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Abstract. This paper provides some properties of Brauer symmetry classes of tensors. A

dimension formula is derived for the orbital subspaces in the Brauer symmetry classes of tensors

corresponding to the irreducible Brauer characters of the groups whose non-linear Brauer characters

have support being a cyclic group. Using the derived formula, necessary and sufficient condition are

investigated for the existence of an o-basis of dicyclic groups, semi-dihedral groups, and also those

things are reinvestigated on dihedral groups. Some criteria for the non-vanishing elements in the

Brauer symmetry classes of tensors associated to those groups are also included.
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1. Introduction. During the past decades, there are many papers devoted to

study symmetry classes of tensors, see, for example, [1]–[9]. One of the active re-

search topics is the investigation of a special basis (called an o-basis) for the classes.

This basis consists of decomposable symmetrized tensors that are images of the sym-

metrizer using an irreducible character of a given group. In [10], Randall R. Holmes

and A. Kodithuwakku studied symmetry classes of tensors using an irreducible Brauer

character of the dihedral group instead of an ordinary irreducible character and gave

necessary and sufficient conditions for the existence of an o-basis. A classical method

to provide the conditions applies the dimension of the orbital subspaces in order to

find an o-basis for each orbit separately. A main tool for computing the dimension

of symmetry classes using ordinary characters is the Freese’s theorem [9]. Unfortu-

nately, the symmetrizer using Brauer characters is not (in general) idempotent, so

the Freese’s theorem can not be applied directly. However, for the case of non-linear

Brauer characters of dihedral groups, the authors in [10] decomposed them into a
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sum of ordinary characters and used the generalized Freese’s theorem to bound the

dimension.

One common property for all non-linear Brauer characters of dihedral groups is

their vanishing outside some cyclic subgroups. Many finite groups, including dicyclic

groups and semi-dihedral groups, satisfy this property. In this paper, we investigate

the existence of an o-basis of Brauer symmetry classes of tensors associated with the

groups having the stated property. Some properties of symmetry classes of tensors

symetrized using a complex value function are stated. For the non-linear Brauer

characters, we decompose the orbital subspaces of Brauer symmetry classes of tensors

into an orthogonal direct sum of smaller factors and then provide a dimension formula

for each of them. The necessary and sufficient condition for the existence of an o-basis

for dicyclic groups, semi-dihedral groups and dihedral groups are investigated and

reinvestigated as an application of the formula. Some criteria for the non-vanishing

elements in the Brauer symmetry classes of tensors associated to these groups are also

included.

2. Preliminaries. Let G be a subgroup of the full symmetric group Sm and p

be a fixed prime number. An element of G is p-regular if its order is not divisible by

p. Denote by Ĝ the set of all p-regular elements of G. Let IBr(G) denote the set of

irreducible Brauer characters of G. A Brauer character is a certain function from Ĝ to

C associated with an FG-module where F is a suitably chosen field of characteristic

p. The Brauer character is irreducible if the associated module is simple. A conjugacy

class of G consisting of p-regular elements is called a p-regular class. The number of

irreducible Brauer characters of G equals the number of p-regular classes of G. Let

Irr(G) denote the set of irreducible characters of G. (Unless preceded by the word

Brauer, the word character always refers to an ordinary character.) If the order of

G is not divisible by p, then Ĝ = G and IBr(G) =Irr(G). Let S be a subset of G

containing the identity element e and let φ : S → C be a fixed function. Statements

below involving φ hold if φ is a character of G (in which case S = G) and also if φ

is a Brauer character of G (in which case S = Ĝ). During the last few years, many

very interesting results on the topic of Brauer characters have been found (see e.g.

[13] and [15]–[22]).

Let V be a k-dimensional complex inner product space and {e1, . . . , ek} be an

orthonormal basis of V . Let Γm
k be the set of all sequences α = (α1, . . . , αm), with

1 ≤ αi ≤ k. Define the action of G on Γm
k by

ασ = (ασ(1), . . . , ασ(m)).

We denote by Gα the stabilizer subgroup of α, i.e., Gα = {σ ∈ G|ασ = α}. The

space V ⊗m is a left CG-module with the action given σeγ = eγσ−1 (σ ∈ G, γ ∈ Γm
k )

extended linearly. The inner product on V induces an inner product on V ⊗m which
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is G-invariant and, with respect to this inner product, the set {eα|α ∈ Γm
k } is an

orthonormal basis for V ⊗m, where eα = eα1 ⊗ · · · ⊗ eαm
.

The symmetrizer corresponding to φ and S ⊆ G is the element sφ of the group

algebra CG given by

sφ =
φ(e)

|S|

∑

σ∈S

φ(σ)σ. (2.1)

Corresponding to φ and α ∈ Γm
k , the standard (or decomposable) symmetrized tensor

is

eφα = sφeα =
φ(e)

|S|

∑

σ∈S

φ(σ)eασ−1 . (2.2)

The symmetry class of tensors associated with φ and S ⊆ G is

Vφ(G) = sφV
⊗m = 〈eφα|α ∈ Γm

k 〉.

If φ is a Brauer character, we refer to Vφ(G) as a Brauer symmetry class of tensors.

The orbital subspace of Vφ(G) corresponding to α ∈ Γm
k is

V φ
α (G) = 〈eφασ|σ ∈ G〉.

An o-basis of a subspace W of Vφ(G) is an orthogonal basis of W of the form

{eφα1
, . . . , eφαt

} for some αi ∈ Γm
k . By convention, the empty set is regarded as an

o-basis of the zero subspace of Vφ(G). Let ∆ = ∆G be a set of representatives of the

orbits of Γm
k under the action of G.

The following critical theorem is used to reduce the task of investigation on the

existence of an o-basis.

Theorem 2.1. We have an orthogonal sum decomposition

Vφ(G) =
∑

α∈∆

V φ
α (G).

Proof. See [10, Thm. 1.1].

The induced inner product on Vφ(G) can be calculated via the formula below,

which is an adaptation from the Theorem 1.2 in [10].

Theorem 2.2. For every α ∈ Γm
k and σ1, σ2 ∈ G, we have

〈eφασ1
, eφασ2

〉 =
|φ(e)|2

|S|2

∑

µ∈S

∑

τ∈σ1µ−1Sσ−1
2 ∩Gα

φ(µ)φ(µσ−1
1 τσ2). (2.3)
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Proof. For α ∈ Γm
k and σ1, σ2 ∈ G, we have

〈eφασ1
, eφασ2

〉 =
|φ(e)|2

|S|2

∑

µ∈S

∑

ρ∈S

φ(µ)φ(ρ)〈eασ1µ−1 , eασ2ρ−1〉

=
|φ(e)|2

|S|2

∑

µ∈S

∑

ρ∈S

φ(µ)φ(ρ)〈eασ1µ−1ρσ−1
2
, eα〉

=
|φ(e)|2

|S|2

∑

µ∈S

∑

ρ∈S,σ1µ−1ρσ−1
2 ∈Gα

φ(µ)φ(ρ)

=
|φ(e)|2

|S|2

∑

µ∈S

∑

τ∈σ1µ−1Sσ−1
2 ∩Gα

φ(µ)φ(µσ−1
1 τσ2),

where τ = σ1µ
−1ρσ−1

2 .

