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Abstract. Let ρr,m(x, λ) := (x − λ)r

∑m
i=0

(r+i−1
i

)
xm−iλi. In this paper it is shown that if

λ1, . . . , λn are complex numbers such that λ1 = λ2 = . . . = λr > 0 and 0 ≤ ∑n
i=1 λk

i ≤ nλk
1 , for

1 ≤ k ≤ m := n − r, then

n∏
i=1

(λ − λi) ≤ ρr,m(λ, λ1), for all λ ≥ 6.75λ1. (∗)

Moreover, if r ≥ m, then (∗) holds for all λ ≥ λ1, while if r < m, but r is close to m, and n is
large, one can lower the constant of 6.75 in the inequality (∗). The inequality (∗) is inspired by, and
related to, a conjecture of Boyle and Handelman on the nonzero spectrum of a nonnegative matrix.
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1. Introduction and background. Suppose that λ1, . . . , λn are complex num-
bers satisfying that

Sk :=
n∑

i=1

λk
i ≥ 0, k ≥ 1. (1.1)

The condition (1.1) on λ1, . . . , λn is a well–known necessary condition for n numbers
to be the eigenvalues of an n× n nonnegative matrix (see, for example, Berman and
Plemmons [3]). Furthermore, from a result due to Friedland [6, Theorem 1], it is
known that (1.1) implies that one of the λi’s is nonnegative and majorizes the moduli
of the remaining numbers. Assume for the moment, without loss of generality, that
λ1 = max1≤i≤n |λi|.

In a celebrated result due to Boyle and Handelman [4], the following claim, which
is stated here in a special case, is proved:

Theorem 1.1. ([4, Subtuple Theorem, Theorem 5.1]) Suppose ∆ = (λ1, . . . , λr)
is an r–tuple of nonzero complex numbers with the following properties:
(i) The polynomial in the variable λ given by

∏r
i=1(t−λi) has all its coefficients in R.

(ii) λ1 = |λ1| > |λi|, i = 2, . . . , r.
(iii) The condition (1.1) holds for all k ≥ 1 and when Sk > 0, then S�k > 0, for all


 ≥ 1.
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Then there exists a nonnegative matrix B such that for some positive integer q, Bq

is a matrix with positive entries and such that its nonzero spectrum is λ1, . . . , λr.
We comment that the nonzero numbers λ1, . . . , λn satisfying Theorem 1.4 may

have to be augmented by a very large number of 0’s so that, altogether, they form
the spectrum of a nonnegative matrix. As an example we cite the 5–tuple (3 +
ε, 3,−2,−2,−2) which, for sufficiently small ε > 0, is not the spectrum of a 5 × 5
nonnegative matrix, but which for sufficiently large n is the nonzero spectrum of
some n× n nonnegative matrix, see Boyle and Handelman [4].

In the papers by Keilson and Styan [8], Fiedler [5], and Ashley [2] the authors
show independently and using different methods of proof that if the λi’s are the
eigenvalues of a nonnegative matrix A, then

n∏
i=1

(λ− λi) ≤ λn − λn
1 , ∀λ ≥ λ1, (1.2)

with equality for any λ > λ1, if and only if A is the simple cycle matrix.
In Boyle and Handelman, [4, Question, p.311], the authors conjecture a stronger

result than (1.2), namely, if λ1, . . . , λr are all the nonzero eigenvalues of A, then

r∏
i=1

(λ− λi) ≤ λr − λr
1, ∀λ ≥ λ1. (1.3)

Consider the following conjectures:
conjecture 1.2 (weak conjecture). Let λi, 1 ≤ i ≤ n, be complex numbers

satisfying:
(i) |λi| ≤ λ1, for all 1 ≤ i ≤ n.
(ii) The moments Sk :=

∑n
i=1 λ

k
i ≥ 0, for all positive integers k.

