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Abstract. In this paper, the signed graphs with one positive eigenvalue are characterized, and

the signed graphs with pendant vertices having exactly two positive eigenvalues are determined. As

a consequence, the signed trees, the signed unicyclic graphs and the signed bicyclic graphs having

one or two positive eigenvalues are characterized.
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1. Introduction. All graphs considered in this paper are connected, simple and

undirected. Let G be a simple graph of order n with vertex set V (G) = {v1, v2, . . . , vn}

and edge set E(G). The adjacency matrix A(G) of a graph G of order n is the

symmetric 0-1 matrix (aij)n×n such that aij = 1 if vi and vj are adjacent and 0,

otherwise. Denote by Pn, Cn, Kn, K1,n−1 a path, a cycle, a complete graph and a

star, respectively, all of which are simple graphs on n vertices. Sometimes K1,n−1

is written as Sn. Kn1,n2,...,nr
represents a complete r-partite graph with part sizes

n1, n2, . . . , nr. A graph is called trivial if it has one vertex and no edges.

A signed graph Γ = (G, σ) consists of a simple graph G = (V,E), referred to as its

underlying graph, and a sign function σ : E → {+,−}. Sometimes Γ is written as Gσ.

The number of vertices in Γ is sometimes denoted by |Γ|. The adjacency matrix of Γ is

A(Γ) = (aσij) with aσij = σ(vivj)aij where aij is an element in the adjacency matrix of

the underlying graph G. If all edges are signed positive, the adjacency matrix A(G, σ)

is exactly the ordinary adjacency matrix A(G). We write G+ for the signed graph

with all positive edges. Similarly G− represents the signed graph with all negative

∗Received by the editors on October 24, 2014. Accepted for publication on March 31, 2016.

Handling Editor: Leslie Hogben.
†Department of Mathematics, Shandong Institute of Business and Technology, Yantai, Shan-

dong, 264005, China, and Center for Combinatorics and LPMC-TJKLC, Nankai University, Tian-

jin, 300071, China (yuguihai@126.com). Supported by Natural Science Foundation of China (no.

11301302 and no. 61202362), China Postdoctoral Science Foundation (no. 2013M530869 and no.

2014T07210), and the Natural Science Foundation of Shandong (no. BS2013SF009).
‡School of Mathematics and Statistics, Central South University, New Campus, Changsha, Hunan,

410083, China (fenglh@163.com). Supported in part by Natural Science Foundation of China (no.

11271208), and Mathematics and Interdisciplinary Sciences Project of CSU.
§Department of Mathematics, Shandong Institute of Business and Technology, Yantai, Shandong,

264005, China (quhui781111@126.com).

232

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 232-243, April 2016

http:/repository.uwyo.edu/ela



ELA

Signed Graphs With Small Positive Index of Inertia 233

edges. The inertia of Γ is defined to be the triplet In(Γ) = (i+(Γ), i−(Γ), i0(Γ)), where

i+(Γ), i−(Γ), i0(Γ) are the numbers of the positive, negative and zero eigenvalues of

the adjacency matrix A(Γ) including multiplicities, respectively. Traditionally i+(Γ)

(resp., i−(Γ)) is called the positive (resp., negative) index of inertia (abbreviated

positive (resp., negative) index ) of Γ. The number i0(Γ) is called the nullity of Γ,

usually denoted by η(Γ). The rank r(Γ) of Γ is defined to be the rank of A(Γ).

Obviously i+(Γ) + i−(Γ) = r(Γ) = n− η(Γ) if Γ has n vertices.

Let C be a cycle of Γ. The sign of C, denoted by sgn(C), is the product of the signs

of all edges. A cycle C is said to be positive or negative if sgn(C) = + or sgn(C) = −.

A signed graph is said to be balanced if all its cycles are positive, or equivalently, all

its cycles have an even number of negative edges; otherwise it is called unbalanced.

A switching function is a function θ : V → {+,−}. Suppose that θ is a switching

function. Then Γ is transformed by θ to a new signed graph Γθ = (G, σθ) such that

the underlying graph remains the same and the sign function is defined on the edge

uv by σθ(uv) = θ(u)σ(uv)θ(v). Note that switching does not change the signs of

cycles in Γ. Two signed graphs Γ1, Γ2 are said to be switching equivalent, denoted

by Γ1 ∼ Γ2, if there exists a switching function θ such that Γ2 = Γθ
1, or there exists

a diagonal matrix Dθ = diag(θ(v1), θ(v2), . . . , θ(vn)) such that A(Γ2) = DθA(Γ1)D
θ.

