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ON THE PRINCIPAL PERMANENT RANK CHARACTERISTIC

SEQUENCES OF GRAPHS AND DIGRAPHS∗

KEIVAN HASSANI MONFARED†, PAUL HORN‡ , FRANKLIN H.J. KENTER§,

KATHLEEN NOWAK¶, JOHN SINKOVIC‖, AND JOSH TOBIN∗∗

Abstract. The principal permanent rank characteristic sequence is a binary sequence r0r1 · · · rn

where rk = 1 if there exists a principal square submatrix of size k with nonzero permanent and rk = 0

otherwise, and r0 = 1 if there is a zero diagonal entry.

A characterization is provided for all principal permanent rank sequences obtainable by the family

of nonnegative matrices as well as the family of nonnegative symmetric matrices. Constructions for

all realizable sequences are provided. Results for skew-symmetric matrices are also included.

Key words. Symmetric matrix, Skew-symmetric matrix, Permanent rank, Principal permanent

rank characteristic sequence, Generalized cycle, Matching, Minor.

AMS subject classifications. 15A15, 15A03, 15B57, 05C50.

1. Introduction. The principal rank characteristic sequence problem which was

introduced by Brualdi, Deaett, Olesky and van den Driessche asks [2]:

Given a binary sequence r0r1 · · · rn of length n+1, is there an n× n

matrix A such that rk = 1 if and only if there is a principal submatrix

of rank k?

This problem is a simplified form of the more general principal assignment problem

(see for example [5]).
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Recently, several groups have studied the principal rank characteristic sequence

problem with different variations. For real matrices, Brualdi et al. characterize all

realizable sequences with n ≤ 6 and all realizable sequences beginning 010 · · · for

7 ≤ n ≤ 10 [2]. They also provide several forbidden subsequences. Barrett et al.

characterize all allowable sequences over fields with characteristic 2 and also provide

additional results for other fields [1]. Additionally, in [4], the authors study a variation,

the enhanced principal rank sequence, which differentiates whether “some” or “all” of

the principal minors of order k have rank k where they characterize all such realizable

sequences for real matrices of order n ≤ 5.

Our focus will be the permanent, per(A), instead of the rank or determinant.

Recall the definition of the permanent:

Definition 1.1 ([7]). The permanent of an n× n matrix A is defined to be the

sum of all diagonal products of A. That is,

per(A) =
∑

σ∈Sn

(

n
∏

i=1

ai σ(i)

)

.

Recall that

det(A) =
∑

σ∈Sn

(

sgn(σ)

n
∏

i=1

ai σ(i)

)

,

where sgn(·) is the sign of the permutation. Hence, in some sense, the permanent can

be viewed as a variation of the determinant.

Note that determining whether there is a principal submatrix of rank k is equiv-

alent to seeing if there is a principal submatrix of size k with nonzero determinant

(see [2]). Therefore, in a similar fashion, one can define the permanent rank :

Definition 1.2 ([9]). The permanent rank of a matrix A, denoted perrank(A) is

defined to be the size of the largest square submatrix of A with nonzero permanent.

We study the principal permanent rank characteristic sequence defined as follows.

Definition 1.3. Given an n × n matrix A, the principal characteristic perma-

nent rank sequence of A (abbreviated ppr-sequence of A or ppr(A)) is defined as

r0r1r2 · · · rn, where for 1 ≤ k ≤ n,

rk =

{

1 if A has a principal submatrix of size k with nonzero permanent, and

0 otherwise,

while r0 = 1 if and only if A has a zero on its main diagonal.
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Naturally, in this paper, we introduce the principal permanent rank sequence

problem:

Given a binary sequence r0r1 · · · rn, when is there an n×n matrix A

such that ppr(A) = r0r1 · · · rn?

Our contribution is to answer this question and to fully characterize which se-

quences can be realized for various families of real matrices including

• nonnegative matrices (Section 3, Theorem 3.1),

• symmetric nonnegative matrices (Section 4, Theorem 4.5), and

• skew-symmetric matrices whose underlying graph is a tree (Section 5, Theo-

rem 5.2).