The following is an immediate consequence of Theorem 2.2.

Corollary 2.3. Let σ1, σ2 ∈ G,S ⊆ G and φ = ψ |S, where ψ is a linear

character of G. If Gα = {e} and A = {µ ∈ S | e ∈ σ1µ
−1Sσ−1

2 } 6= ∅, then

〈eφασ1
, eφασ2

〉 6= 0.

In the following sections, we also need the lemma and propositions below.

Lemma 2.4. Assume that S is closed under conjugation by elements of G and

that φ is constant on the conjugacy classes of G. For each α ∈ Γm
k and σ ∈ G, we

have σeφα = eφασ−1 .

Proof. See [10, Lem. 1.3].

As an immediate consequence of this lemma, we have the following proposition.

Proposition 2.5. Let φ : S −→ C be a fixed function equipped the assumption

of Lemma 2.4. If B = {eφαg1 , e
φ
αg2 , . . . , e

φ
αgk

} is an o-basis of V φ
α (G), then, for each

g ∈ G,

g · B = {eφαg1g−1 , e
φ
αg2g−1 , . . . , e

φ
αgkg−1}

is also an o-basis of V φ
α (G).

Proposition 2.6. Let φ : S −→ C be a fixed function. Also, let C contained in

S be a subgroup of G. If Gγ = {e} and φ(s) = 0 for all s ∈ S − C, then

V φ
γ (G) = 〈eφγg | g ∈ C〉 ⊕ 〈eφγg | g ∈ G− C〉.
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Proof. If we choose σ1 ∈ C and σ2 ∈ G \ C in (2.3), we get nonzero term only

if µ ∈ C and µσ−1
1 σ2 ∈ C, which is impossible, since C is a group. Thus, the two

spaces are orthogonal.

Proposition 2.7. Let S be a subgroup of G and φ : S −→ C be a nonzero

constant function on S. Then, for each α ∈ Γm
dimV ,

V φ
α (G) = 〈eφασ|σ ∈ G〉

has an o-basis and so does Vφ(G).

Proof. Suppose φ(s) = c ∈ C for all s ∈ S. Since S is a group and by Theorem

2.2, we have that, for σ, τ ∈ G,

〈eφασ, e
φ
ατ 〉 =

|c|2

|S|2

∑

µ∈S

∑

δ∈σµ−1Sτ−1∩Gα

|c|2

=
|c|4

|S|2

∑

µ∈S

|σSτ−1 ∩Gα|

=
|c|4|σSτ−1 ∩Gα|

|S|
.

We have Gα ∩ σSτ−1 = ∅ or Gα ∩ σSτ−1 6= ∅, for each σ, τ ∈ G. For the latter case,

we have σµτ−1 ∈ Gα for some µ ∈ S. Thus, for each b ∈ S,

ασb = α(σµτ−1)(τµ−1b) = ατg, for some g = µ−1b ∈ S.

Hence, {ασb|b ∈ S} = {ατb|b ∈ S}. Since S is a group and φ(s) = c for all s ∈ S, we

have

eφασ =
c2

|S|

∑

s∈S

eαs = eφατ .

This implies that, for σ, τ ∈ G, eφασ = eφατ or 〈eφασ, e
φ
ατ 〉 = 0, which yields that V φ

α (G)

has an o-basis and by Theorem 2.1, we complete the proof.

3. Dimension formula. In this section, we let G be a finite group, S ⊆ G and

C be a subgroup of G contained in S. Let φ : G −→ C be a function such that

φ(σ) 6= 0 for each σ ∈ C but φ(S \C) = 0. Thus, under this assumption, the induced

inner product (2.3) becomes

〈eφασ1
, eφασ2

〉 =
|φ(e)|2

|S|2

∑

µ∈C

∑

τ∈σ1Cσ−1
2 ∩Gα

φ(µ)φ(µσ−1
1 τσ2) (3.1)
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for every α ∈ Γm
k and σ1, σ2 ∈ G. If σ1Cσ

−1
2 ∩ Gα = ∅, then 〈eφασ1

, eφασ2
〉 = 0. This

motivates us to define a relation on G: for each α ∈ △,

σ1 ∼α σ2 ⇐⇒ σ1 ∈ Gασ2C (3.2)

for all σ1, σ2 ∈ G. It is not hard to check that ∼α, for each α ∈ △, is an equivalent

relation.

Now, we set [σ] as the equivalent class containing σ, RG
α the set of representative

of G/ ∼α and V φ
α ([σ]) := 〈eφαg|g ∈ [σ]〉. It is clear that V φ

α ([σ]) is a subspace of V φ
α (G).

Lemma 3.1. The space V φ
α (G) has an o-basis if and only if for each σ ∈ RG

α ,

V φ
α ([σ]) has an o-basis.

Proof. Suppose that V φ
α ([σ]) has an o-basis, for each σ ∈ RG

α . To show that the

space V φ
α (G) has an o-basis, it suffices to prove that V φ

α ([σ])’s are orthogonal. Now,

let σ1, σ2 ∈ G and α ∈ ∆. If σ1Cσ
−1
2 ∩Gα 6= ∅, then σ1 ∈ Gασ2C. Hence, if σ1 ≁α σ2,

then σ1Cσ
−1
2 ∩ Gα = ∅. In other words, if [σ1] 6= [σ2], then 〈eφασ1

, eφασ2
〉 = 0. The

other implication is clear.

For the following propositions, denote 〈eφγg|g ∈ C〉 by V φ
γ (C).

Proposition 3.2. The space Vφ(G) has an o-basis if and only if for each γ ∈ ∆,

V φ
γ (C) has an o-basis.

Proof. For each [σ] ∈ G/ ∼α, we have that

V φ
α ([σ]) = 〈eφαg|g ∈ [σ]〉

= 〈eφαg|g ∈ GασC〉

= 〈eφασh|h ∈ C〉

= 〈eφγh|h ∈ C〉; γ = ασ

= V φ
γ (C).

By Lemma 3.1 and (2.1), we finish the proof.

To determine the dimension of V φ
γ (C), for each γ ∈ ∆, we introduce a relation

∼∗
γ on C by: for each σ1, σ2 ∈ C,

σ1 ∼∗
γ σ2 ⇐⇒ σ1σ

−1
2 ∈ Gγ . (3.3)

It is obvious that ∼∗
γ is an equivalent relation. Now, we have:

Proposition 3.3. If C/ ∼∗
γ = {[σ1], [σ2], . . . , [σtγ ]}, then dim(V φ

γ (C)) =

rank(Mγ), where (Mγ)ij :=
∑

h∈C∩Gγ
φ(hσiσj) and 1 ≤ i, j ≤ tγ.

Proof. For each j ∈ {1, 2, . . . , tγ} and g1, g2 ∈ [σj ], we have that g1 = cg2 for
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some c ∈ Gγ . Thus,

eφγg1 = φ(e)
|S|

∑
σ∈C φ(σg1)eγσ−1

= φ(e)
|S|

∑
σ∈C φ(σcg2)eγσ−1

= φ(e)
|S|

∑
τc−1∈C φ(τg2)eγcτ−1; τ := σc

= φ(e)
|S|

∑
τ∈C φ(τg2)eγτ−1 = eφγg2 .

