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ON ENERGY AND LAPLACIAN ENERGY OF GRAPHS∗
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Abstract. Let G = (V,E) be a simple graph of order n with m edges. The energy of a graph G,

denoted by E(G), is defined as the sum of the absolute values of all eigenvalues of G. The Laplacian

energy of the graph G is defined as

LE = LE(G) =
n
∑

i=1

∣

∣

∣

∣

µi −
2m

n

∣

∣

∣

∣

,

where µ1, µ2, . . . , µn−1, µn = 0 are the Laplacian eigenvalues of graph G. In this paper, some lower

and upper bounds for E(G) are presented in terms of number of vertices, number of edges, maximum

degree and the first Zagreb index, etc. Moreover, a relation between energy and Laplacian energy of

graphs is given.
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1. Introduction. The energy E(G) of a graph G, defined as the sum of the abso-

lute values of its eigenvalues, belongs to the most popular graph invariants in chemical

graph theory. It originates from the π-electron energy in the Hückel molecular orbital

model, but has also gained purely mathematical interest. Gutman introduced this

definition of the energy of a simple graph in his paper “The energy of a graph” [12].

He notes that at first, very few mathematicians seemed to be attracted to the defini-

tion. In the past decade, interest in graph energy has increased and many different

versions have been introduced. In 2006, Gutman and Zhou defined the Laplacian

energy of a graph as the sum of the absolute deviations (i.e., distance from the mean)

of the eigenvalues of its Laplacian matrix [15]. Similar variants of graph energy were

developed for the signless Laplacian matrix, the distance matrix, the incidence ma-

trix, and even for a general matrix not associated with a graph [23]. In 2010, Cavers,

Fallat, and Kirkland first studied the Normalized Laplacian energy of a graph, also

known as the Randić energy for its connection to the Randić index [3].

Let G = (V,E) be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and
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edge set E(G), |E(G)| = m. Let di be the degree of the vertex vi for i = 1, 2, . . . , n.

The maximum and minimum vertex degrees are denoted by ∆ and δ, respectively.

Let Ni be the neighbor set of the vertex vi ∈ V (G). Denote by, ω, the clique number

of graph G. If vertices vi and vj are adjacent, we denote that by vivj ∈ E(G). The

adjacency matrix A(G) of G is defined by its entries aij = 1 if vivj ∈ E(G) and 0

otherwise. Let λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn denote the eigenvalues of A(G). The

largest eigenvalue λ1 is called the spectral radius of graph G. When more than one

graph is under consideration, we write λi(G) instead of λi. Some well known results

are the following:

n∑

i=1

λi = 0,(1.1)

n∑

i=1

λi
2 = 2m(1.2)

and detA =

n∏

i=1

λi.

Moreover, the spectral radius λ1 is at least the average vertex degree in the graph,

that is,

λ1 ≥ 2m

n
(1.3)

with equality holding if and only if G is isomorphic to a regular graph.

The energy of the graph G is defined as

E(G) =

n∑

i=1

|λi|,(1.4)

where λi, i = 1, 2, . . . , n, are the eigenvalues of graph G. For its basic properties,

applications including various lower and upper bounds, see [7, 9, 14, 17, 19, 20, 21, 29].

Maximum and minimum values of the energy are known for various classes of graphs,

and in some cases also the second-largest/second-smallest and further values as well

as the corresponding extremal graphs; see the book [20] for recent results and the

references cited therein.

The Laplacian matrix of G is L(G) = D(G) − A(G). The Laplacian matrix

has nonnegative eigenvalues n ≥ µ1 ≥ µ2 ≥ · · · ≥ µn = 0. Denote by Spec(G) =

{µ1, µ2, . . . , µn} the spectrum of L(G), i.e., the Laplacian spectrum of G. When more

than one graph is under consideration, we write µi(G) instead of µi.
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As well known [22],

n∑

i=1

µi = 2m.(1.5)

The Laplacian energy of the graph G is defined as [15]

LE = LE(G) =
n∑

i=1

∣
∣
∣
∣
µi −

2m

n

∣
∣
∣
∣
.(1.6)

For its basic properties, including various lower and upper bounds, see [5, 6, 8, 10,

24, 28]. As usual, Kn and K1,n−1, denote, respectively, the complete graph and the

star on n vertices. For other undefined notations and terminology from graph theory,

the readers are referred to [1].

The paper is organized as follows. In Section 2, we list some previously known

results. In Section 3, we present a lower bound on energy E(G) of graph G. In Section

4, we obtain an upper bound on energy E(G) of graph G. In Section 5, we give a

relation between energy and Laplacian energy of graphs.

2. Preliminaries. In this section, we list some previously known results that

will be needed in the next three sections.