Additionally, for each characterization, we provide a construction that produces a

realization for any realizable sequence.

2. Preliminaries. Our main approach is to exploit the duality between matrices

and graphs. Throughout, we will consider graphs, both directed and undirected and

with or without loops. However, we will not consider graphs with multiple edges (see

Proposition 2.1).

Let [n] = {1, . . . , n}. For a (directed) graph G on n vertices, V (G) = [n], and if

α ⊆ [n], the graph G[α] is the induced subgraph of G on vertices in α. For an n× n

matrix A and α ⊆ [n], A[α] denotes the principal submatrix of A formed from the

rows and columns indexed by α. The zero–nonzero pattern of A is a (0, 1)-matrix B

of the same order where Bij = 1 if and only if Aij 6= 0. Also, the underlying graph of

a matrix A is the graph G whose adjacency matrix is the zero–nonzero pattern of A.

Note that G is undirected if and only if the zero–nonzero pattern of A is symmetric.

The following proposition shows that the ppr-sequence of a nonnegative matrix

and its zero–nonzero pattern are one and the same. Thus, for a nonnegative matrix,

we will focus our attention on its underlying graph.

Proposition 2.1. Let B be the zero–nonzero pattern of an n × n nonnegative

matrix A. Then ppr(A) = ppr(B).

Proof. The proof follows immediately from the definition of permanent.

It is well known that various graph properties are captured by the permanent

rank of matrices describing the graph. Such properties include the size of a largest

generalized cycle and the size of the largest perfect matching in the graph (see [8,

page 54] and [3, pages 112 and 247]). Let us formally define a generalized cycle.
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Definition 2.2. A generalized cycle of size k is a permutation, πC , on a subset

of k vertices, C, such that iπC(i) is a directed edge (or a loop if i = πC(i)) for all

i ∈ C.

Observe that for a (directed) graph G, C ⊂ V (G) supports a generalized cycle if

there is a collection of edges within G[C], such that every component of the subgraph

induced on those edges has a Hamiltonian cycle. A generalized cycle can be viewed as

both a permutation or a subset of edges. Here, a bi-directed edge (or undirected edge)

can be seen as a 2-cycle. With this clear bijection, we will refer to such a collection

of cycles also as a “generalized cycle.”

Further, a generalized cycle of order |G| is said to be spanning. Next, recall that

a matching is a collection of disjoint edges. Since a matching in an undirected graph

can be viewed as a disjoint collection of directed 2-cycles, every matching forms a

generalized cycle. The set of all generalized cycles of order k of a (directed) graph G

is denoted by cyck(G).

The connection between generalized cycles and permanent ranks is made formal

by the following proposition.

Proposition 2.3. Let G be the underlying (directed) graph of the nonnegative

matrix A and let ppr(A) = r0r1 · · · rn. For k ≥ 1, rk = 1 if and only if G has a

(directed) generalized cycle of order k.

Proof. Let α ⊆ [n] with |α| = k. Then

per(A[α]) =
∑

π∈Sα

k
∏

j=1

aij ,π(ij),

where α = {i1, . . . , ik}. A term of the sum above is nonzero (and positive) if and only

if π ∈ cyck(G).

We say a binary sequence r0r1 · · · rn is realizable, if there is a matrix whose ppr-

sequence is r0r1 · · · rn.

3. General nonnegative matrices. In this section, we characterize the prin-

cipal permanent rank sequences of nonnegative matrices. We prove:

Theorem 3.1. The binary sequence r0r1 · · · rn is realizable as a ppr-sequence

of a nonnegative matrix if and only if

• r0 = 0 and ri = 1 for i = 1, 2, . . . , n, or

• r0 = 1.
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First, let us prove the following lemma.

Lemma 3.2. Let A be a nonnegative n× n matrix with ppr-sequence r0r1 · · · rn.

If r0 = 0, then ri = 1 for all i = 1, 2, . . . , n.

Proof. Recall r0 = 0 if and only if there is a loop on every vertex in the underlying

graph G. Thus, for all k ∈ [n], G has a generalized cycle of order k consisting of k

loops. Therefore, by Proposition 2.3, rk = 1 for all k ∈ [n]. Lastly, any sequence of

the form r0r1 · · · rn = 011 · · ·1 is realized by In, the identity matrix of order n.