Hence, V φ
γ (C) = 〈eφγσj

|j = 1, 2, . . . , tγ〉. Moreover, note that eγg−1
1

= eγg−1
2

if g1, g2 ∈

[σi]. This yields

eφγg =
φ(e)

|S|

tγ∑

i=1


 ∑

σ∈[σi]

φ(σg)


 eγσ−1

i
,

for each g ∈ C. However,
∑

σ∈[σi]
φ(σg) =

∑
h∈C∩Gγ

φ(hσig). So, we have

eφγσj
=
φ(e)

|S|

tγ∑

i=1


 ∑

h∈C∩Gγ

φ(hσiσj)


 eγσ−1

i
, 1 ≤ j ≤ tγ .

The result follows by (Mγ)ij :=
∑

h∈C∩Gγ
φ(hσiσj) for 1 ≤ i, j ≤ tγ .

In particular, as a special case of Proposition 3.3, i.e., if C is a cyclic subgroup of

G, we obtain a dimension formula for V φ
γ (C).

Theorem 3.4. Let C = 〈τ〉 ⊆ S be a cyclic subgroup of G such that C/ ∼∗
γ=

{[τ ], [τ2], . . . , [τ tγ ]}. Denote vj =
∑

h∈C∩Gγ
φ(hτ tγ−j) and

dγ =

∣∣∣∣∣∣



s ∈ {0, 1, 2, . . . , tγ − 1} |

tγ−1∑

j=0

vje
2πsji
tγ = 0





∣∣∣∣∣∣
.

Then tγ = |C|
|C∩Gγ |

and dim(V φ
γ (C)) = tγ − dγ.

Proof. Note that under the equivalent relation ∼∗
γ with C/ ∼∗

γ= {[τ ], [τ2], . . . ,

[τ tγ ]}, we have that [τk] = {σ ∈ C | στ−k ∈ Gγ} = {hτk | h ∈ C ∩ Gγ}. So,

|[τk]| = |C ∩Gγ | for all k = 1, 2, . . . , tγ , and hence,

tγ = |C/ ∼∗
γ | =

|C|

|C ∩Gγ |
.

By rank nullity theorem and Proposition 3.3,

dim(V φ
γ (C)) = rank(Mγ) = tγ − nullity(Mγ) = tγ − dγ ,

where dγ := nullity(Mγ).
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To determine dγ , we observe that, if C is a cyclic subgroup of G, then Mγ can

be reduced to a circulant matrix M cir
γ by swamping some columns of Mγ . Precisely,

M cir
γ = (v0, v1, . . . , vtγ−1), where, for each j = 0, 1, . . . , tγ − 1,

vj =
∑

h∈C∩Gγ

φ(hτ tγ−j).

It is well known that (see e.g. [12]).

nullity(M cir
γ ) = deg[gcd(Pv(x), x

tγ − 1)],

where Pv(x) =
∑tγ−1

j=0 vjx
j . Note that the set of all roots (over field C) of xtγ − 1 is

U := {e
2πsi
tγ | 0 ≤ s < tγ}. Thus, common factors of Pv(x) and xtγ − 1 must have

roots in U and hence,

deg[gcd(Pv(x), x
tγ − 1)] = |{s ∈ Z | 0 ≤ s < tγ and Pv(e

2πsi
tγ ) = 0}|

= |{s ∈ Z | 0 ≤ s < tγ and
∑tγ−1

j=0 vje
2πsji
tγ = 0}|.

Since the rank is invariant under column operations, dγ = nullity(M cir
γ ) and thus the

result follows.

4. Dicyclic group T4n. The dicyclic group T4n is defined as follows:

T4n = 〈r, s|r2n = e, rn = s2, s−1rs = r−1〉.

Explicitly, all elements of the group T4n may be given by T4n = {ri, sri|0 ≤ i < 2n}.

By the classical Cayley theorem, T4n can be embedded in S4n. Precisely,

r = ( 1 2 3 · · · 2n )( 2n+ 1 2n+ 2 2n+ 3 · · · 4n )

s = ( 1 2n+ 1 n+ 1 3n+ 1 )( 2 4n n+ 2 3n )

( 3 4n− 1 n+ 3 3n− 1 ) · · · ( n− 1 3n+ 3 2n− 1 2n+ 3 )

( n 3n+ 2 2n 2n+ 2 ).

T4n has n+ 3 conjugacy classes which are

{e}, {rk, r2n−k}, 1 ≤ k ≤ n, {sr2k | 0 ≤ k ≤ n− 1}, {sr2k+1 | 0 ≤ k ≤ n− 1}

and the ordinary irreducible character of T4n are given by (see [4]):

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 263-285, April 2016

http:/repository.uwyo.edu/ela



ELA

Orthogonal Bases of Brauer Symmetry Classes of Tensors for Groups Having Cyclic Support 271

Table I: The character table for T4n, when n is even.

Characters rk(0 ≤ k ≤ n) s rs

χ0 1 1 1

χ1 (−1)k 1 -1

χ2 1 -1 -1

χ3 (−1)k -1 1

ψj , where 2 cos
(

kjπ
n

)
0 0

1 ≤ j ≤ n− 1

Table II: The character table for T4n, when n is odd.

Characters rk(0 ≤ k ≤ n) s rs

χ′
0 1 1 1

χ′
1 (−1)k i -i

χ′
2 1 -1 -1

χ′
3 (−1)k -i i

ψ′
j , where 2 cos

(
kjπ
n

)
0 0

1 ≤ j ≤ n− 1

Write 2n = lpt with l an integer not divisible by p (where p is our fixed prime

number). We have

Ĝ =

{
{rjp

t

, srk|0 ≤ j < l, 1 ≤ k ≤ 2n}, if p 6= 2;

{rjp
t

|0 ≤ j < l}, if p = 2.

Thus, the p-regular classes of G are
{

{rjp
t

, r(l−j)pt

}; 0 ≤ j ≤ l
2 , {sr

2k|1 ≤ k ≤ n}, {sr2k+1|0 ≤ k ≤ n− 1}, if p 6= 2;

{rjp
t

, r(l−j)pt

}; 0 ≤ j ≤ l−1
2 if p = 2.

For each j and h, denote

ψ̂j = ψj |Ĝ, χ̂h = χh|Ĝ and ψ̂′
j = ψ′

j |Ĝ, χ̂′
h = χ′

h|Ĝ,

and define ǫ =

{
4, if p 6= 2;

1, if p = 2.

Proposition 4.1. The complete list of irreducible Brauer characters of T4n for

even n is

χ̂h (0 ≤ h < ǫ), ψ̂j

(
1 ≤ j <

l

2

)
,
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and for odd n is

χ̂′
h (0 ≤ h < ǫ), ψ̂′

j

(
1 ≤ j <

l

2

)
.

