing ui

and ul, respectively. Let vj be the pendant neighbor of uj . Assume without loss of

generality that σT (T1) ≥ σT (T2). Let T ′ = T − ujvj + ulvj . By Lemma 2.3, ρ(T ) <

ρ(T ′), a contradiction. Thus, T − U contains exactly two nontrivial components,

implying that T ∼= C(n, a, b), where a + b = k − 2, and a, b ≥ 1. By Lemma 3.5,

T ∼= C
(

n, ⌊k−2
2 ⌋, ⌈k−2

2 ⌉
)

.

For integers n and k with 1 ≤ k ≤ ⌊n
2 ⌋, let T(n, k) be the set of trees with n

vertices and 2k odd vertices.

Theorem 3.7. Let T ∈ T(n, k), where 1 ≤ k ≤ ⌊n
2 ⌋. Then

ρ(T ) ≤ ρ

(

C

(

n,

⌊

k − 1

2

⌋

,

⌈

k − 1

2

⌉))

with equality if and only if T ∼= C
(

n, ⌊k−1
2 ⌋, ⌈k−1

2 ⌉
)

.

Proof. If k = 1, 2, then the result follows from Lemma 3.4.

Suppose k ≥ 3. Let T be a tree in T(n, k) with maximum distance spectral radius.

Suppose that the maximum odd degree is larger than 3. Then δT (u) = 2t+1 for

some u ∈ V (T ) and t ≥ 2. Let NT (u) = {u1, . . . , u2t+1}. Let Ti be the component

of T − u containing ui, where 1 ≤ i ≤ 2t + 1. Assume without loss of generality

that σT (T1) ≥ σT (T2t+1). Let w be a pendant vertex of T in V (T2t+1). Let T ′ =

T −{uui : 3 ≤ i ≤ 2t}+ {wui : 3 ≤ i ≤ 2t}. Note that the degrees of u and w remain

odd in T ′. Then T ′ ∈ T(n, k). By Lemma 3.2, ρ(T ′) > ρ(T ), a contradiction. Thus,

the maximum odd degree is 3.

If n is even, and k = n
2 , then by Lemma 3.3, T ∼= C

(

n, ⌊k−1
2 ⌋, ⌈k−1

2 ⌉
)

.

Suppose k < n
2 . Let U be the set of even vertices of T . Then |U | ≥ 1. Suppose

that the maximum even degree is larger than 2. Then δT (u) = 2t for some u ∈ V (T )

and t ≥ 2. Let NT (u) = {u1, . . . , u2t}. Let Ti be the component of T − u containing

ui, where 1 ≤ i ≤ 2t. Assume without loss of generality that σT (T1) ≥ σT (T2t). Let

w be a pendant vertex of T in V (T2t). Let T
′ = T −uu2+wu2. Note that the degree

of u is odd and the degree of w is even in T ′. Then T ′ ∈ T(n, k). By Lemma 2.3,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 286-305, May 2016

http:/repository.uwyo.edu/ela



ELA

The Distance Spectral Radius of Graphs 301

ρ(T ′) > ρ(T ), a contradiction. Thus, the maximum even degree is 2, and each vertex

in U is of degree 2 in T .

Suppose that T is not a caterpillar. Since ∆(T ) = 3, there is a vertex u of

degree 3 in the graph obtained from T by deleting all pendant vertices. Let NT (u) =

{u1, u2, u3}. Obviously, δT (ui) ≥ 2 for i = 1, 2, 3. Let Ti be the component of T − u

containing ui, where 1 ≤ i ≤ 3.

Claim. U ⊆ V (Ti) for some i with i = 1, 2, 3.

Otherwise, there are two vertices of degree 2 in T , one in V (Ti) and the other

in V (Tj), where 1 ≤ i < j ≤ 3. Assume without loss of generality that δT (v1) =

δT (v3) = 2 with v1 ∈ V (T1) and v3 ∈ V (T3), and that σT (T1) ≥ σT (T3). Let

T ′ = T −uu2+v3u2. Obviously, δT ′(u) is even and δT ′(v3) is odd. Thus, T
′ ∈ T(n, k).

By Lemma 2.3, ρ(T ′) > ρ(T ), a contradiction. This proves the Claim.

Since ∆(T ) = 3, we have by the Claim that T ∼= G1(s, t) for some s and t with

s ≥ t ≥ 2. Obviously, G1(s+1, t− 1) ∈ T(n, k). By Lemma 3.3, ρ(G1(s+1, t− 1)) >

ρ(T ), a contradiction. Thus, T is a caterpillar with ∆(T ) = 3. By Lemma 3.6, we

have T ∼= C
(

n, ⌊k−1
2 ⌋, ⌈k−1

2 ⌉
)

.