Proof of Theorem 3.1. The case when r0 = 0 is covered by Lemma 3.2. Hence,

we can assume r0 = 1. We will construct a directed graph, G, as follows. Start with

the directed path v1 → v2 → · · · → vn. Next, for each k ∈ [n], add a directed edge

from vk to v1 if and only if rk = 1 (see Figure 3.1).

v1 vk vn
· · ·· · · · · ·· · ·

Fig. 3.1. An illustration of the construction in Theorem 3.1.

Let A be the adjacency matrix of G and ppr(A) = q0q1 · · · qn. Note that there

may be a loop at vertex v1, in which case we take a11 = 1. We claim that qi = ri for

each i ∈ [n]. First note that r0 = 1, because a22 = 0. Now consider rk, for k ≥ 1.

If rk = 1, then there is an edge from vk to v1. Hence, C = (v1, . . . , vk) is a directed

generalized cycle of order k in G. Thus, by Proposition 2.3, qk = 1.

Now suppose that rk = 0 and consider a subset S of k vertices. If v1 /∈ S, then

G[S] is a disjoint union of directed paths and thus has no spanning generalized cycle.

Now assume that v1 ∈ S. If vj ∈ S for some j > k, then vi /∈ S for some 1 < i ≤ k.

Thus, G[S] has no generalized cycle containing vj . Finally, if S = {v1, v2, . . . , vk},

G[S] is a graph on k vertices with a pendent vertex vk. Therefore, G[S] has no

spanning generalized cycle. Hence, by Proposition 2.3, qk = 0.

4. Nonnegative symmetric matrices. In this section, we consider the prin-

cipal permanent rank characteristic sequences of nonnegative symmetric matrices. In

contrast to general nonnegative matrices, the set of allowable sequences is more re-

strictive. The key difference between the symmetric and general case is that in the

symmetric case a single graph edge always counts as a 2-cycle. For example, r2 = 1

if the underlying graph has an edge. Moreover, since every even cycle contains a

perfect matching, this implies that we may always choose a generalized cycle where

all even cycles are 2-cycles. That is, if G contains a generalized cycle of order k, then
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one realization consists of a (possibility empty) matching and a (possibility empty)

collection of odd cycles.

Ultimately, in Theorem 4.5, we fully characterize which ppr-sequences are realiz-

able by nonnegative symmetric matrices. First, we provide some necessary conditions

for a binary sequence to be realizable in Lemmas 4.1–4.4.

The following lemma shows if there is no generalized cycle of an even order 2k,

then every generalized cycle of the graph is smaller than 2k.

Lemma 4.1. Suppose A is a nonnegative n × n symmetric matrix, and let

ppr(A) = r0r1r2 · · · rn. If r2k = 0 for some k > 0, then rj = 0 for all j ≥ 2k.

Proof. Recall that Proposition 2.3 asserts that rj = 1 if and only if the underlying

graph, G, has a generalized cycle on j vertices. First, suppose rj = 1 for some odd

j = 2t + 1. Then there exists a generalized cycle of G consisting of at least one

odd cycle, along with (possibly) a matching. If this odd cycle consists of a single

loop, removing this loop yields a generalized cycle on j − 1 vertices, and so rj−1 = 1.

Otherwise, it is an odd cycle of length at least three, and discarding an arbitrary

vertex from this odd cycle results in a path on an even number of vertices. This

path contains a spanning matching. When this matching is considered with the other

components of the original odd generalized cycle, we have a generalized cycle on j−1

vertices. Thus, rj−1 = 1.

Now, suppose that rj = 1 for some j = 2t. Then there is a generalized cycle C of

order j consisting of a (possibly empty) collection of odd cycles plus a (possibly empty)

matching. If C contains a matching edge, then discarding it yields a generalized cycle

on 2t− 2 vertices. Hence, rj−2 = r2t−2 = 1. Otherwise, C consists solely of an even

number of odd cycles. Discarding one vertex each from two different odd cycles, and

noting again that the remaining even paths contain a spanning matching, yields a

generalized cycle on 2t− 2 vertices. That is, r2t−2 = 1.