Proof. We first note that the restriction of a character of T4n to T̂4n is a Brauer

character and the number of all the irreducible Brauer characters is the number of

p-regular classes of T4n. Also, since T4n is solvable, by the Fong-Swan theorem,

any irreducible Brauer character of T4n is the restriction of an ordinary irreducible

character of T4n.

The linear characters χ̂h’s and χ̂′
h’s are obviously irreducible and distinct, by the

character tables above. For characters, ψ̂j and ψ̂′
j , of dimension two we claim that

they are all distinct and irreducible for all 1 ≤ j < l
2 . By the character tables above,

there is no need to separate the proof into the case of odd n, even n or p = 2, p 6= 2,

since ψ̂j and ψ̂′
j are agree on the columns rk’s and their values are zero outside these

columns.

For the irreduciblity issue, we suppose for a contradiction that

ψ̂j = χ̂h + χ̂k,

for some 0 ≤ h, k < ǫ and 1 ≤ j < l
2 . Since 1 ≤ j < l

2 , l > 2 and r2p
t

∈ T̂4n. So, we

can evaluate both sides of the above equation at r2p
t

and obtain that

2 cos

(
2ptjπ

n

)
= 2,

which is impossible because cos
(

2ptjπ
n

)
< 1 for all 1 ≤ j < l

2 .

Analogously, for the issue of distinction, we suppose for a contradiction that

ψ̂j = ψ̂i, for some 1 ≤ i < j < l
2 . We now evaluate both sides by rp

t

, which yields

that

cos

(
ptjπ

n

)
= cos

(
ptiπ

n

)
.

It implies that, for ptjπ
n and ptjπ

n , their difference or their sum must be a multiple of

2π. However, this is not the case because 1 ≤ i < j < l
2 .

Theorem 4.2. Let G = T4n, 0 ≤ h < ǫ where ǫ = 4 if p 6= 2 and ǫ = 1 if p = 2,

and put φ = χ̂h or χ̂′
h . The space Vφ(G) has an o-basis if and only if at least one of

the following holds:

(i) dimV = 1,
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(ii) p = 2,

(iii) 2n is not divisible by p.

Proof. (i) If dimV = 1, then Vφ(G) = 〈eφα | α ∈ Γ4n
1 〉 has only at most one

generator, namely, eφα where α = (1, 1, 1 . . . , 1). So, dimVφ(G) ≤ 1, and thus, Vφ(G)

has an o-basis.

(ii) If p = 2 then Ĝ = 〈rp
t

〉. Since Ĝ is a subgroup of G and φ is constant on Ĝ ,

it follows by Proposition 2.7 that Vφ(G) has an o-basis.

(iii) Assume p 6= 2 and 2n is not divisible by p. Then Ĝ = G and consequently,

these characters will be ordinary linear characters. Thus, Vφ(G) has an o-basis.

Conversely, we assume that dimV > 1 and p 6= 2 and 2n is divisible by p.

So, r /∈ Ĝ and Ĝ = {rjp
t

, srk | 0 ≤ j < l, 1 ≤ k ≤ 2n} = Ĝ−1. We will show

that Vφ(G) does not have an o-basis. For α = (1, 2, . . . , 2, 2) ∈ Γ4n
dimV , we have

Gα = {e}. Now, we concentrate on 〈eφασ, e
φ
α〉, for each σ ∈ G. We observe that

A = {µ ∈ Ĝ | e ∈ σµ−1Ĝ} = {µ ∈ Ĝ | σ ∈ Ĝµ}. Since ri = (srn)(sri) ∈ Ĝ2 for each

0 ≤ i < 2n, G ⊆ Ĝ2 and hence A 6= ∅. Thus, by Corollary 2.3, we have

〈eφασ, e
φ
α〉 6= 0 for each σ ∈ G. (4.1)

Next, we claim that {eφαr, e
φ
α} ⊆ V φ

α (G) is a linearly independent set. We can set

eφα =
∑

δ cδeδ and eφαr =
∑

δ dδeδ as {eδ|δ ∈ Γ4n
dimV } forms a basis for V ⊗4n. Since

Ĝ−1 = Ĝ,

eφα =
φ(1)

|Ĝ|

∑

σ∈Ĝ

φ(σ−1)eασ.

Since Gα = {e}, the elements ασ with σ ∈ G are distinct. Also, since r /∈ Ĝ, ασ 6= αr

for all σ ∈ Ĝ, which yields that cr = 0. On the other hand, Gαr = r−1Gαr = {e}, so

for r ∈ Ĝ, (αr)σ = αr if and only if σ = e. This implies that dr = 1

|Ĝ|
6= cr = 0, which

implies that {eφαr, e
φ
α} ⊆ V φ

α (G) is a linearly independent set. Hence, dimV φ
α (G) ≥ 2.

By Proposition 2.5, if V φ
α (G) has an o-basis, then it has an o-basis containing

eφα, but, by (4.1), this is not the case. So, V φ
α (G) does not have an o-basis, and by

Theorem 2.1, we complete the proof.

For higher dimensional irreducible Brauer characters φ : Ĝ −→ C, we see that if

dimV = 1, then Vφ(G) = 〈eφα | α ∈ Γ4n
1 〉 has only at most one generator, namely,

eφα where α = (1, 1, 1 . . . , 1). So, dimVφ(G) ≤ 1, and thus, Vφ(G) has an o-basis.

If dim V > 1, we investigate a necessary condition of the existence of an o-basis for
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dicyclic groups as follows.

Proposition 4.3. For G = T2(lpt) with C ∩ Gγ =< rtγp
t

> where tγ = l
|C∩Gγ |

,

γ ∈ ∆ and φ = ψ̂b, ψ̂′
b, where 1 ≤ b < l

2 , we have that

dim(V φ
γ (C)) =

{
2, if

btγ
l ∈ Z;

0, if
btγ
l /∈ Z.

Proof. Since G has cyclic support with C =< rp
t

> and C ∩Gγ =< rtγp
t

>, for

each φ, we can compute the dimension by using Proposition 3.4. By character tables

and basic trigonometry identities, we compute that

vj =
∑

h∈C∩Gγ
φ(hτ tγ−j) =

∑l/tγ
m=1 φ(r

(mtγ−j)pt

)

=
∑l/tγ

m=1 2 cos
(
m

(
2btγ
l

)
π −

(
2bj
l

)
π
)

=

{
2( l

tγ
) cos

((
2bj
l

)
π
)
,

btγ
l ∈ Z;

0,
btγ
l /∈ Z.

So, if
btγ
l /∈ Z, then dγ = tγ and thus dim(V φ

γ (C)) = tγ − tγ = 0.

For dγ in which
btγ
l ∈ Z, we have that

∑tγ−1
j=0 vje

2πsji
tγ = 0 if and only if

tγ−1∑

j=0

2 cos

((
2bj

l

)
π

)
cos

((
2sj

tγ

)
π

)
and

tγ−1∑

j=0

2 cos

((
2bj

l

)
π

)
sin

((
2sj

tγ

)
π

)
,

are simultaneously zero. Since
btγ
l ∈ Z, the second sum is always zero and the first

sum is zero for all 0 ≤ s < tγ except for b
l ±

s
tγ

∈ Z; (i.e., except for s = tγ − btγ
l or

s =
btγ
l ), because 0 < b

l +
s
tγ
< 2 and −1 < b

l −
s
tγ
< 1. Hence, dγ = tγ − 2, and thus,

the results follow.