There is the following result which relates balance to switching equivalence of signed

graphs. It will play a pivotal role in the next section and, consequently, throughout

the rest of the paper.

Theorem 1.1. [5] Let Γ be a signed graph. Then Γ is balanced if and only if

Γ = (G, σ) is switching equivalent to G+.

A signed graph is called acyclic (resp., unicyclic) if its underlying graph is acyclic

(resp., unicyclic). The degree of a vertex u ∈ V (Γ) is the number of edges incident

to u. A vertex v ∈ V (Γ) is called a pendant vertex if its degree is 1. A graph Γ′ is

called an induced subgraph of Γ on the vertices of Γ′ including the signs of edges. For

V1 ⊆ V (Γ), we write Γ − V1 for the graph obtained from Γ by removing all vertices

in V1 together with all edges incident to them. If V1 = {v}, we write Γ − v instead

of Γ − {v}. Sometimes we use the notation Γ − Γ0 instead of Γ − V (Γ0) if Γ0 is a

subgraph of Γ.

Recently, the nullity of signed graphs was well studied, see [1, 2, 7, 12]. Yu et al.

investigated the positive index of unicyclic signed graphs [12, 13]. More results on

inertia of graphs can be found in [10, 11].

This paper is organized as follows. In Section 2, we give some preliminary re-

sults. In Section 3, we characterize all signed graphs with one positive eigenvalue and

characterize the signed graphs with pendant vertices having two positive eigenvalues.

Moreover, we determine all signed trees, all unicyclic signed graphs having one or two
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positive eigenvalues. In Section 4, we characterize all bicyclic signed graphs with one

or two positive eigenvalues.

2. Preliminary results. In order to present our main results, the following

lemmas are needed.

Lemma 2.1. [8] A graph has exactly one positive eigenvalue if and only if its

non-isolated vertices form a complete multipartite graph.

Lemma 2.2. [3, 9] A complete signed graph is balanced if and only if all triangles

are positive.

Lemma 2.3. [12, 13] Let Cσ
n , P

σ
n be a signed cycle, a signed path on n vertices,

respectively. Let k be an integer. Then the following hold:

(1) If Cσ
n is balanced, then i+(C

σ
n ) = 2⌊n−1

4
⌋+1 = 2k+1 for n = 4k+1, . . . , 4k+4.

(2) If Cσ
n is unbalanced, then i+(C

σ
n ) = 2⌊n+1

4
⌋ = 2k for n = 4k − 1, . . . , 4k + 2.

(3) i+(P
σ
n ) = ⌊n

2
⌋.

Corollary 2.4. If Cσ
n be an unbalanced cycle on n vertices, then i+(C

σ
n ) ≥ 2.

Lemma 2.5. [12, 13] Let Γ be a signed graph containing a pendant vertex v with

its unique neighbor u. Then i+(Γ) = i+(Γ− u− v) + 1.

The following results are obvious and we omit their proofs.

Lemma 2.6. The following statements hold:

(1) Let Γ = Γ1 ∪ Γ2 ∪ · · · ∪ Γt, where Γ1,Γ2, . . . ,Γt are the components of Γ. Then

i+(Γ) =
∑t

i=1
i+(Γi).

(2) Let Γ be a signed graph. Then i+(Γ) = 0 if and only if Γ is a graph without edges.

(3) Let Γ∗ be an induced subgraph of Γ. Then i+(Γ
∗) ≤ i+(Γ).

Definition 2.7. Let M be a real symmetric matrix. The three types of elemen-

tary congruence matrix operations of M are defined as follows:

(1) interchanging the ith and jth rows of M and interchanging the ith and jth

columns of M ;

(2) multiplying the ith row and column of M by a nonzero scalar k;

(3) adding the ith row of M multiplied by a nonzero scalar k to the jth row and

adding the ith column of M multiplied by k to the jth column.

Lemma 2.8. (Sylvester’s law of inertia, [4]) Let M be an n × n real symmetric

matrix and P be an n× n nonsingular matrix. Then

i+(PMPT ) = i+(M) and i−(PMPT ) = i−(M).
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By Sylvester’s law of inertia, elementary congruence matrix operations do not

change the inertia of a real symmetric matrix.