Therefore, if r2t+2 = 1, or r2t+1 = 1, we have that r2t = 1, and this implies the

lemma.

The proof of Lemma 4.1 further demonstrates that if an even generalized cycle

exists, then there is a generalized cycle for all smaller even orders. Thus, we are left

to study the restriction that odd cycles impose on the ppr-sequence. In Lemma 4.3,

we show that the odd indices i for which ri = 1 must be sequential; however, first we

make a few structural observations.
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Fact 1. Suppose A is a nonnegative n× n symmetric matrix, and let ppr(A) =

r0r1r2 · · · rn. If 2ℓ + 1 is the length of the shortest odd cycle of G, then r2ℓ+1 = 1,

and rt = 0 for all odd t < 2ℓ+ 1.

Lemma 4.2. Suppose A is a nonnegative n × n symmetric matrix, and let

ppr(A) = r0r1r2 · · · rn. If r2k−1 = 0 and r2k+1 = 1, then every generalized cycle

on 2k+1 vertices is a 2k+1 cycle, and the vertex set of that generalized cycle induces

a cycle with no chords.

Proof. Consider a generalized cycle on 2k + 1 vertices. As noted before, we can

choose a generalized cycle consisting of a collection of odd cycles plus a matching.

If there is an edge in the matching, however, discarding it yields a generalized cycle

on 2k − 1 vertices, that is, r2k−1 = 1. Thus, the generalized cycle is a collection of

odd cycles. If there is more than one odd cycle in the collection, one vertex can be

discarded from two different cycles, and a perfect matching can be taken from the

resulting even paths to find a generalized cycle on 2k − 1 vertices. Thus, assuming

r2k−1 = 0, the generalized cycle is a single cycle.

Now let V be the vertex set for some generalized cycle of order 2k + 1. The set

V induces a 2k + 1 cycle, along with potentially some chords. If there is a chord,

however, G[V ] also consists of a smaller odd cycle (containing the chord) plus a path

on the remaining even number of vertices containing at least one edge. Converting

this path to a matching and discarding an edge would yield a generalized cycle on

2k − 1 vertices, completing the proof of the lemma.

Lemma 4.3. Suppose A is a nonnegative n × n symmetric matrix, and let

ppr(A) = r0r1r2 · · · rn. If r2i+1 = r2k+1 = 1 for some integer i < k, then rt = 1

for all 2i+ 1 ≤ t ≤ 2k + 1.

Proof. By Lemma 4.1 it suffices to just consider rt for odd t.

It also suffices to show that r2k−1 = 1. Suppose to the contrary that r2k−1 = 0.

By Lemma 4.2, every generalized cycle of size 2k+1 is an (induced) 2k+1 cycle with

no chords. Fix such a generalized cycle on vertex set V . Suppose j < k is minimum

with the property that r2j−1 = 1. Again, fix a generalized cycle with size 2j−1. This

is also an (induced) cycle on a vertex set V ′.

If V ′ ∩ V = ∅, then we are done; discarding a vertex from V , we have a path on

2k vertices, and a cycle on 2j − 1 vertices. This path can be treated as a matching,

and discarding sufficiently many edges in the matching yields a generalized cycle of

size 2k − 1. Otherwise, we may assume that the cycle on V ′ follows along the cycle

on V on s contiguous segments sharing a total of ℓ vertices. Immediately following

each segment there must be at least one vertex in V ′ \ V , since by Lemma 4.2, the

2k + 1 cycle has no chords; so s + ℓ ≤ 2j − 1. The vertices in V not in V ′ lie on s
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segments and there are 2k + 1 − ℓ such vertices. For parity reasons, we may have to

delete one vertex from each segment, but we can then obtain a matching on at least

2k + 1− ℓ− s

vertices. Combining this matching with the cycle on 2j − 1 vertices, we have a

generalized cycle on

2k + 1 + (2j − 1)− ℓ− s ≥ 2k + 1

vertices comprised of a cycle on 2j−1 vertices plus a matching. Discarding sufficiently

many edges of the matching, we again obtain a generalized cycle of size 2k − 1.