There is no surprise with the assertion that dim(V φ
γ (C)) = 0 for which

btγ
l /∈ Z

because:

Proposition 4.4. For G = T2(lpt) with C =< rp
t

> and C ∩ Gγ =< rtγp
t

>

where tγ = l
|C∩Gγ |

, γ ∈ ∆ and φ = ψ̂b, ψ̂′
b, where 1 ≤ b < l

2 , we have that, for each

σ ∈ C,

eφγσ = 0 if and only if
btγ
l

/∈ Z.
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Proof. Let σ ∈ C and γ ∈ ∆. By (3.1),

〈eφγσ, e
φ
γσ〉 = |φ(e)|2

|Ĝ|2

∑
µ∈C

∑
τ∈C∩Gγ

φ(µ)φ(µτ)

= 4 |φ(e)|2

|Ĝ|2

∑l
j=1

∑l/tγ
k=1 cos

(
2jbπ
l

)
cos

(
2k

(
btγ
l

)
π + 2jbπ

l

)

=

{
( 4ltγ )(

|φ(e)|2

|Ĝ|2
)
∑l

j=1 cos
2
(

2jbπ
l

)
, if

btγ
l ∈ Z;

0, if
btγ
l /∈ Z,

which completes the proof.

Now, by the above propositions, we achieve the main conclusion.

Theorem 4.5. Let G = T4n, where 2n = lpt with l an integer not divisible by

p and let φ = ψ̂b, ψ̂′
b, where 1 ≤ b < l

2 . Then, Vφ(G) has an o-basis if and only if

ν2(
2b
l ) < 0.

Proof. By Proposition 3.2, it is enough to focus on V φ
γ (C). Also, in the proof of

Proposition 3.3, we have V φ
γ (C) = 〈eφγσj

|j = 1, 2, . . . , tγ〉, where σj = rjp
t

and tγ =
|C|

|C∩Gγ |
. Again, by (3.1) and the character tables, we compute that, for 1 ≤ i, j ≤ tγ ,

〈eφγσi
, eφγσj

〉 = 0 ⇐⇒
∑

g∈C φ(gσi)φ(gσj) = 0

⇐⇒
∑l−1

k=0 φ(r
(k+i)pt

)φ(r(k+j)pt ) = 0

⇐⇒
∑l−1

k=0 2 cos
(
(k + i)2bl π

)
cos

(
(k + j)2bl π

)
= 0

⇐⇒ l cos
(
(i− j)2bl π

)
= 0.

By Proposition 4.3, dim(V φ
γ (C)) = 2 for each γ such that

btγ
l ∈ Z. So, if Vφ(G) con-

tains an o-basis, then there exist γ and distinct 1 ≤ i, j ≤ tγ such that cos
(
(i− j)2bl π

)

= 0, which clearly implies that ν2(
2b
l ) < 0. On the other hand, suppose ν2(

2b
l ) = −k,

for some k ∈ N. Then b
l = m

2k+1 for some odd integer m. Since the existence of an

o-basis depends on γ for which
btγ
l ∈ Z, 2k+1 is always a divisor of tγ . Thus, we can

choose i0 = 2k−1 + 1 and j0 = 1 so that cos
(
(i0 − j0)

2b
l π

)
= 0. By Proposition 4.4,

eφγσi0
and eφγσj0

are non zero and hence, by the above fact, {eφ
γr(2k−1+1)pt

, eφ
γrpt

} forms

an o-basis for V φ
γ (C).

5. Dihedral group Dm. We first collect some facts about the Brauer characters

of the dihedral groups D2n from [10]. We follow the notions of [10] in this section. A

presentation of the dihedral groups Dm having order 2m, is given by Dm =< r, s |

rm = s2 = 1, srs = r−1 >. The ordinary character table of Dm is:
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Table III: The character table of Dm.

Characters rk srk

ψ0 1 1

ψ1 1 −1

ψ2 (−1)k (−1)k

ψ2 (−1)k (−1)k+1

χh 2 cos 2πkh
m 0

(1 ≤ h < m
2 )

We write m = lpt, where l is not divisible by prime number p, as before. The set

of all p-regular elements of Dm are

D̂m =

{
{rjp

t

, srk | 0 ≤ j < l, 0 ≤ k < m
2 }, p 6= 2;

{rjp
t

| 0 ≤ j < l}, p = 2.

The complete list of irreducible Brauer characters of Dm is, [10],

ψ̂j (0 ≤ j < ǫ), χ̂h (1 ≤ h < l
2 ),

where ψ̂j = ψj |D̂m
, χ̂j = χh |

D̂m
and

ǫ =





4, l even, p 6= 2;

2, l odd, p 6= 2;

1, p = 2.

Necessary and sufficient condition for the existence of an o-basis for Brauer characters

of dimension one is provided in [10]. Precisely, for φ = ψ̂j , ψ̂′
j , where 0 ≤ j < ǫ, the

space Vφ(Dm) has an o-basis if and only if dimV = 1 or p = 2 or m is not divisible

by p.

Necessary and sufficient condition for the existence of an o-basis for Brauer char-

acter of dimension two for Dm can be found in [10]. But it can also be obtained by

very similar method applied on T4n as we presented in §4. This is because φ has a

cyclic support for each φ = χ̂h, where 0 ≤ h < l
2 , and all values in the character

tables of both groups are consistent on C =< rk >. Thus, by changing m to 2n and

h to b, each step of the computation for dimensions of V φ
γ (Dm) and the condition for

the existence becomes the same. This yields

Theorem 5.1. Let G = Dm, where m = lpt with l an integer not divisible by

p and let φ = χ̂h, where 1 ≤ h < l
2 . Then, Vφ(G) has an o-basis if and only if

ν2(
2h
l ) < 0. Also, for each σ ∈ C, eφγσ 6= 0 if and only if

htγ
l ∈ Z.
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6. Irreducible Brauer character of SD8n. A presentation for SD8n for n ≥ 2

is given by SD8n =< a, b | a4n = b2 = e, bab = a2n−1 >. All 8n elements of SD8n

may be given by

SD8n = {e, a, a2, . . . , a4n−1, b, ba, ba2, . . . , ba4n−1}.

The embedding of SD8n into the symmetric group S4n is given by T (a)(t) := t+ 1

and T (b)(t) := (2n− 1)t, where m is the remainder of m divided by 4n. We write

4n = lpt with prime p and integer l not divisible by p and denote by ŜD8n the set of

all p-regular elements of SD8n. It is not hard to see that

ŜD8n =

{
{ajp

t

, bak | 0 ≤ j < l; 0 ≤ k < 4n}, if p 6= 2;

{ajp
t

| 0 ≤ j < l}, if p = 2.

By direct calculation, we have the following property.

Proposition 6.1. The p-regular classes of SD8n, n ≥ 2 and 4n = lpt, are as

follows:

Case 1: p is odd prime.