Then for every λ ≥ λ1,

n∏
i=1

(λ− λi) ≤ λn − λn
1 . (1.4)

Firstly, note that if Conjecture 1.2 is true, then it implies that the Boyle and
Handelman conjecture ((1.3) with n instead of r) is true as we can take λ1, . . . , λn to
be the nonzero spectrum of the nonnegative matrix in question. In relation to this
we remark that the conditions of Conjecture 1.2 are not sufficient for the λi’s to be
the nonzero eigenvalues of a square nonnegative matrix, even when appended by any
number of zeros. As an example we give the 5–tuple (3, 3,−2,−2,−2); see [3, p.88].
Secondly, in [9], Koltracht, Neumann, and Xiao show that (i) the conjecture is true
for n ≤ 5, (ii) the conjecture is true when all the λi’s are real, and (iii) in general
there is a sequence of numbers cn > λ1, with cn → λ1 as n → ∞, such that (1.4)
holds for all λ ≥ cn. In [1], Ambikkumar and Drury prove that if λ1, . . . , λn are the
eigenvalues of a nonnegative matrix, with λr+1 = . . . = λn = 0, then (1.4) is true for
r ≥ n/2.
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Given Conjecture 1.2, most of our present paper is motivated by what can be
said about the following stronger conjecture:

conjecture 1.3 (strong conjecture). Let λi, 1 ≤ i ≤ n, be complex numbers
satisfying:
(i) λ1 ≥ |λi|, for all 1 ≤ i ≤ n.
(ii) Sk :=

∑n
i=1 λ

k
i ≥ 0, for 1 ≤ k ≤ n− 1.

Then for every λ ≥ λ1,

n∏
i=1

(λ− λi) ≤ λn − λn
1 . (1.5)

Our main difficulty in proving Conjecture 1.3 is that we do not know how to use the
part of condition (i) which requires that |λi| ≤ λ1 in conjunction with the conditions
in (ii). We believe that knowing how to use the two conditions together is the key to
proving the conjecture. Therefore in the present paper we shall assume on λ1, . . . , λn

that the following conditions hold:
(I) λ1 > 0.
(II) 0 ≤ Sk ≤ nλk

1 , for 1 ≤ k ≤ n− r, for some 1 ≤ r ≤ n.
Subsequently, r in (II) will be the multiplicity of λ1 among the λi’s. It is not

hard to see that assumptions (I) and (II) alone are not sufficient to imply the Strong
Conjecture (Conjecture 1.3), as a counterexample that we shall give in the next section
shows (see Example 2.6). Nevertheless, in our main result we show that assumptions
(I) and (II) imply that (1.5) is true for λ ≥ 6.75λ1. In the course of proving this
result it will become clear that if the multiplicity of λ1 among the λi’s increases, then
a stronger result than (1.5) is available.

In order to state our main result, some further notations are needed. For any two
positive integers r and m, let

ρr,m(x, λ) = (x− λ)r
m∑

i=0

(
r+i−1

i

)
xm−iλi. (1.6)

It will become evident in Section 2 that this polynomial has the property that if
δ1, . . . , δn (n = r +m) are the roots of ρr,m, then the moments

∑n
i=1 δ

k
i = 0, for all

1 ≤ k ≤ m. Note that ρ1,n−1(x, λ) = xn − λn. We are now ready to state our main
result:

Theorem 1.4. Let λi, 1 ≤ i ≤ n, be complex numbers satisfying λ1 = λ2 = . . . =
λr > 0 and 0 ≤ ∑n

i=1 λ
k
i ≤ nλk

1 , for 1 ≤ k ≤ m := n− r. Then the inequality

n∏
i=1

(λ − λi) ≤ ρr,m(λ, λ1), for all λ ≥ 6.75λ1, (1.7)

holds. Moreover, if r ≥ n/2, then (1.7) is valid for all λ ≥ λ1.
We note that as r increases, the right hand side of (1.7), where ρr,m(λ, λ1) is

given in (1.6), decreases for all λ ≥ λ1, that is:

ρr+1,m−1(λ, λ1) ≤ ρr,m(λ, λ1), for all λ ≥ λ1 (1.8)
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which easily follows from well known properties of the binomial coefficients. As an
example for (1.8) consider the case where n = 8 and where λ1 = . . . = λ5;λ6, λ7, λ8,
which are given by: 

1

1

1

1

1

−0.1633

0.03495+ 0.06490i

0.03495− 0.06490i



,

come from the eigenvalues of some 8 × 8 nonnegative matrix. The figure below rep-
resent a plot in the interval [1, 3] using 200 equally spaced points of the graphs of:
(i)

∏8
i=1(x− λi) (the lower curve in the figure).