Finally, the following lemma shows that the largest odd generalized cycle of a

graph strongly constrains the largest even generalized cycle.

Lemma 4.4. Suppose A is a nonnegative n × n symmetric matrix, and let

ppr(A) = r0r1r2 · · · rn. If m and M are respectively the smallest and largest odd

integers so that rm = rM = 1, then rm+M+2 = 0, assuming m+M + 2 ≤ n.

Proof. Let t be the largest even number so that rt = 1, and consider a generalized

cycle C1 on t vertices. Suppose t > M + 1. If the generalized cycle on t vertices con-

tains an odd cycle, then a single vertex can be discarded from an odd cycle to obtain

a generalized cycle on t− 1 vertices, and hence t− 1 ≤ M , which is a contradiction.

Thus, we may assume that the generalized cycle C1, on t vertices, consists of t
2

disjoint edges. Consider a generalized cycle C2 on m vertices. Notice that the vertices

of C2 intersect at most m of the disjoint edges of C1. Consider C3 to be the union

of C2 with all of the edges of C1 that are not adjacent to C2. Now we count how

many vertices are in C3; there are m vertices from C2 and at least 2( t2 −m) vertices

from C1. Hence, C3 has at least m+ 2( t2 −m) = t−m vertices. Since C3 is an odd

generalized cycle, t − m ≤ M . Rearranging, we get t ≤ m + M , which proves the

lemma.

The following theorem shows that the above necessary conditions on the ppr-

sequence of a nonnegative symmetric matrix are indeed sufficient. That is, if a binary

sequence r0r1 · · · rn satisfies the conditions of Lemmas 4.1–4.4, then there is a non-

negative symmetric matrix whose ppr-sequence is r0r1 · · · rn.

Theorem 4.5. Any binary sequence not discounted by Lemmas 3.2–4.4 is real-

izable by a symmetric nonnegative matrix.

That is, r0r1 · · · rn is realizable as a ppr-sequence of a nonnegative symmetric

matrix if and only if

Case 1: r0 = 0 and ri = 1 for i = 1, 2, . . . , n; or
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Case 2: there are nonnegative integers ℓ, k, h with ℓ ≤ k ≤ h ≤ ℓ+ k + 1 where

a) r2j+1 = 0 for any j < ℓ,

b) r2j+1 = 1 for any j with ℓ ≤ j ≤ k,

c) r2j+1 = 0 for any j with k < j ≤ n−1
2 ,

d) r2j = 1 for any 0 ≤ j ≤ h, and

e) r2j = 0 for any h < j ≤ n−1
2 ; or

Case 3: r0 = 1, ri = 0 for all odd i ≤ n, ri = 1 for all even i ≤ 2h and ri = 0 for all

even i > 2h for some nonnegative h ≤ ⌈n−1
2 ⌉.

Proof. We now proceed in proving the theorem by cases. For each case, we prove

necessity using the previous lemmas then provide a construction.

Case 1: A sequence with r0 = 0 is realizable as a ppr-sequence if and only if ri = 1

for i = 1, 2, . . . , n.

Necessity for this case is covered by Lemma 3.2 where the identity matrix, In, realizes

the sequence.

Case 2: A sequence with r0 = 0 and ri = 1 for some odd i is realizable as a ppr-

sequence if and only if Cases 2a–2e are met.

Let us demonstrate the necessity of Cases 2a–2e. We first show that h ≤ k+ℓ+1.

Using Lemma 4.4 with m = 2ℓ + 1 and M = (2ℓ + 1) + 2(k − ℓ) = 2k + 1, we have

rm+M+2 = r2(ℓ+k+2) = 0. By Lemma 2, it follows that the maximum index i for

which ri = 1 obeys i < ℓ+ k+1. Hence, h ≤ ℓ+ k+1. Fact 1 implies that rt = 0 for

any odd t where t is less than the length of the shortest odd cycle of the graph. This

implies Case 2a is necessary. Similarly, Lemma 4.3 implies for any odd t between the

length of the shortest odd cycle and the length of the largest odd generalized cycle

of the graph, rt = 1. This shows the necessity of Case 2b and Case 2c. Lemma

3.2 asserts r0 = 1, and Lemma 4.1 implies for even numbers t no more than a fixed

number, rt = 1, and for even numbers t more than that fixed number, rt = 0. This

implies Case 2d and Case 2e are necessary. It now suffices to construct a matrix for

the three following subcases depending upon the equality/inequality among ℓ, k and

h.