3. Signed graphs with one or two positive eigenvalues. We are now ready

to present the main results of this paper.

Theorem 3.1. Let Γ = (G, σ) be a connected signed graph. Then i+(Γ) = 1 if

and only if Γ is a balanced complete multipartite signed graph.

Proof. Sufficiency: Assume that Γ is a balanced complete multipartite signed

graph. By Theorem 1.1, Γ is switching equivalent to its underlying graph. So i+(Γ) =

1 from Lemma 2.1.

Necessity: Since i+(P4) = i+(paw) = 2 where the paw is a graph obtained by

adding a pendant edge to one vertex of C3, G has no P4 or paw as an induced

subgraph. Suppose that G has an edge e and a vertex u which is not incident to e.

Since G is connected, there exists a path P from the u to e; we may assume that P

is the shortest path from the u to e. The length of P is at most two, for otherwise

G would have a P4 as an induced subgraph. Since u is not incident to the e, P must

have length two. Let v be the vertex on P incident to the e. If v is incident to exactly

one end of e, then G has an induced P4. If v is incident to both ends of e, then G has

an induced paw. These contradictions show that G has no induced K2 ∪K1, i.e., G

is a complete multipartite graph.

Assume that Γ is unbalanced. Then Γ must contain an unbalanced signed cycle

as an induced subgraph. By Corollary 2.4 and Lemma 2.6, i+(Γ) ≥ 2. This is also a

contradiction.

Combining the above discussion, Γ is a balanced complete multipartite signed

graph if i+(Γ) = 1.

Theorem 3.2. Let Γ be a signed graph with pendant vertices. Then i+(Γ) = 2 if

and only if Γ is a graph obtained by inserting some edges with arbitrary signs between

the center of a signed star and some or all vertices (maybe partial or all) of a balanced

complete multipartite signed graph.

Proof. Assume that Γ has two positive eigenvalues. Let x be a pendant vertex in

Γ and N(x) = y. Suppose that Γ − x − y = Γ1 ∪ Γ2 ∪ · · · ∪ Γt where Γ1,Γ2, . . . ,Γt

are the components of Γ− x− y. If each Γi (i = 1, 2, . . . , t) is trivial, then Γ− x− y

is a signed star and i+(Γ) = 1. This is impossible. Next we shall verify that there

exists exactly one nontrivial component in Γ− x− y. Assume that Γ− x− y has two
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nontrivial components, say Γ1,Γ2. By Lemma 2.5, we have

i+(Γ) = 1 + i+(Γ− x− y)

= 1 +

2∑

j=1

i+(Γj)

≥ 1 +
2∑

j=1

1 (since i+(Γj) ≥ 1)

= 3.

This is a contradiction.

Therefore, there exists exactly one nontrivial component in Γ− x− y, say Γ1. So

Γ− x− y = Γ1 ∪ (n− |Γ1| − 2)K1. Hence, i+(Γ) = i+(Γ1) + 1 ≥ 2 with the equality

holding if and only if i+(Γ1) = 1. It is evident that the subgraph induced by x, y and

all isolated vertices in Γ − x − y is a signed star K1,|Γ|−|Γ1|. So Γ can be obtained

by inserting some edges with arbitrary signs between the center of K1,k−1 and some

or all vertices of a balanced complete multipartite signed graph with |Γ| − k vertices,

where k ≥ 2 is any positive integer.

As consequences of Theorems 3.1 and 3.2, we determine the signed trees and

unicyclic signed graphs on n vertices having one or two positive eigenvalues as follows.

Theorem 3.3. Let T be a signed tree on n vertices. Then the following state-

ments hold:

(1) i+(T ) = 1 if and only if T is K1,n−1.

(2) i+(T ) = 2 if and only if T is T1 or T2 (as depicted in Figure 3.1).

...
...

...
...

T1 T2

Fig. 3.1. Two trees in Theorem 3.3.

Proof. (1) If a tree is a complete bipartite graph, then it should be a star. So this

result is obvious from Theorem 3.1.

(2) Assume that T is a signed tree and i+(T ) = 2. By Theorem 3.2, T is obtained

by inserting an edge with arbitrary sign between the center of signed star and one

vertex of another signed star. This implies the result.

Theorem 3.4. Let U be a unicyclic signed graph on n vertices. Then the follow-

ing statements hold:
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(1) i+(U) = 1 if and only if U is the balanced cycle C3 or the balanced cycle C4.