(ii) ρ5,3(x, 1) = (x− 1)5
∑3

i=0

(
5+i−1

i

)
x3−i (the middle curve in the figure).

(iii) ρ1,7(x, 1) = x8 − 1 (the top curve in the figure).
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In Section 2 we develop some preliminary results which we shall need in the proof
of Theorem 1.4. We devote Section 3 to proving Theorem 1.4. Section 4 discusses
how can we lower the lower bound 6.75λ1 when r < n/2, but r is still fairly large. See
Proposition 4.1 for the precise statement. Two special cases that we can derive from
that proposition are as follows: If n is large enough and if r > 0.41n, then Theorem
1.4 holds for λ ≥ 5λ1. If n is large enough and if r > 0.48n then Theorem 1.4 holds
for λ ≥ 4λ1.

Theorem 1.4 and our work here leads us to conjecture the following:
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conjecture 1.5 (conjecture st(r)). Let λi, 1 ≤ i ≤ n, be complex numbers
satisfying that:
(i) λ1 = . . . = λr and |λi| ≤ λ1, for all i = 1, . . . , n.
(ii) Sk :=

∑n
i=1 λ

k
i ≥ 0, for 1 ≤ k ≤ m := n− r.

Then (1.7) holds for all λ ≥ λ1.

2. Preliminaries. Consider the formal equation in the indeterminates s1, s2, . . .;
a1, a2, . . .; and t:

exp

(
−

∞∑
n=1

snt
n

n

)
= 1 +

∞∑
n=1

ant
n (2.1)

The left hand side has a meaning in the ring Q[s1, s2, . . .][[t]] and the right hand side
has a meaning in the ring Q[a1, a2, . . .][[t]]. On equating coefficients of tn on both sides
of (2.1), we see that on the one hand an = An(s1, . . . , sn) is a weighted homogeneous
polynomial of degree n in s1, . . . , sn, where for each 1 ≤ i ≤ n, si has weight i. On
the other hand one can express the sn’s as functions of the an’s as follows: By taking
logarithms, (2.1) is equivalent to:

−
∞∑

n=1

snt
n

n
= log

(
1 +

∞∑
n=1

ant
n

)
. (2.2)

In particular, sn = Sn(a1, . . . , an) is a weighted homogeneous polynomial of degree n
in a1, . . . , an, where for each 1 ≤ i ≤ n, ai has weight i. Write A = (A1, . . . Ar) and
S = (S1, . . . , Sr). Then it is clear from the discussion above that:

Lemma 2.1. A ◦ S = S ◦A = Id.

We shall next determine ∂Ai/∂sj, for all 1 ≤ j ≤ i and for i = 1, 2, . . .. Differen-
tiating both sides of (2.1) with respect to sj , the following lemma is obtained:

Lemma 2.2.

∂

∂sj
(1 +A1t+ . . .+Ant

n) = − tj

j

(
1 +A1t+ . . .+An−jt

n−j
)
. (2.3)

The following corollary to Lemma 2.2 can also be derived from Newton’s identities
which can be found, for example, in Householder [7, p.36]:

Corollary 2.3. Under the above notation, we have that:

Ak =
∑

i1+2i2+···nin=k
i1,...,ik≥0

(−1)i1+i2+···+in
si1
1 s

i2
2 · · · sin

n

1i12i2 · · ·nin · i1!i2! · · · in! , k ≥ 1. (2.4)

Proof. Expand Ak in a Taylor series about (s1, . . . , sn) = (0, . . . , 0) and apply
Lemma 2.2. Alternatively, this can be seen from expanding the infinite product∏∞

i=1 exp(−snt
n/n).
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We now consider an application of Lemma 2.1 to polynomials. Let z1, . . . zn be
complex numbers and consider the polynomial

f(z) =
n∏

i=1

(z − zi) = zn + a1(f)zn−1 + . . .+ an(f).