4. Distance spectral radius of trees with given number of vertices of

degree 3 or of degree at least 3. Let T be a tree with n vertices, in which k

vertices of degree at least 3. Let r be the number of pendant vertices in T . Then

r+2(n− r− k)+ 3k ≤ 2(n− 1), i.e., r ≥ k+2. This implies that 2k+2 ≤ k+ r ≤ n,

and thus, k ≤ n
2 − 1. As an application of Theorem 3.7, we have

Theorem 4.1. Let T be a tree on n vertices with k vertices of degree 3, where

n ≥ 2, and 0 ≤ k ≤ ⌊n
2 ⌋ − 1. Then ρ(T ) ≤ ρ

(

C
(

n, ⌊k
2⌋, ⌈

k
2 ⌉
))

with equality if and

only if T ∼= C
(

n, ⌊k
2 ⌋, ⌈

k
2⌉
)

.

Proof. If k = 0, 1, then the result follows from Lemma 3.4.

Suppose k ≥ 2. Let T be a tree with maximum distance spectral radius on n

vertices with k vertices of degree 3. Let ∆ = ∆(T ).

Case 1. ∆ ≥ 5. Let u ∈ V (T ) and NT (u) = {u1, . . . , u∆}. Let Ti be the

component of T−u containing ui, where 1 ≤ i ≤ ∆. Assume without loss of generality

that σT (T1) ≥ σT (T∆). Let w be a pendant vertex of T in V (T∆). Let T
′ = T−{uui :

2 ≤ i ≤ ∆− 1}+ {wui : 2 ≤ i ≤ ∆− 1}. Note that the number of vertices of degree

3 in T ′ remains k. By Lemma 3.2, ρ(T ′) > ρ(T ), a contradiction.

Case 2. ∆ = 4. Let u ∈ V (T ) and NT (u) = {u1, u2, u3, u4}. Let Ti be the

component of T −u containing ui, where 1 ≤ i ≤ 4. Assume without loss of generality

that σT (T1) ≥ σT (T4). Let v be a pendant vertex of T in V (T4), and T ′ = T − uu2 +
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vu2. Let T ′
4 be the component of T ′ − u containing u4. Note that δT ′(u) = 3 and u

is a cut vertex. Assume without loss of generality that σT ′ (T1) ≥ σT ′(T ′
4). Let w be

a pendant vertex of T ′ in V (T ′
4) and T ′′ = T ′ − uu3 + wu3. Note that the number

of vertices of degree 3 in T ′′ remains k. By Lemma 2.3, ρ(T ′′) > ρ(T ′) > ρ(T ), a

contradiction.

Now we have proven that ∆ = 3. Let r be the number of pendant vertices in T .

Since r+ 2(n− k− r) + 3k = 2(n− 1), we have r = k+ 2, and thus, T ∈ T(n, k + 1).

By Theorem 3.7, we have T ∼= C
(

n, ⌊k
2 ⌋, ⌈

k
2 ⌉
)

.

Theorem 4.2. Let T be a tree with n vertices and k vertices of degree at least 3,

where 0 ≤ k ≤ ⌊n
2 ⌋ − 1. Then ρ(T ) ≤ ρ

(

C
(

n, ⌊k
2 ⌋, ⌈

k
2 ⌉
))

with equality if and only if

T ∼= C
(

n, ⌊k
2 ⌋, ⌈

k
2⌉
)

.

Proof. If k = 0, then the result follows from Lemma 3.4.

Suppose k ≥ 1. Let T be a tree with maximum distance spectral radius among

trees with n vertices and k vertices of degree at least 3. Let ∆ = ∆(T ).

Suppose ∆ ≥ 4. Let u ∈ V (T ) and NT (u) = {u1, . . . , u∆}. Let Ti be the

component of T−u containing ui, where 1 ≤ i ≤ ∆. Assume without loss of generality

that σT (T1) ≥ σT (T∆). Let w be a pendant vertex of T in V (T∆). Let T ′ = T −

uu2 +wu2. Obviously, T ′ is a tree with n vertices and k vertices of degree at least 3.

By Lemma 3.2, ρ(T ′) > ρ(T ), a contradiction. Hence, ∆ ≤ 3, implying that T is a

tree with k vertices of degree 3. By Theorem 4.1, T ∼= C
(

n, ⌊k
2 ⌋, ⌈

k
2⌉
)

.