• If n is even (i.e., l
8 ∈ Z), then there are l

2 + 3 p-regular classes. Precisely,

– 2 classes of size one being {e} and {a
l
2 p

t

},

– l
4−1 classes of size two being [ajp

t

] = {ajp
t

, a(l−j)pt

}; j ∈ {2, 4, 6, . . . , l
2−

2},

– l
8 classes of size two being [ajp

t

] = {ajp
t

, a(
l
2−j)pt

}; j ∈ {1, 3, 5, . . . , l
4 −

1},

– l
8 classes of size two being [ajp

t

] = {ajp
t

, a(
3l
2 −j)pt

}; j ∈ { l
2 + 1, l

2 +

3, . . . , l
2 + l

4 − 1} and

– 2 classes of size 2n being [b] = {ba2i | i = 0, 1, 2, . . . , 2n− 1} and [ba] =

{ba2i+1 | i = 0, 1, 2, . . . , 2n− 1}.

• If n is odd (i.e., l
4 is odd), then there are l

2 + 6 p-regular classes. Precisely,

– 4 classes of size one being {e}, {a
l
4p

t

}, {a
l
2p

t

} and {a
3l
4 pt

},

– l
4−1 classes of size two being [ajp

t

] = {ajp
t

, a(l−j)pt

}; j ∈ {2, 4, 6, . . . , l
2−

2},

– l−4
8 classes of size two being [ajp

t

] = {ajp
t

, a(
l
2−j)pt

}; j ∈ {1, 3, 5, . . . , l
4−

2},

– l−4
8 classes of size two being [ajp

t

] = {ajp
t

, a(
3l
2 −j)pt

}; j ∈ { l
2 + 1, l

2 +

3, . . . , l
2 + l

4 − 2} and

– 4 classes of size n being [b] = {ba4i | i = 0, 1, 2, . . . , n − 1}, [ba] =

{ba4i+1 | i = 0, 1, 2, . . . , n − 1}, [ba2] = {ba4i+2 | i = 0, 1, 2, . . . , n − 1}

and [ba3] = {ba4i+3 | i = 0, 1, 2, . . . , n− 1}.

Case 2: p = 2. There are l+1
2 p-regular classes. Precisely, there is 1 class of size

one, {e}, and there are l−1
2 classes of size two, {ajp

t

, a(l−j)pt

}; 1 ≤ j ≤ l−1
2 .
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The ordinary irreducible character of SD8n are given by (see [11]):

Table IV: The character table for SD8n, when n is even.

Conjugacy classes, [ar]; [ar]; [b] [ba]

Characters r ∈ C1 r ∈ C†
odd

χ0 1 1 1 1

χ1 1 1 -1 -1

χ2 1 -1 1 -1

χ3 1 -1 -1 1

ψh, where 2 cos
(
hrπ
2n

)
2 cos

(
hrπ
2n

)
0 0

h ∈ C†
even

ψh, where 2 cos
(
hrπ
2n

)
2i sin

(
hrπ
2n

)
0 0

h ∈ C†
odd

Table V: The character table for SD8n, when n is odd.

Conjugacy classes, [ar]; [ar]; [b] [ba] [ba2] [ba3]

Characters r ∈ C1 r ∈ Codd
2,3

χ′
0 1 1 1 1 1 1

χ′
1 1 1 -1 -1 -1 -1

χ′
2 1 -1 1 -1 1 -1

χ′
3 1 -1 -1 1 -1 1

χ′
4 (−1)

r
2 ir 1 i -1 −i

χ′
5 (−1)

r
2 ir -1 −i 1 i

χ′
6 (−1)

r
2 (−i)r 1 −i -1 i

χ′
7 (−1)

r
2 (−i)r -1 i 1 −i

ψ′
h, where 2 cos

(
hrπ
2n

)
2 cos

(
hrπ
2n

)
0 0 0 0

h ∈ C†
even

ψ′
h, where 2 cos

(
hrπ
2n

)
2i sin

(
hrπ
2n

)
0 0 0 0

h ∈ C†
odd

where C1 = {0, 2, 4, . . . , 2n}, C†
even := C1 \ {0, 2n}, Codd

2,3 = {1, 3, 5, . . . , n, 2n+1, 2n+

3, 2n+ 5, . . . , 3n}, C†
odd = {1, 3, 5, . . . , n− 1, 2n+ 1, 2n+ 3, 2n+ 5, . . . , 3n− 1}.

For each k and h, put χ̂k = χk |
ŜD8n

, χ̂′
k = χ′

k |
ŜD8n

and ψ̂k = ψk |
ŜD8n

,

ψ̂′
k = ψ′

k |
ŜD8n

. Moreover, for odd prime p and 4n = lpt such that l is not divisible
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by p, we define E := {2, 4, 6, . . . , l
2 − 2}, Oǫ

1 := {1, 3, 5, . . . , l
4 − ǫ}, Oǫ

2 := { l
2 + 1, l

2 +

3, . . . , l
2 + l

4 − ǫ}, where ǫ = 1 if n is even and ǫ = 2 if n is odd.

Proposition 6.2. Let IBr(SD8n) be the set of all distinct irreducible Brauer
characters of SD8n. Then,

IBr(SD8n) =






{χ̂k, ψ̂jpt | 0 ≤ k ≤ 3, j ∈ E ∪O1
1 ∪ O1

2}, if p 6= 2 and n is even;

{χ̂′
k, ψ̂

′
jpt | 0 ≤ k ≤ 7, j ∈ E ∪ O2

1 ∪O2
2}, if p 6= 2 and n is odd;

{χ̂0, ψ̂jpt | 0 ≤ j ≤ l−1
2
}, if p = 2 and n is even.

{χ̂′
0, ψ̂

′
jpt | 0 ≤ j ≤ l−1

2
}, if p = 2 and n is odd.

Proof. We first note that the restriction of a character of SD8n to ŜD8n is

a Brauer character and the order of the set IBr(SD8n) is the number of p-regular

classes of SD8n. Also, since SD8n is solvable, by Fong-Swan theorem, any element in

IBr(SD8n) is the restriction of an ordinary irreducible character of SD8n.

Each χ̂k’s and χ̂′
k’s are obviously irreducible and clearly distinct, by the character

tables above. For characters of dimension two, ψ̂jpt where p is an odd prime and n

is even, we claim that those are irreducible. We suppose for a contradiction that

ψ̂jpt = χ̂i + χ̂k for some j ∈ E ∪O1
1 ∪O

2
2 and 0 ≤ i, k ≤ 3. Evaluating both sides at

a2p
t

yields that

2 cos
jpt · 2ptπ

2n
= 2.

That is cos 4jptπ
l = 1, so 2j is a multiple of l. However, since 2j < l for j ∈ E ∪ O1

1

and l < 2j < 2l for j ∈ O1
2 , this is a contradiction. We use similar arguments to show

that all the remaining cases, ψ̂jpt ’s are irreducible.

Next, we aim to show that all elements in IBr(SD8n) shown in the proposition

are distinct. For the case odd prime p and even n, we suppose that ψ̂jpt = ψ̂ipt for

some i, j ∈ E ∪O1
1 ∪O

1
2 . It is clear (by the character table) that i, j either both are

even or both are odd. If i, j are even, we evaluate both sides at ap
t

and then we get

sin
pt(i+ j)π

l
sin

pt(j − i)π

l
= 0.