Put

sk(f) := zk
1 + . . .+ zk

n, k = 1, 2, . . .

Then sk(f) depends only on f and we have the following observation:
Lemma 2.4. For all k = 1, . . . , n,

ak(f) = Ak(s1(f), . . . , sk(f)) and sk(f) = Sk(a1(f), . . . , ak(f)). (2.5)

Proof. We have the following equalities from the formal power series in t:

log (1 + a1(f)t+ . . . an(f)tn) = log
∏n

i=1(1 − zit)

= −
∞∑

k=1

(
n∑

i=1

zk
i

)
tk

k
= −

∞∑
k=1

sk(f)
k

tk.

The equalities in (2.5) now follows from (2.2).
For convenience we introduce the following notation. Let Pn(t; s) = 1+A1(s)t+

. . .+An(s)tn, where s = (s1, s2, . . .). Notice that Pn(t, s) depends only on s1, . . . , sn.
For a given number µ write µ for (µ, µ, . . .). Notice that the for k < n, Pk(t; s) is the
truncation at tk of Pn(t; s).

examples 2.5.
(i) Pn(t;−1) = 1+t+t2+ . . .+tn. This is easy to see by noticing that this polynomial

factors as
∏n

j=1(1− ζj
n+1t). Clearly

∑n
j=1 ζ

kj
n+1 = −1, for all k = 1, 2, . . . , n.

(ii) Pn(t; 0) = 1.
(iii) If µ is a positive integer, then for n ≥ µ, Pn(t;µ) = (1 − t)µ. If n < µ, then

truncating (1− t)µ at tn yields that Pn(t;µ).
(iv) More generally, for any integer µ, Pn(t;µ) is the truncation at tn of the Taylor

series of (1−t)µ. This is an easy consequence of (2.2); just expand log(1−t)µ.
(v) Pn(t; (σ, 0, 0, . . .)) = 1 − σt + (σt)2/2! − (σt)3/3! + . . . + (−1)n(σt)n/n!. This

follows immediately from the Taylor series of e−σt and using (2.1).
We further define an involution on the set Pn(x) of polynomials of degree at most

n in x, f 
→ f̃ given by:

f̃(x) = xnf(1/x).

If n is not specified, we take n to be equal to deg(f). Under this involution we have
that if P = Pn(t; s) ∈ Pn(t) is considered as a polynomial in t, where s = (σ1, σ2, . . .)
are given numbers, then

si(P̃ ) = σi, i = 1, . . . , n.
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example 2.6. Consider the polynomial f11(x) = (x− 1)
∑10

i=0
(−9x)10−i

i!

∈ P11(x). Then f̃11(t) = (1− t)P10(t, (9, 0, 0, . . .)) and in particular 0 ≤ sk(f11) ≤ 10,
for k = 1, 2, . . . , 10. On the other hand it is easy to see that f11(x) − (x11 − 1) has
a root x0 ≈ 1.62314637 and is positive for 1 < x < x0. Let λ1 = 1, λ2, . . . , λ11 be
the roots f11(x). Then λ1, . . . , λ11 satisfy Conditions (I) and (II) (which appear after
(1.5)). This example shows that the Strong Conjecture (Conjecture 1.3) will not be
true if we suppress the condition that all |λi| ≤ λ1. However, in the next section we
show that this condition is not necessary if λ ≥ 6.75λ1.

Finally, for every two integers r > 0 and m ≥ 0, we define the polynomial:

πr,m(x) =
m∑

i=0

(
r+i−1

i

)
xm−i. (2.6)

It is easy to see using Taylor’s formula for the function φ(x) = (1 + x)−r, that
π̃r,m(x) = Pm(x,−r).