(2) i+(U) = 2 if and only if U is one of the following graphs:

(a) The unbalanced cycle C3, the unbalanced cycle C4, the unbalanced cycle C5

or the unbalanced cycle C6;

(b) The signed unicyclic graphs with U
r,s
1 or U

p,q
2 (as depicted in Figure 3.2) as

the underlying graph;

(c) The balanced signed unicyclic graphs with Un−4
3 (as depicted in Figure 3.2)

as the underlying graph;

(d) The balanced signed unicyclic graphs with Un−5
4 (as depicted in Figure 3.2)

as the underlying graph.

Proof. (1). The result can be derived from Theorem 3.1.

(2). Assume that U has no pendant vertices. By Lemma 2.3, i+(U) = 2 if and

only if U is the unbalanced cycle C3, the unbalanced cycle C4, the unbalanced cycle

C5 or the unbalanced cycle C6.

Assume that U is a signed unicyclic graph with pendant vertices and i+(U) = 2.

It is obvious that the necessity holds from Lemmas 2.3 and 2.5. Next we shall verify

the sufficiency. By Theorem 3.2, U is obtained by inserting some edges with arbitrary

signs between the center of signed star Kσ
1,k−1 and some vertices (maybe partial or all)

of a balanced complete t-partite signed graph Kσ
n1,n2,...,nt

, where n1+n2+ · · ·+nt =

n− k. Since U is unicyclic, t = 2 or 3. In the following we shall divide into two cases.

Case 1: t = 2.

In this case, Kn1,n2
is isomorphic to a star or C4 since U is unicyclic. If Kn1,n2

∼=

K1,n−k−1, by Theorem 3.2 U is one of signed graphs with U
r,s
1 or Up,q

2 (as depicted in

Figure 3.2) as the underlying graph, where each edge has arbitrary sign. If Kn1,n2

∼=

C4, by Theorem 3.2 U is a balanced signed graph with Un−5
4 (as depicted in Figure

3.2) as the underlying graph.

Case 2: t = 3.

In this case, Kn1,n2,n3

∼= C3 since U is unicyclic. By Theorem 3.2 U is a balanced

signed graph with Un−4
3 (as depicted in Figure 3.2) as the underlying graph.

.

..

.

.

..

...

......

U1
r,s U2

p,q

...
...

r

U3
n-4

U4
n-5

s

p q n-4 n-5

Fig. 3.2. Four unicyclic graphs in Theorem 3.4.
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4. Bicyclic signed graphs with one or two positive eigenvalues. Let G

be a bicyclic graph. The base of G, denoted by Ĝ, is the unique bicyclic subgraph

of G containing no pendant vertices. Thus, G can be obtained from Ĝ by attaching

trees to some vertices of Ĝ. It is well known that (see, for example [6]) there are two

types of bases of bicyclic graphs, as described next.

Let Cp (p ≥ 3) and Cq (q ≥ 3) be two cycles and Pl = v1v2 · · · vl (l ≥ 1) be a

path. Assume that v ∈ V (Cp) and u ∈ V (Cq). Denote by ∞(p, l, q) (as depicted in

Figure 4.1) the graph obtained from Cp, Cq, Pl by identifying v with v1, u with vl,

respectively. The bicyclic graph containing ∞(p, l, q) as its base is called an ∞-graph.

Note that in an ∞-graph the two cycles share a vertex if Pl has l = 1.

Let Pp+2, Pl+2, Pq+2 be three paths with min{p, l, q} ≥ 0, where at most one of

p, l, q is 0. Denote by θ(p, l, q) (as depicted in Figure 4.1) the graph obtained from

Pp+2, Pl+2, Pq+2 by identifying the three initial vertices and terminal vertices. The

bicyclic graph containing θ(p, l, q) as its base is called a θ-graph.

pC qC1v lvlP
u v

2pP+

2lP+

2qP+

...
...

...

...

Fig. 4.1. ∞(p, l, q) and θ(p, l, q).

Theorem 4.1. Let B be a bicyclic signed graph. Then i+(B) = 1 if and only if

B is the balanced signed graph with K1,1,2 or K2,3 as the underlying graph.