Lemma 2.1. [25] Let B be a p × p symmetric matrix and let Bk be its leading

k× k submatrix; that is, Bk is matrix obtained from B by deleting its last p− k rows

and columns. Then for i = 1, 2, . . . , k

ρp−i+1(B) ≤ ρk−i+1(Bk) ≤ ρk−i+1(B),(2.1)

where ρi(B) is the i-th largest eigenvalue of B.

Lemma 2.2. [11] Let B and C be two real symmetric matrices of size n. Then

for any 1 ≤ k ≤ n,

k∑

i=1

λi(B + C) ≤
k∑

i=1

λi(B) +

k∑

i=1

λi(C),

where λi(M) is the i-th largest eigenvalue of M .

The following upper bound on λ1 has been given in [18]:

Lemma 2.3. [18] Let G be a connected graph of order n with m edges. Then

λ1 ≤
√
2m− n+ 1(2.2)

with equality holding if and only if G ∼= Kn or G ∼= K1, n−1.
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A d-regular graph G on n vertices is strongly d-regular (denote by srg(n, d, λ, µ))

if there exist positive integers d, λ and µ such that every vertex has d neighbors, every

adjacent pair of vertices has λ common neighbors, and every nonadjacent pair has µ

common neighbors.

The following result is well known [2]:

Lemma 2.4. Let G be isomorphic to srg(n, d, λ, µ). Then the eigenvalues of G

are

(i) d of multiplicity 1,

(ii)
λ− µ+

√

(λ− µ)2 + 4(d− µ)

2
of multiplicity 1

2

[

n− 1− 2d+(n−1)(λ−µ)√
(λ−µ)2+4(d−µ)

]

,

(iii)
λ− µ−

√

(λ − µ)2 + 4(d− µ)

2
of multiplicity 1

2

[

n− 1 + 2d+(n−1)(λ−µ)√
(λ−µ)2+4(d−µ)

]

.

Corollary 2.5. Let G be isomorphic to srg(n, d, λ, µ). Then

E(srg(n, d, λ, µ)) = d+
2(n− 1)(d− µ)− d(λ− µ)
√

(λ− µ)2 + 4(d− µ)
.

Proof. By (1.4),

E(G) = d+
1

2

[

n− 1− 2d+ (n− 1)(λ− µ)
√

(λ− µ)2 + 4(d− µ)

]

× λ− µ+
√

(λ− µ)2 + 4(d− µ)

2

+
1

2

[

n− 1 +
2d+ (n− 1)(λ− µ)
√

(λ− µ)2 + 4(d− µ)

]

×
√

(λ− µ)2 + 4(d− µ)− (λ− µ)

2

= d+
(n− 1)

√

(λ− µ)2 + 4(d− µ)

2
− (λ− µ) [2d+ (n− 1)(λ− µ)]

2
√

(λ − µ)2 + 4(d− µ)

= d+
2(n− 1)(d− µ)− d(λ− µ)
√

(λ− µ)2 + 4(d− µ)
.

Corollary 2.6. Let G be isomorphic to srg(n, d, λ, λ). Then

E(srg(n, d, λ, λ)) = d+ (n− 1)
√
d− λ.

Lemma 2.7. [4] Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn}. Then

∑

vj∈V (G), j 6=i

|Ni ∩Nj | =
∑

vj : vivj∈E(G)

(dj − 1), vi ∈ V (G),(2.3)
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where di is the degree of the vertex vi and |Ni ∩Nj | is the cardinality of the common

neighbors of vi and vj .

3. Lower bound for the energy of graphs. In this section, we give a lower

bound on energy E(G) in terms of n, m and the determinant of the adjacency matrix

of graph G. First we mention three popular lower bounds on energy E(G) of graphs.

Li et al. [20] gave the following lower bound in terms of m:

E(G) ≥ 2
√
m(3.1)

with equality holding if and only if G consists of a complete bipartite graph Ka, b

such that a b = m and arbitrarily many isolated vertices. McClelland [21] obtained

the following lower bound in terms of n, m and the determinant of the adjacency

matrix of graph G:

E(G) ≥
√

2m+ n(n− 1)| detA|2/n.(3.2)

Recently, Das et al. [9] presented a lower bound for nonsingular graph (i.e., a graph

for which 0 is not an eigenvalue, and hence | detA| > 0) and the bound is as follows:

E(G) ≥ 2m

n
+ n− 1 + ln

(
n | detA|

2m

)

.(3.3)

We now give a lower bound on E(G) of graph G in terms of n, m and detA.

Theorem 3.1. Let G be a connected graph of order n and m edges. Then

E(G) ≥ min

{

2m

n
+

√

2m− 4m2

n2
+ Z,

√
2m− n+ 1 +

√
n− 1 + Z

}

,(3.4)

where

Z = (n− 1)(n− 2)

(
(det A)2

2m− n+ 1

) 1

n−1

and det A is the determinant of the adjacency matrix of graph G. Moreover, equality

holds in (3.4) if and only if G ∼= Kn.