3. Proof of Theorem 1.4. In this section we prove Theorem 1.4. The state-
ment of the theorem is homogeneous in λ1, . . . , λn. For this reason, there will be no
loss of generality if we assume that λ1 = . . . = λr = 1. The theorem itself is a direct
corollary of the following theorem:

Theorem 3.1. Let m and r be two positive integers. Suppose that f(x) is a monic
polynomial of degree m, which satisfies that −r ≤ sk(f) ≤ m, for all 1 ≤ k ≤ m.
Then for every x ≥ 6.75,

f(x) ≤ πr,m(x), (3.1)

where πr,m(x) is the polynomial of degree m given in (2.6). Moreover, if r ≥ m,
the above inequality holds for all x ≥ 1. With Theorem 3.1 at hand, Theorem 1.4
easily follows by letting f(x) =

∏n
i=r+1(x − λi) and multiplying both sides of (3.1)

by (x− 1)r

Before we can prove Theorem 3.1, some estimates are required. Write l =
max(r,m). Let T be the set of all monic polynomials f(x) of degree at most m
such that −r ≤ sk(f) ≤ m, for all 1 ≤ k ≤ n. Let T ′ be the set of all monic polyno-
mials f(x) of degree at most m such that −l ≤ sk(f) ≤ l, for all 1 ≤ k ≤ m. Clearly
T ⊂ T ′.

Lemma 3.2. For every f ∈ T ′ and for any 1 ≤ q ≤ m,

|aq(f)| ≤ (
l+q−1

q

)
<

(
l+q
q

)
.

Proof. It is clear from equation (2.4) that

|Aq(s1, s2 . . .)| ≤ Aq(−|s1|,−|s2|, . . .).
It thus suffices to maximize aq under the restrictions −l ≤ sk ≤ 0 and 1 ≤ k ≤ m.
Under these restrictions, equation (2.4) shows that Aq is monotonically decreasing in
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each si. Consequently, aq(f) ≤ Aq(−l, . . . ,−l). Now, by Example 2.5(iv), the Taylor
polynomial of degree m of the function (1− t)−l, g(t), has sk(g̃) = −l. Therefore,

Aq(−l, . . . ,−l) =
1
q!
dq

dtq
(1− t)−l |t=0 =

l(l + 1) · · · (l + q − 1)
q!

=
(
l+q−1

q

)
<

(
l+q
q

)
.

This proves the lemma.
Lemma 3.2 yields the following corollary:
Corollary 3.3. Suppose that r and m, with r ≥ m, are two positive integers

and let f(x) be monic polynomial of degree m which satisfies that −r ≤ sk(f) ≤ m,
for all 1 ≤ k ≤ m. Then for all x ≥ 1,

f(x) ≤ πr,m(x).

Proof. If r ≥ m, then l = r. Hence, by Lemma 3.2,

|aq(f)| ≤ (
r+q−1

q

)
= aq(πr,m)

and the proof follows.
Corollary 3.3 establishes Theorem 3.1 for the case that r ≥ m. From now on we

will assume that r < m and, in particular, that l = max{r,m} = m. We have the
following technical lemma:

Lemma 3.4. For all integers n ≥ 1 and q > n/2,(
n+q

q

) ≤ (1.5)n · 3q/2.

Proof. We first show by induction on n that for any two positive integers n and
q, (

n+q
q

) ≤ (n+ q)n+q

2nnqq
. (3.2)

Denote the left hand side of this inequality by an,q and the right hand side by bn,q.
Then for n = 1, a1,q = 1+q, while b1,q = (q+1)(1+1/q)q/2 ≥ a1,q. Testing successive
quotients yields that

an+1,q

an,q
=

n+ q + 1
n+ 1

≤ n+ q + 1
n+ 1

· (1 + 1/(n+ q))n+q

(1 + 1/n)n
=

bn+1,q

bn,q
.

Apply now the induction hypothesis.
Assume now that q > n/2 and consider the function ψ(x) = (1 + x)1+x/xx, for

x ≥ 1/2. It is easily checked that − logψ(x) is convex. Using the linear approximation
at x = 1/2, it follows that for all x ≥ 1/2:

logψ(x) ≤ logψ(1/2) + log 3 · (x − 1/2),
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which implies that ψ(x) ≤ 1.5 ·3x. On the other hand, (3.2) reads
(
n+q

q

)
< ψ(q/n)n/2.