Proof. By Theorem 3.1, the underlying graph of B is a complete multipartite

graph. Since B is bicyclic, |B| is bipartite or tripartite. Since K2,3 is the unique

complete bipartite graph which is a bicyclic graph and K1,1,2 is the unique complete

tripartite graph which is also a bicyclic graph, the result can be derived from Theorem

3.1.

Theorem 4.2. Let B be a bicyclic signed graph with at least one pendant vertex.

Then i+(B) = 2 if and only if B is one of the following graphs:

(1) The signed graphs with B1 (as depicted in Figure 4.2) as the underlying graph

such that the induced subgraph on v1, v2, v3 is balanced.

(2) The signed graphs with B2 or B3 (as depicted in Figure 4.2) as the underlying

graph;

(3) The signed graphs with B4 or B5 (as depicted in Figure 4.2) as the underlying

graph such that the induced subgraph on u1, u2, u3, u4 is balanced;

(4) The balanced signed graphs with one of the Bi’s (i = 6, 7, 8, 9) (as depicted in

Figure 4.2) as the underlying graph.
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Proof. Assume that B is a signed graph of order n with at least one pendant

vertex and i+(B) = 2. The sufficiency can be derived from Lemmas 2.3 and 2.5.

Next we shall verify the necessity. By Theorem 3.2, B is obtained by inserting some

edges with arbitrary signs between the center of signed star Kσ
1,k−1 and some vertices

(maybe partial or all) of a balanced complete t-partite signed graphKσ
n1,n2,...,nt

, where

n1 + n2 + · · ·+ nt = n− k. Since B is bicyclic, t = 2 or 3.

Assume that t = 2. Kn1,n2
is isomorphic to C4, K1,n−k−1 or K2,3 since B is

bicyclic. If Kn1,n2

∼= C4, by Theorem 3.2 B is one of signed graphs with B4 or B5

(as depicted in Figure 4.2) as the underlying graph such that the induced subgraph

on u1, u2, u3, u4 is balanced. If Kn1,n2

∼= K1,n−k−1, by Theorem 3.2 B is one of

signed graphs with B2 or B3 (as depicted in Figure 4.2) as the underlying graph. If

Kn1,n2

∼= K2,3, by Theorem 3.2 B is one of the balanced signed graphs with B6 or B7

(as depicted in Figure 4.2) as the underlying graph.

Assume that t = 3. Kn1,n2,n3
is isomorphic to C3 or K1,1,2 since B is bicyclic.

If Kn1,n2,n3

∼= C3, by Theorem 3.2 B is one of signed graph with B1 (as depicted in

Figure 4.2) as the underlying graph such that the induced subgraph on v1, v2, v3 is

balanced. If Kn1,n2

∼= K1,1,2, by Theorem 3.2 B is one of the balanced signed graphs

with B8 or B9 (as depicted in Figure 4.2) as the underlying graph.

.

..

.. u1

u2

u3

u4

u1

u3u4

u2
v1

v2
w2

v3

w1

w1

w2

v1 v2 v3

B1 B2 B3 B4

B5 B6 B7

.

..

..
.
..
..

.

..

..
.
..
..

.

...

.

...
.
...

.

...

.

. . .

v1

v2

v3

.....
B8

.....
B9

Fig. 4.2. Nine unsigned bicyclic graphs in Theorem 4.2.

In what follows, we shall determine the bicyclic signed graphs without pendant

vertices having exactly two positive eigenvalues.

Theorem 4.3. Let B be a bicyclic signed graph without pendant vertices. Then

i+(B) = 2 if and only if B is one of the following graphs:

(1) The signed graphs with ∞(3, 1, 3) as the underlying graph such that at least one

of the cycles is balanced;

(2) The balanced signed graphs with ∞(3, 2, 3), ∞(3, 1, 4) or ∞(4, 1, 4) as the under-
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lying graph;

(3) The unbalanced signed graphs with θ(1, 0, 1) or θ(1, 1, 1) as the underlying graph;

Proof. Let B be a bicyclic graph without pendant vertices. Then B is a base.

Next we shall divide into two cases to verify our results.

Case 1: B is of type ∞-graph.

Assume that p + l + q − 4 > 5, i.e., p + l + q > 9. Then B must be contain P6

as an induced subgraph. By Lemma 2.6, i+(B) ≥ 3 which is a contradiction. So

p+ l + q ≤ 9. Note that p+ l + q ≥ 7, therefore 7 ≤ p+ l + q ≤ 9. In the sequel we

distinguish three subcases.