5. Distance spectral radius of trees with all odd vertices. For n ≥ 2,

let T(2n) be the set of all trees with 2n vertices, which are all odd. Let E2n =

C(2n, 0, n− 1).

Let T be a tree with n vertices. Then ρ(T ) ≥ ρ(Sn) with equality if and only if

T ∼= Sn, see [9]. By this result and Theorem 3.7, we have

Theorem 5.1. Let T ∈ T(2n). Then ρ(S2n) ≤ ρ(T ) ≤ ρ(E2n) with left equality

if and only if T ∼= S2n and right equality if and only if T ∼= E2n.

For integers n and a with 1 ≤ a ≤ ⌊n−2
2 ⌋, let Dn,a be the double star obtained

by adding an edge between the center u of Sa+1 and the center v of Sn−a−1.

Lemma 5.2. [8] For a ≥ 2, ρ(Dn,a) > ρ(Dn,a−1).

Theorem 5.3. Let T ∈ T(2n) and T ≇ S2n, where n ≥ 3. Then ρ(T ) ≥ ρ(D2n,2)

with equality if and only if T ∼= D2n,2.

Proof. Let T be the tree with minimum distance spectral radius in T(2n)\{S2n}.

Let t be the diameter of T . Obviously, t ≥ 3. Let u1 . . . ut+1 be a diametrical path of
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T . Suppose t ≥ 4. Let T ′ = T −{vu4 : v ∈ NT (u4)\{u3}}+{vu3 : v ∈ NT (u4)\{u3}}.

Obviously, T ′ ∈ T(2n) \ {S2n}. By Lemma 2.4, ρ(T ) > ρ(T ′), a contradiction. Thus,

t = 3, i.e., T is a double star. By Lemma 5.2, T ∼= D2n,2.

For n ≥ 3 and 2 ≤ i ≤ ⌊n+1
2 ⌋, let B(2n, i) be the caterpillar obtained from the

path Pn with consecutive vertices u1, . . . , un by attaching a pendant vertex vj to uj

for 2 ≤ j ≤ n− 1 with j 6= i and attaching three pendant vertices w1, w2, w3 to ui.

For n ≥ 5 and 3 ≤ i ≤ ⌊n+1
2 ⌋, let F (2n, i) be the caterpillar obtained from the

path Pn with consecutive vertices u1, . . . , un by attaching a pendant vertex vj to uj

for 2 ≤ j ≤ n− 1 with j 6= i and adding an edge between ui and the center of S3.

Lemma 5.4. For n ≥ 5, and 2 ≤ i ≤ ⌊n+1
2 ⌋, ρ(F (2n, i+ 1)) > ρ(B(2n, i)).

Proof. Let G = B(2n, i) and G′ = B(2n, i) − {uiw2, uiw3} + {vi+1w2, vi+1w3}.

Obviously, G′ ∼= F (2n, i+ 1). Let x = x(G). As we pass from G to G′, the distance

between a vertex of {w2, w3} and a vertex of {u1, . . . , ui, v2, . . . , vi−1, w1} is increased

by 2, the distance between a vertex of {w2, w3} and vi+1 is decreased by 2, and the

distance between any other vertex pair remains unchanged. Hence,

1

2
(ρ(G′)− ρ(G)) ≥

1

2
x⊤(D(G′)−D(G))x

= 2 (xw2
+ xw3

)
(

xui
+ xw1

− xvi+1

)

.

From (2.1) for G at ui, w1 and vi+1, we have

ρ(G)xui
= xw1

+ xw2
+ xw3

+ 2xvi+1
+

i−1
∑

k=1

dG(ui, uk)xuk

+

i−1
∑

k=2

dG(ui, vk)xvk +

n
∑

k=i+1

(dG(ui+1, uk) + 1)xuk

+

n−1
∑

k=i+2

(dG(ui+1, vk) + 1)xvk ,

ρ(G)xw1
= xui

+ 2xw2
+ 2xw3

+ 3xvi+1
+

i−1
∑

k=1

(dG(ui, uk) + 1)xuk

+
i−1
∑

k=2

(dG(ui, vk) + 1)xvk +
n
∑

k=i+1

(dG(ui+1, uk) + 2)xuk

+

n−1
∑

k=i+2

(dG(ui+1, vk) + 2)xvk ,

ρ(G)xvi+1
= 2xui

+ 3xw1
+ 3xw2

+ 3xw3
+

i−1
∑

k=1

(dG(ui, uk) + 2)xuk
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+

i−1
∑

k=2

(dG(ui, vk) + 2)xvk +

n
∑

k=i+1

(dG(ui+1, uk) + 1)xuk

+

n−1
∑

k=i+2

(dG(ui+1, vk) + 1)xvk ,

and thus,

(ρ(G) + 2)
(

xui
+ xw1

− xvi+1

)