(all equal to 0): 0 = ℓ = k = h (i.e., r0 = r1 = 1 and ri = 0 for i = 2, 3, . . . , n).

Consider the graph with n isolated vertices where one vertex has a loop. The adja-

cency matrix has r0 = r1 = 1 and ri = 0 otherwise.

(all equal but nonzero): r0 = 1 and 0 < ℓ = k = h.
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Consider a cycle on 2ℓ + 1 vertices and n − 2ℓ − 1 isolated vertices. The only odd

generalized cycle is on 2ℓ + 1 vertices, and there is a matching on the cycle for all

even 2j for j ≤ ℓ.

(not all equal): r0 = 1 and ℓ, k, h are not all equal.

We construct a graph as follows. Construct an odd cycle on vertices 1, 2, . . . , 2ℓ + 1

(if ℓ = 0, take the odd cycle to be a loop on a single vertex), and a path on vertices

2ℓ+1, 2ℓ+2, . . . , 2k+1. Add 2(h−k)−1 vertices and connect each of them to one of

the vertices 1, 2, . . . , 2(h− k)− 1 such that no pair of them is connected to the same

vertex. Finally, add n− 2h vertices and connect all of them to vertex 1. See Figure

4.1.

1

2h+ 1

2h+ 2
...

n

23
2(h− k)− 1

2ℓ+ 1

2k + 2

2k + 32k + 42h

· · ·

· · ·

2ℓ+ 2

2k + 1

· · ·

Fig. 4.1. An illustration of the construction of Case 2 (not all equal) in the proof of Theorem 4.5.

For the non-equal case, we now verify that Cases 2a–2e hold. Cases 2a–2c assert

that the smallest and the largest odd generalized cycles of the graph are to be of sizes

2ℓ+1 and 2k+1, respectively. Also, Case 2d and 2e assert that the graph has to have

a maximum matching of size 2h. This matching is also a generalized cycle of size 2h.

The smallest odd cycle of G is of size 2ℓ+ 1, hence

a) r2j+1 = 0 for j < ℓ.

Now, consider the 2ℓ + 1 cycle joint with (possibly zero) disjoint edges from the

path. This shows there are generalized cycles of length 2j + 1 for ℓ ≤ j ≤ k. That is,
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b) r2j+1 = 1 for ℓ ≤ j ≤ k, and

c) r2j+1 = 0 for any j with k < j.

Note that the graph has a maximum matching of size h. This is obtained by

taking the edges that connect each of the vertices 1, 2, . . . , 2(h−k)−1 to the pendent

vertex adjacent to them (2(h−k)−1 edges), every other edge in the rest of the 2ℓ+1

cycle (2ℓ+1−2(h−k)+1
2 edges), and the maximum matching from the path (k− ℓ edges).

Thus,

d) r2j = 1 for any 1 ≤ j ≤ h, and

e) r2j = 0 for any h < j.

Case 3: A sequence with r0 = 0 and ri = 1 for no odd i is realizable as a ppr-sequence

if and only if ri = 1 for all even i ≤ 2h and ri = 0 for all even i > 2h for some

nonnegative h ≤ ⌈n−1
2 ⌉.

Necessity follows from Lemmas 3.2 and 4.1 as in the proof for Cases 2d and 2e. This

case is obtained with a graph with h disjoint edges and n− 2h isolated vertices.

5. Skew-symmetric matrices. Previously, we only considered nonnegative

matrices. This consideration benefited the analysis as every contribution to the per-

manent was necessarily positive.

In this section, we consider skew-symmetric matrices. Recall that a real matrix

A is skew-symmetric if Aji = −Aij . First note that the odd positions in the ppr-

sequence of a skew-symmetric matrix have to be all zero, as shown in the following

lemma.