The lemma now readily follows.
We are now ready to prove Theorem 3.1.
Proof. [of Theorem 3.1] Fix a number x ≥ 1. Consider T as a compact subset of

Pm(z) with respect to the Euclidean topology. The function g 
→ g(x) is a continuous
real function on T . Hence there exists an f ∈ T , such that:

f(x) = max
g∈T

g(x). (3.3)

We want to show that necessarily sk(f) = −r, for all 1 ≤ k ≤ m, which is equivalent
to f(x) = πr,m(x). Clearly we have that

f(x) ≥ πr,m(x). (3.4)

Consider any g ∈ T as a polynomial in x as well as in the indeterminates
s1, . . . , sm. We will show that for any 1 ≤ i ≤ m, the numbers

ξi : =
∂g

∂si
evaluated at x and sj = sj(f), 1 ≤ j ≤ m,

are negative. Since f has the maximum property (3.3), if follows that sj(f) = −r,
for all 1 ≤ j ≤ m, and the theorem will be proved.

Using Lemma 2.2 above, we have that

ξi = −f(x)− am(f)− am−1(f)x− . . .− am−i+1(f)xi−1

ixi
. (3.5)

By (3.4), it suffices to show that

am(f) + am−1(f)x+ . . .+ am−i+1(f)xi−1 ≤ πr,m(x),

as this would imply that ξi < 0.
Let µ = �m/2� and consider first the case i ≤ m/2. By a combination of Lemma

3.2 with Lemma 3.4 we have that:

am(f) + am−1(f)x+ . . .+ am−i+1(f)xi−1 (3.6)

≤
m∑

q=µ+1

(1.5)m3qxm−q/2 =
(1.5)m3m

2
· (x/3)

m−µ − 1
x/3− 1

. (3.7)

Assume for the moment that x satisfies that:

(1.5)m3m

2
· (x/3)

m−µ − 1
x/3− 1

≤ πr,m(x). (3.8)

Then by (3.6), (3.8), (3.5), and (3.4), it follows that ξi < 0 whenever i ≤ m/2, and
so si(f) = −r for all i ≤ m/2. Consequently,

ai(f) =
(
r+i−1

i

)
, for all i ≤ m/2. (3.9)
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Suppose now that i > m/2. Then using (3.9) together with (2.3) shows that,

−iξi = xm−i +
m−i∑
j=1

(
r+j−1

j

)
xm−i−j ,

which shows that ξi < 0 also for i > m/2. This proves that the inequality (3.1) is
true for every x ≥ 1 that satisfies (3.8).

It remains to show that every x ≥ 6.75 satisfies (3.8). Indeed, for x ≥ 6.75 we
simply have that

(1.5)m3m

2
· (x/3)

m−µ − 1
x/3− 1

≤ (4.5)m(x/3)m−µ

2.5
≤ xm ≤ πr,m(x). (3.10)

The proof of the theorem is now complete.

4. Improving the lower bound 6.75λ1 when the multiplicity of λ1 is
large. Using the notation of Theorem 3.1, we will show now that the constant 6.75
in (1.7) can be reduced when r is large. Recall that in the proof of Theorem 3.1 we
have observed that the inequality (1.7) is true whenever x ≥ 1 and satisfies (3.8). For
the purpose of proving Theorem 3.1 it was sufficient to bound from above the left
hand side of (3.8) by xm. When r is large, πr,m(x) is significantly larger than xm and
we can take advantage of this fact to establish (3.8) (and thus (1.7)) for values of x
smaller than 6.75. Recall that when r ≥ m, Theorem 3.1 holds for all x ≥ 1. We will
thus assume from now on that r < m. We first need an estimate on πr,m(x).

Let f = π̃r,m so that f(t) is the mth Taylor polynomial of (1 − t)−r at t = 0.
Write (1 − t)−r =

∑∞
k=0 akt

k so that ak =
(
k+r−1

r

)
. Suppose now that t = 1

2 − 1
2ε,

where ε > 0. Then, using the fact that for k ≥ m > r, ak+1/ak < 2, we have that:

|(1 + t)−r − f(t)| =
∞∑

k=m+1

akt
k ≤ am+1t

m+1
∞∑

k=0

(2t)k =
am+1t

m+1

ε
. (4.1)

Letting t = 1/x, (3.8) can be rewritten as

g(t) :=
1.5m

2
· (3t)µ+1 · 1− (3t)m−µ

1− 3t
≤ f(t).