Since gcd(l, pt) = 1 and i+j
l and j−i

l can not be positive integers for each i, j ∈ E,

i = j. If i, j are odd, we evaluate both sides at ap
t

, and then we get

sin
pt(j − i)π

l
cos

pt(j + i)π

l
= 0.

Since gcd(l, pt) = 1 and i+j
l 6= l

2 ,
3l
2 for i, j ∈ O1

1 ∪ O1
2 and j−i

l can not be positive

integer, i = j. Again, similar arguments work for all the remaining cases.
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7. Existence of an o-basis for the class of tensors using a Brauer char-

acter of the SD8n. In the following theorem, we denote

ǫ =





3 if p 6= 2, n even

7 if p 6= 2, n odd

1 if p = 2.

Theorem 7.1. Let dimV > 2, G = SD8n, 0 ≤ j ≤ ǫ, and put φ = χ̂j or χ̂′
j .

Then, space Vφ(G) has an o-basis if and only if p = 2 or 4n is not divisible by p.

Proof. If p = 2 then Ĝ = 〈ap
t

〉. Since Ĝ is a subgroup of G and φ is constant on

Ĝ, by Proposition 2.7, Vφ(G) has an o-basis. Assume p 6= 2 and 4n is not divisible by

p. Then Ĝ = G and consequently, these characters will be ordinary linear characters.

Thus, Vφ(G) has an o-basis.

Conversely, suppose that p 6= 2 and 4n is divisible by p. We aim to show that

Vφ(G) does not have an o-basis by showing that there exists α ∈ Γ4n
k such that V φ

α (G)

does not have an o-basis and then apply Theorem 2.1 to conclude the results.

Let α = (1, 2, 2, . . . , 2, 3). Since dimV > 2 and 4n ≥ 4, α ∈ Γ4n
dimV . We also

choose a representative ∆ so that α ∈ ∆. We observe that to fix α, each σ ∈ G

must fix the first and the last position of α. It is clear that element of the form ak

satisfying the condition is only e. For elements of the form bak, they must satisfy

T (bak)(1) = 1 and T (bak)(4n) = 4n. By using T (bak)(t) = (2n− 1)(k + t), we

conclude that Gα = {e}. Since φ is a restriction of a linear character and Gα = {e},

by Corollary 2.3, to show that 〈eφασ, e
φ
α〉 6= 0 for each σ ∈ G, it suffices to show that

A = {µ ∈ Ĝ|e ∈ σµ−1Ĝ} 6= ∅. This is simple because p 6= 2 and 4n is divisible by p, so

Ĝ = {bak|0 ≤ k < m} = Ĝ−1 and then A = {µ ∈ Ĝ|σ ∈ Ĝµ}. Since e ∈ σµ−1Ĝ if and

only if σ ∈ Ĝ−1µ = Ĝµ and thus for arbitrary 0 ≤ k < 4n, we have ak = ba0bak ∈ Ĝ2

and abk = a0bak ∈ Ĝ2, so G ⊆ Ĝ2. That is A 6= ∅. So,

〈eφασ, e
φ
α〉 6= 0 for each σ ∈ G. (7.1)

Next, to show that {eφαa, e
φ
α} ⊆ V φ

α (G) is a linearly independent set, we set

eφα =
∑

δ cδeδ and eφαa =
∑

δ dδeδ, as {eδ|δ ∈ Γm
k } forms a basis for V ⊗m. Since

Ĝ−1 = Ĝ,

eφα =
φ(1)

|Ĝ|

∑

σ∈Ĝ

φ(σ−1)eασ.

Since Gα = {e}, the elements ασ with σ ∈ G are distinct. Also, since a /∈ Ĝ, ασ 6= αa

for all σ ∈ Ĝ, which yields that ca = 0. On the other hand, Gαa = a−1Gαa = {e},
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so for a ∈ Ĝ, (αa)σ = αa if and only if σ = e. This implies that da = 1

|Ĝ|
6= cαa = 0.

Thus, {eφαa, e
φ
α} ⊆ V φ

α (G) is a linearly independent set, and hence, dimV φ
α (G) ≥ 2.

By Proposition 2.5, if V φ
α (G) were to have an o-basis, then it would have an o-

basis containing eφα, but, by (7.1), this is not the case. So, V φ
α (G) does not have an

o-basis, which completes the proof.

Remark 7.2. Theorem 7.1 shows that if dimV > 2, unlike the case for an

irreducible character, it is possible that Vφ(G) has no o-basis when φ is a linear

Brauer character. This holds when dimV = 2 as well. To observe this, we let p 6= 2

and 4n is divisible by p and φ = χ̂0 or χ̂′
0 . Consider α = (1, 2, . . . , 2, 2) ∈ Γ4n

dimV .

Thus, for such α, we have Gα = {1, a2n+2b}. Now by similar calculations done in

Theorem 7.1 we have 〈eφασ1
, eφασ2

〉 6= 0.

For the remaining of this section, we denote

Π =





{jpt|j ∈ E ∪O1
1 ∪O

1
2}, if p 6= 2 and n even;

{jpt|j ∈ E ∪O2
1 ∪O

2
2}, if p 6= 2 and n odd;

{jpt|0 ≤ j ≤ l−1
2 }, if p = 2.

For Vφ(SD8n), where φ = ψ̂h, ψ̂′
h such that h ∈ Π is even, the condition for the

existence can be obtained in the same manner as T4n and Dm. This is because φ has

a cyclic support and all values in the character tables of those groups are consistence

on C =< ar > if h is even. Then, we have:

Theorem 7.3. Let G = SD8n, where 4n = lpt with l an integer not divisible by

p and let φ = ψ̂h, ψ̂′
h such that h ∈ Π be even. Then, Vφ(G) has an o-basis if and

only if ν2(
2h
l ) < 0. Also, for each σ ∈ C, eφγσ 6= 0 if and only if

htγ
l ∈ Z.

For the case where h ∈ Π is odd, we first compute the dimension of V φ
γ (SD8n).

Proposition 7.4. Let G = SD8n, where 4n = lpt with p ∤ l and let φ = ψ̂h, ψ̂′
h

such that h ∈ Π be odd. For γ ∈ ∆ such C ∩Gγ =< atγp
t

>, where tγ = l
|C∩Gγ |

, then

dim(V φ
γ (C)) =

{
4, if

htγ
l ∈ Z;

0, if
htγ
l /∈ Z.