Lemma 5.1. Let A be a skew-symmetric matrix with ppr(A) = r0r1 · · · rn. Then

r2i+1 = 0 for all integers i with 0 ≤ i ≤ ⌊n−1
2 ⌋.

Proof. The proof follows from Section 2.11 of [6]. Indeed, if B is an odd principal

submatrix, per(B) = per(BT ) = per(−B). Since B is of odd order, per(−B) =

−per(B). Hence, per(B) = 0.

Now, the question is to characterize the patterns of zeros and ones in the even

positions of this sequences. Concentrating on the even positions, several examples of

small size are checked and it is observed that there are no gaps between the ones in

the even positions. It is easy to see that this property holds for trees. For any graph

G, let µ(G) denote the number of edges in the largest matching of the graph G. In

the following theorem, we will characterize ppr(A) for all skew-symmetric matrices

whose underlying graph is a tree.

Theorem 5.2. Let A be a skew-symmetric matrix whose underlying graph is a

tree T . Then, the principal permanent rank sequence ppr(A) = r0r1 · · · rn has rk = 1
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if and only if k is even and k ≤ 2µ(T ). Furthermore, any such sequence is realizable

by a skew-symmetric matrix whose underlying graph is a tree.

Proof. If k ≤ n is odd, then rk = 0 by Lemma 5.1. Choose k even and α ⊂ [n]

with |α| = k. Let B = A[α] = (bi,j). We will show that the permanent of B is nonzero

if k ≤ 2µ(T ) and 0 otherwise.

per(B) =
∑

σ∈Sk

(

k
∏

i=1

bi σ(i)

)

=
∑

σ∈Mk/2

(

k
∏

i=1

bi σ(i)

)

+
∑

σ∈Dk\Mk/2

(

k
∏

i=1

bi σ(i)

)

+
∑

σ∈Sk\(Dk∪Mk/2)

(

k
∏

i=1

bi σ(i)

)

,

where Mk/2 is the set of permutations corresponding to the maximum matchings of

T [α] (i.e., a disjoint product of transpositions) and Dk is the set of all derangements

on α. Observe that for σ ∈ Dk \Mk/2, σ must have a cycle of size 3 or more; however,

T is a tree, so no such σ contributes to its sum. Similarly, any permutation σ 6∈ Dk

also contributes 0. Therefore, we have

per(B) =
∑

σ∈Mk/2

(

k
∏

i=1

bi σ(i)

)

= (−1)k/2
∑

m∈Mk/2





∏

{i,j}∈m

b2ij



 .

where the final line considers the matchings as a collection of edges. Since for the last

term, b2i,j > 0, the final sum is nonzero so long as the sum is not empty. The sum is

empty only when k > 2µ(T ).

Now, we construct a skew-symmetric matrix A whose underlying graph is a tree

T and ppr(A) = r0r1 · · · rn, where rj = 1 if and only if j is even and 1 ≤ j ≤ 2m, for

some m ≤ n/2. Consider a path of length 2m on vertices 1, 2, . . . , 2m. Add n − 2m

vertices and connect all of them to vertex 2m− 1. Let B be the adjacency matrix of

this graph, and A be the matrix obtained from B by negating all the lower-diagonal

entries. Since T does not have any cycles, all the nonzero terms in the permanent of

a principal submatrix of A come from a matching of T . Hence, ppr(A) = r0r1 · · · rn,

with rj = 1 if and only if j is even and 1 ≤ j ≤ 2m.
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Note that for the matrix A below whose graph is not a tree (it is C4, a cycle on

four vertices) the ppr(A) = 10100. That is, r4 = 0 even though µ(C4) = 2:









0 1 0 1

−1 0 1 0

0 −1 0 1

−1 0 −1 0









.

This shows that Theorem 5.2 is not necessarily true for skew-symmetric matrices

whose graph is not a tree. An interesting question is the following:

Question. Let A be an n×n skew-symmetric matrix with ppr(A) = r0r1 · · · rn.

Are there i < j ≤ ⌊n
2 ⌋ such that r2i = 0 and r2j = 1?
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