= xui
+ 3xvi+1

+
i−1
∑

k=1

(dG(ui, uk)− 1)xuk

+

i−1
∑

k=2

(dG(ui, vk)− 1)xvk

+

n
∑

k=i+1

(dG(ui+1, uk) + 2)xuk

+
n−1
∑

k=i+2

(dG(ui+1, vk) + 2)xvk

> 0,

implying that xui
+ xw1

− xvi+1
> 0. Therefore, ρ(G′) > ρ(G), i.e., ρ(F (2n, i+ 1)) >

ρ(B(2n, i)).

Theorem 5.5. Let T ∈ T(2n) and T ≇ E2n, where n ≥ 3.

(i) For n = 3, 4, ρ(T ) ≤ ρ(B(2n, 2)) with equality if and only if T ∼= B(2n, 2);

(ii) For n ≥ 5, ρ(T ) ≤ ρ(F (2n, 3)) with equality if and only if T ∼= F (2n, 3).

Proof. For n = 3, 4, we have T(2n) = {E2n, B(2n, 2)}, and thus, the result follows

from Theorem 5.1.

Suppose n ≥ 5. Let T be a tree with maximum distance spectral radius in

T(2n)\{E2n}. Let ∆ = ∆(T ).

Suppose ∆ ≥ 7. Let u ∈ V (T ) and NT (u) = {u1, . . . , u∆}. Let Ti be the

component of T−u containing ui, where 1 ≤ i ≤ ∆. Assume without loss of generality

that σT (T1) ≥ σT (T∆). Let w be a pendant vertex of T in V (T∆). Let T ′ = T −

{uu2, uu3} + {wu2, wu3}. Then T ′ ∈ T(2n) and T ′ ≇ E2n. By Lemma 3.2, ρ(T ′) >

ρ(T ), a contradiction. Thus, ∆ = 3 or 5.

Suppose ∆ = 5. By similar argument as above, there is exactly one vertex of

degree 5. Let u1 · · ·ut+1 be a longest path passing the vertex of degree 5, say ui,

where 2 ≤ i ≤ t. Let v1, v2, v3 be the other three neighbors of ui outside the above

path. We claim that v1, v2, v3 are pendant vertices. Otherwise, suppose that v1 is not
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a pendant vertex. Let T1 and T2 be the components of T−ui containing ui−1 and ui+1,

respectively. Assume without loss of generality that σT (T1) ≥ σT (T2). Let T
′ = T −

{uiv2, uiv3}+{ut+1v2, ut+1v3}. Obviously, T ′ ∈ T(2n) and T ′ ≇ E2n. By Lemma 3.2,

ρ(T ′) > ρ(T ), a contradiction. Since each vertex different from ui is of degree 1 or

3 in T , we have by Lemma 3.3 that T ∼= B(2n, i) with 2 ≤ i ≤ ⌊n+1
2 ⌋. Suppose

3 ≤ i ≤ ⌊n+1
2 ⌋. Let T ′ = B(2n, i)− {uiv2, uiv3} + {u2v2, u2v3} if σT (T1) ≤ σT (T2),

and T ′ = B(2n, i)− {uiv2, uiv3}+ {un−1v2, un−1v3} if σT (T1) > σT (T2). It is easily

seen that T ′ ∼= B(2n, 2). By Lemma 3.2, ρ(T ) = ρ(B(2n, i)) < ρ(T ′) = ρ(B(2n, 2)),

a contradiction. Then i = 2, and thus, T ∼= B(2n, 2).

Suppose ∆ = 3. By Lemma 3.3, T ∼= F (2n, i) with 3 ≤ i ≤ ⌊n+1
2 ⌋. By Lemma 3.3,

ρ(F (2n, 3)) > ρ(F (2n, 4)) > · · · > ρ
(

F
(

2n, ⌊n+1
2 ⌋
))

. Thus, T ∼= F (2n, 3).

By Lemma 5.4, ρ(B(2n, 2)) < ρ(F (2n, 3)). Thus, T ∼= F (2n, 3).
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