Proof. Since G has cyclic support with C =< ap
t

> and C ∩Gγ =< atγp
t

>, for

each φ, we can compute the dimension by using Proposition 3.4. By character tables,

we compute vj =
∑

h∈C∩Gγ
φ(hτ tγ−j), for the different case of j and tγ . If tγ is odd,
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then, for even j,

vj =
∑l/tγ

m=1 φ(r
(mtγ−j)pt

)

= i
∑l/2tγ

k=1 2 sin
(
(2k − 1)(

2htγ
l )π − (2hjl )π

)

+
∑l/2tγ

k=1 2 cos
(
(2k)(

2htγ
l )π − (2hjl )π

)

= 0,

and for odd j,

vj =
∑l/tγ

m=1 φ(r
(mtγ−j)pt

)

=
∑l/2tγ

k=1 2 cos
(
(2k − 1)(

2htγ
l )π − (2hjl )π

)

+ i
∑l/2tγ

k=1 2 sin
(
(2k)(

2htγ
l )π − (2hjl )π

)

= 0,

since
2htγ
l /∈ Z (because h, tγ are odd and then 4 | l). So, if tγ is odd (i.e.,

htγ
l /∈ Z),

then dγ = tγ and thus dim(V φ
γ (C)) = tγ − tγ = 0.

Similarly, if tγ is even, we compute that

vj =





0,
htγ
l /∈ Z;

− 2il
tγ

sin
(

2hj
l π

)
,

htγ
l ∈ Z and j odd

2l
tγ

cos
(

2hj
l π

)
,

htγ
l ∈ Z and j even.

So, if tγ is even and
htγ
l /∈ Z, then dγ = tγ and thus dim(V φ

γ (C)) = tγ − tγ = 0. For

dγ in which tγ is even and
htγ
l ∈ Z, we have that

∑tγ−1
j=0 vje

2πsji
tγ = 0 if and only if

l

tγ




tγ
2

−1∑

k=0

2 cos

((
4hk

l

)
π

)
cos

((
4sk

tγ

)
π

)
+

tγ
2

−1∑

k=0

2 sin

((
2h(2k + 1)

l

)
π

)
sin

((
2s(2k + 1)

tγ

)
π

)

 ,

and

il

tγ




tγ
2

−1∑

k=0

2 cos

((
4hk

l

)
π

)
sin

((
4sk

tγ

)
π

)
−

tγ
2

−1∑

k=0

2 sin

((
2h(2k + 1)

l

)
π

)
cos

((
2s(2k + 1)

tγ

)
π

)

 ,

are simultaneously zero. Since
htγ
l ∈ Z, the second sum is always zero and the first

sum is zero for each 0 ≤ s < tγ except for 2
(

h
l +

s
tγ

)
∈ Z or 2

(
h
l −

s
tγ

)
∈ Z. Since

0 ≤ s
tγ
< 1,

2h
l ≤ 2

(
h
l +

s
tγ

)
< 2h

l + 2 and 2h
l − 2 < 2

(
h
l −

s
tγ

)
≤ 2h

l .

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 263-285, April 2016

http:/repository.uwyo.edu/ela



ELA

Orthogonal Bases of Brauer Symmetry Classes of Tensors for Groups Having Cyclic Support 283

Precisely, if s belongs to
{
s1 :=

tγ

2
⌈
2h

l
⌉ −

htγ

l
, s2 :=

tγ

2
⌈
2h

l
⌉ −

htγ

l
+

tγ

2
, s3 :=

htγ

l
−

tγ

2
⌊
2h

l
⌋, s4 :=

htγ

l
−

tγ

2
⌊
2h

l
⌋ +

tγ

2

}
,

then the first sum will be not zero. Here, ⌈r⌉ and ⌊r⌋ are the ceiling function and

floor function of the real number r, respectively. Since tγ > 0 and 4h
l /∈ Z for each

odd h ∈ Π, s1, s2, s3, s4 are all distinct. Hence, dγ = tγ − 4, and thus, the results

follow.

Now, we have:

Theorem 7.5. Let G = SD8n, where 4n = lpt with p ∤ l and let φ = ψ̂h, ψ̂′
h,

where h ∈ Π be odd. If dim(V ) > 1, then, Vφ(G) does not have an o-basis. Also, for

each σ ∈ C, eφγσ 6= 0 if and only if
htγ
l ∈ Z.

Proof. By Proposition 3.2, it is enough to focus on V φ
γ (C). Also, in the proof

of Proposition 3.3, we have V φ
γ (C) = 〈eφγσj

|j = 1, 2, . . . , tγ〉, where σj = ajp
t

and

tγ = |C|
|C∩Gγ |

. By (3.1) and the character tables, we compute that, for even i, j such
1 ≤ i, j ≤ tγ ,

〈eφγσi
, eφγσj

〉 = 0 ⇐⇒
∑

g∈C
φ(gσi)φ(gσj) = 0

⇐⇒
∑l−1

k=0 φ(a
(k+i)pt)φ(a(k+j)pt) = 0

⇐⇒ 2

[∑ l
2
−1

k=0 2 cos
(
(2k + i) 2h

l
π
)
cos

(
(2k + j) 2h

l
π
)]

+2

[∑ l
2
−1

k=0 2 sin
(
(2k + 1 + i) 2h

l
π
)
cos

(
(2k + 1 + j) 2h

l
π
)]

= 0

⇐⇒ 2

[∑ l
2
−1

k=0 cos
(
(4k + i+ j) 2h

l
π
)
+

∑ l
2
−1

k=0 cos
(
(i− j) 2h

l
π
)]

+2

[∑ l
2
−1

k=0 cos
(
(i− j) 2h

l
π
)
−

∑ l
2
−1

k=0 cos
(
(4k + i+ j) 2h

l
π
)]

= 0

⇐⇒ 2l cos
(
(i− j) 2h

l
π
)
= 0 (since 4h

l
/∈ Z).

Similar arguments work well for the remaining cases. Thus, we can conclude that

〈eφγσi
, eφγσj

〉 = 0 ⇐⇒

{
cos

(
(i− j) 2h

l
π
)
= 0, if i, j are both even or both odd;

sin
(
(i− j) 2h

l
π
)
= 0, if ortherwise.

(7.2)

We consider γ = (1, 2, 2, . . . , 2) ∈ Γ4n
dim(V ). Since dim(V ) > 1, γ ∈ ∆ and it

is not hard to see that Gγ = {e}. So, tγ = l and then
htγ
l ∈ Z. By Proposition

7.4, dim(V φ
γ (C)) = 4. Thus, if V φ

γ (C) has an o-basis, then there exist distinct 1 ≤

i1, i2, i3, i4 ≤ tγ such that {eφγσi1
, eφγσi2

, eφγσi3
, eφγσi4

, } forms an o-basis. Since h is odd

and 4 | l, ν(2hl ) = −k, for some positive integer k. Hence, if there are at least three of

i1, i2, i3, i4 which are all even or all odd, say i1, i2, i3, then, by (7.2), there must exist

odd integers o1, o2, o3 such that

i1 − i2 = o1 · 2
k−1, i1 − i3 = o2 · 2

k−1, and i2 − i3 = o3 · 2
k−1.
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This implies that o2 − o3 = o1, which is a contradiction. If there are exactly two

of i1, i2, i3, i4 which are all odd, say i1, i2, then, by (7.2), there must exist integer s

such that i1 − i3 = s · 2k. This implies that i1 = i3 + s · 2k is even (because i3 is

even), which is a contradiction. Therefore, V φ
γ (C) does not have an o-basis and by

Proposition 3.2, we finish the proof for the first statement. The second statements is

a consequence of Proposition 7.4 and a direct calculation as in Proposition 4.4.
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