Subcase 1.1: p+ l + q = 7.

In this subcase, B is the signed graph with ∞(3, 1, 3) as its underlying graph.

With appropriate ordering of vertices, the adjacency matrix of B can be expressed as

A(∞(3, 1, 3)σ) =




0 aσ12 aσ13 0 0

aσ12 0 aσ23 0 0

aσ13 aσ23 0 aσ34 aσ35
0 0 aσ34 0 aσ45
0 0 aσ35 aσ45 0




.

Applying elementary congruence matrix operations on A(∞(3, 1, 3)σ), we have

i+(∞(3, 1, 3)σ) = i+




0 aσ12 0 0 0

aσ12 0 0 0 0

0 0 −2
aσ

13
aσ

23

aσ

12

− 2
aσ

34
aσ

35

aσ

45

0 0

0 0 0 0 aσ45
0 0 0 aσ45 0




.

This implies that i+(∞(3, 1, 3)σ) = 2 if and only if
aσ

13
aσ

23

aσ

12

+
aσ

34
aσ

35

aσ

45

= 0 or 2, i.e., at

least one of the two cycles in ∞(3, 1, 3)σ is balanced.

Subcase 1.2: p+ l + q = 8.

In this subcase, B is the signed graphs with ∞(3, 2, 3) or ∞(3, 1, 4) as its un-

derlying graph. With appropriate ordering of vertices, the adjacency matrices of
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∞(3, 2, 3)σ, ∞(3, 1, 4)σ can be expressed as

A(∞(3, 2, 3)σ) =




0 aσ12 aσ13 0 0 0

aσ12 0 aσ23 0 0 0

aσ13 aσ23 0 aσ34 0 0

0 0 aσ34 0 aσ45 aσ46
0 0 0 aσ45 0 aσ56
0 0 0 aσ46 aσ56 0




,

A(∞(3, 1, 4)σ) =




0 aσ12 aσ13 0 0 0

aσ12 0 aσ23 0 0 0

aσ13 aσ23 0 aσ34 0 aσ36
0 0 aσ34 0 aσ45 0

0 0 0 aσ45 0 aσ56
0 0 aσ36 0 aσ56 0




.

By elementary congruence matrix operations, we have

i+(∞(3, 2, 3)σ) = 2 + i+(M1) and i+(∞(3, 1, 4)σ) = 2 + i+(M2),

where M1 =

(
−2

aσ

13
aσ

23

aσ

12

aσ34

aσ34 −2
aσ

45
aσ

46

aσ

56

)
and M2 =

(
−2

aσ

13
aσ

23

aσ

12

aσ34 −
aσ

45
aσ

36

aσ

56

aσ34 −
aσ

45
aσ

36

aσ

56

0

)
.

It can be verified that i+(M1) = 0 if and only if
aσ

13
aσ

23

aσ

12

= 1 and
aσ

45
aσ

46

aσ

56

= 1, which

implies that ∞(3, 2, 3)σ is balanced. Similarly, i+(M2) = 0 if and only if
aσ

13
aσ

23

aσ

12

= 1

and aσ34 −
aσ

45
aσ

36

aσ

56

= 0, which implies that ∞(3, 1, 4)σ is balanced.

So i+(∞(3, 2, 3)σ) = 2 (resp., i+(∞(3, 1, 4)σ) = 2) if and only if ∞(3, 2, 3)σ (resp.,

∞(3, 1, 4)σ) is balanced.

Subcase 1.3: p+ l + q = 9.

Note that B must contain one of ∞(3, 3, 3)σ, ∞(3, 2, 4)σ, ∞(3, 1, 5)σ, ∞(4, 1, 4)σ

as its underlying graph. Note that the signed graph with ∞(3, 3, 3)σ, ∞(3, 2, 4)σ, or

∞(3, 1, 5)σ as the underlying graph has at least three positive eigenvalues since its

underlying graph contains B1 (as depicted in Figure 4.3) as an induced subgraph.

If there exists one unbalanced cycle in ∞(4, 1, 4)σ, then ∞(4, 1, 4)σ is unbalanced

and ∞(4, 1, 4)σ must contain an unbalanced Bσ
2 as an induced subgraph, where B2

is depicted in Figure 4.3. So i+(∞(4, 1, 4)σ) ≥ i+(B
σ
2 ) ≥ 3 which is a contradic-

tion. If ∞(4, 1, 4)σ is balanced, then ∞(4, 1, 4)σ and its underlying graph have the

same spectrum by Lemma 1.1. So i+(∞(4, 1, 4)σ) = i+(∞(4, 1, 4)) = 2 from simple

calculations.
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B1 B2

Fig. 4.3. Two graphs in Theorem 4.3.