Using the estimate (4.1) on f(t), it suffices for t to satisfy that

h(t) := g(t) +
am+1t

m+1

ε
≤ (1− t)−r. (4.2)

From now on assume that t < 1/3 and m ≥ 5. In particular then ε ≥ 1/3 > 1/6.
Since am+1 < 2m+r−1 ≤ 22m−1, this shows that am+1t

m+1/ε ≤ 3(4t)m.
On the other hand, [1− (3t)m−µ]/(1− 3t) can be bounded above by (m−µ) and

1.5m(3t)µ+1 > (4t)m. Now,
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h(t) =
1.5m

2
· (3t)µ+1 · 1− (3t)m−µ

1− 3t
+
am+1t

m+1

ε
≤ m− µ

2
1.5m(3t)µ+1 +3(4t)m

≤
(
m− µ

2
+ 3

)
1.5m(3t)µ+1 ≤ m · 1.5m(3t)m/2,

where in the last inequality we have used the assumption that m ≥ 5. It thus suffices
for t to satisfy that:

m · 1.5m(3t)m/2 ≤ (1− t)−r.

Taking logarithms of both sides we obtain that

mψ(t)− logm
log(1− t)

≤ r, (4.3)

where

ψ(t) =
log(1.5) + 1

2 log(3t)
− log(1− t)

.

The function ψ(t) satisfies that ψ(1/6.75) = 0, ψ(1/3) = 1, and ψ(t) < 0, for
t < 1/6.75. Moreover, ψ(t) is monotonically increasing on the interval [1/6.75, 1/3].
To see this, notice that

φ(t) := log2(1− t)ψ′(t) =
− log(1− t)

2t
− log 1.5 + 0.5 log(3t)

1− t

which shows that φ(1/3) = ψ′(1/3) = 0, while

φ′(t) =
log(1 − t)

2t2
− log 1.5 + 0.5 log(3t)

(1− t)2

is clearly negative in [1/6.75, 1/3]. Consequently, 1/3 is the only zero of φ(t) and ψ′(t)
in this interval and so ψ(t) is monotone.

Suppose now that 1/6.75 ≤ t ≤ 1/3. Then log(1− t) ≤ −1/7. By (4.3) it suffices
for t and r to satisfy that:

mψ(t) + 7 logm ≤ r. (4.4)

Equation (4.4) and the ensuing discussion following equation (4.3) show the following:
Proposition 4.1. Let θ(x) = ψ(1/x) be defined on the interval [3,∞). Then:
(i) θ(x) is monotone decreasing in [3, 6.75] with θ(3) = 1 and θ(6.75) = 0.
Moreover, when x > 6.75, θ(x) is negative.

(ii) Given 3 ≤ x0 ≤ 6.75, suppose that r ≥ mθ(x0) + 7 logm and m ≥ 5. Then
Theorem 3.1 and, in particular, inequality (1.7) hold for all x ≥ x0.
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Proof. (ii) For x ≥ 6.75 the conclusion follows from Theorem 3.1. When x0 ≤
x < 6.75, note that

r ≥ mθ(x0) + 7 logm ≥ mθ(x) + 7 logm.

Now equation (4.4) is satisfied for t = 1/x and thus (1.7) holds for x.
Corollary 4.2. Let x0 ≥ 3. Then for any δ > 0, there exists an integer

m0 = m0(δ) such that if m > m0(δ) and r ≥ m[θ(x0) + δ], then Theorem 3.1 and, in
particular, inequality (1.7) hold for all x ≥ x0.

We now recall that Theorem 3.1 is true for x ≥ x0, if and only if Theorem 1.4
is true for all λ ≥ x0λ0. Thus we can apply Proposition 4.1 and Corollary 4.2 to
the setting of Theorem 1.4 to yield the following two conclusions on recalling that
n = r +m:

examples 4.3.
(i) If n is sufficiently large and if r ≥ 0.4047n, then Theorem 1.4 holds for

λ ≥ 5λ1.
(ii) If n is sufficiently large and if r ≥ 0.4764n, then Theorem 1.4 holds for

λ ≥ 4λ1.
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