Case 2: B is of type θ-graph.

Without loss of generality, we assume that l ≤ p ≤ q.

Subcase 2.1: l > 0.

Note that if p+ q + 2 ≥ 5, then B contains Ck (k ≥ 5) as an induced subgraph.

So i+(B) ≥ i+(C
σ
k ) ≥ 3. Therefore, p+ q + 2 ≤ 4, i.e., p + q ≤ 2. Hence, p + q = 2

since p+ q ≥ 2. Then B contains θ(1, 1, 1) as its underlying graph. As in the above

discussion, we have

i+(θ(1, 1, 1)
σ) = 1 + i+




0 aσ34 −
aσ

14

aσ

12

aσ23 aσ35 −
aσ

15

aσ

12

aσ23

aσ34 −
aσ

14

aσ

12

aσ23 0 0

aσ35 −
aσ

15

aσ

12

aσ23 0 0


 .

So, i+(θ(1, 1, 1)
σ) = 2 if and only if aσ34 −

aσ

14

aσ

12

aσ23 6= 0 or aσ35 −
aσ

15

aσ

12

aσ23 6= 0, which

implies that θ(1, 1, 1)σ is unbalanced.

Subcase 2.2: l = 0.

Assume that p + q ≥ 5. Then B contains P σ
6 as an induced subgraph and

i+(B) ≥ 3. So p+ q ≤ 4. Note that p+ q ≥ 2. Hence, 2 ≤ p+ q ≤ 4.

If p+ q = 2, then B contains θ(1, 0, 1) as its underlying graph. By Theorem 4.1,

θ(1, 0, 1)σ has two eigenvalues if and only if θ(1, 0, 1)σ is unbalanced.

If p + q = 3, then B contains θ(1, 0, 2) as its underlying graph. As in the above

discussion, we get

i+(θ(1, 0, 2)
σ) = 1 + i+




0 aσ34 0

aσ34 0 0

0 0 −2
aσ

15
aσ

25

aσ

12

+ 2
aσ

15
aσ

23
aσ

45

aσ

12
aσ

34


 .

Note that −2
aσ

15
aσ

25

aσ

12

+ 2
a15σa

σ

23
aσ

45

aσ

12
aσ

34

= 0, −4 or 4. So i+(θ(1, 0, 2)
σ) = 2 if and only if

−2
aσ

15
aσ

25

aσ

12

+2
aσ

15
aσ

23
aσ

45

aσ

12
aσ

34

= 0, or−4, which implies that C3 is balanced or C5 is unbalanced

in θ(1, 0, 2)σ.
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If p+ q = 4, then B contains θ(1, 0, 3) or θ(2, 0, 2) as its underlying graph. It can

be verify that

i+(θ(2, 0, 2)
σ) = 2 + i+

(
0 aσ56 −

aσ

16
aσ

25

aσ

12

+
aσ

45

aσ

34

·
aσ

16
aσ

23

aσ

12

aσ56 −
aσ

16
aσ

25

aσ

12

+
aσ

45

aσ

34

·
aσ

16
aσ

23

aσ

12

0

)
,

i+(θ(1, 0, 3)
σ) = 2 + i+

(
0 −

aσ

16
aσ

23

aσ

12

−
aσ

34
aσ

56

aσ

45

−
aσ

16
aσ

23

aσ

12

−
aσ

34
aσ

56

aσ

45

−2
aσ

16
aσ

26

aσ

12

)
.

Note that aσ56 −
aσ

16
aσ

25

aσ

12

+
aσ

45

aσ

34

·
aσ

16
aσ

23

aσ

12

6= 0, so i+(θ(2, 0, 2)
σ) = 3. It can be verify that

i+(θ(1, 0, 3)
σ) = 2 if and only if −

aσ

16
aσ

23

aσ

12

−
aσ

34
aσ

56

aσ

45

= 0 and
aσ

16
aσ

26

aσ

12

> 0, which implies

that Cσ
3 is balanced and Cσ

6 is unbalanced in θ(1, 0, 3)σ.
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