Proof. From (1.2) and (1.4), we get

E2(G) =

n∑

i=1

λ2
i + 2

∑

1≤i<j≤n

|λi λj |

= 2m+ 2λ1

n∑

i=2

|λi|+ 2
∑

2≤i<j≤n

|λi λj |

= 2m+ 2λ1(E(G) − λ1) + 2
∑

2≤i<j≤n

|λi λj |.(3.5)
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By the Arithmetic-Geometric mean inequality, we get

∑

2≤i<j≤n

|λi λj | ≥
(n− 1)(n− 2)

2

(
n∏

i=2

|λi|
)2/(n−1)

(3.6)

=
(n− 1)(n− 2)

2

( | detA|
λ1

)2/(n−1)

.(3.7)

Using inequality (3.7) in (3.5), we get

E2(G) ≥ 2m+ 2λ1(E(G) − λ1) + (n− 1)(n− 2)

(
(det A)2

λ2
1

)1/(n−1)

,

that is,

E2(G)− 2λ1E(G) −
[

2m− 2λ2
1 + (n− 1)(n− 2)

(
(det A)2

λ2
1

) 1

n−1

]

≥ 0.

By solving the above inequality with E(G) > λ1, we get

E(G) ≥ λ1 +

√

2m− λ2
1 + (n− 1)(n− 2)

(
(det A)2

λ2
1

) 1

n−1

.

Using (2.2), we have

E(G) ≥ λ1 +

√

2m− λ2
1 + (n− 1)(n− 2)

(
(det A)2

2m− n+ 1

) 1

n−1

.(3.8)

Let

f(x) = x+

√

2m− x2 + (n− 1)(n− 2)

(
(det A)2

2m− n+ 1

) 1

n−1

.

Then

f ′(x) = 1− x
√

2m− x2 + (n− 1)(n− 2)

(
(det A)2

2m− n+ 1

) 1

n−1

.

Thus, f(x) is an increasing function on

x ≤

√

m+
1

2
(n− 1)(n− 2)

(
(det A)2

2m− n+ 1

) 1

n−1
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and decreasing function on

x ≥

√

m+
1

2
(n− 1)(n− 2)

(
(det A)2

2m− n+ 1

) 1

n−1

.

From (1.3) and Lemma 2.3, we get

2m

n
≤ λ1 ≤

√
2m− n+ 1.

From (3.8), we get

E(G) ≥ min

{

f

(
2m

n

)

, f
(√

2m− n+ 1
)
}

,

which gives the required result in (3.4). This completes the first part of the proof.

Suppose that equality holds in (3.4). Then all the inequalities in the above must

be equalities. In particular, from equality in (3.6), we get

|λ2| = |λ3| = · · · = |λn|.

From equality in (3.8), we get G ∼= Kn or G ∼= K1, n−1, by Lemma 2.3. The above

result holds for complete graph Kn. Moreover, all other inequalities in the above

must be equalities for complete graph Kn.

Conversely, let G ∼= Kn. Since the adjacency spectrum of Kn is

(
n− 1,−1, −1, . . . , −1

︸ ︷︷ ︸

n−1

)
,

we have

Z = (n− 1)(n− 2)

(
(det A)2

2m− n+ 1

) 1

n−1

= (n− 1)(n− 2).

Now, we have

2m

n
+

√

2m− 4m2

n2
+M = 2(n− 1) and

√
2m− n+ 1 +

√
n− 1 +M = 2(n− 1).

Hence, the equality holds in (3.4) for complete graph Kn.

Corollary 3.2. Let G be a connected graph of order n and m edges. Then

E(G) ≥ 2m

n
+

√
√
√
√(n− 1)

[

1 + (n− 2)

(
(detA)2

2m− n+ 1

) 1

n−1

]

,(3.9)
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where detA is the determinant of the adjacency matrix of graph G. Moreover, equality

holds in (3.9) if and only if G ∼= Kn.

Proof. Again from (1.3) and Lemma 2.3, we get

2m

n
≤ λ1 ≤

√
2m− n+ 1

with left (right) equality holding if and only if G is a regular graph (G ∼= Kn or G ∼=
K1, n−1). Bearing this in mind, from Theorem 3.1, we get

E(G) ≥ λ1 +

√

2m− λ2
1 + (n− 1)(n− 2)

(
(detA)2

λ2
1

) 1

n−1

≥ 2m

n
+

√

n− 1 + (n− 1)(n− 2)

(
(detA)2

2m− n+ 1

) 1

n−1

,

which gives the required result in (3.9). Moreover, equality holds in (3.9) if and only

if G ∼= Kn.

Corollary 3.3. Let G be a connected graph of order n with m edges and maxi-

mum degree ∆. Then

E(G) ≥ 2m

n
+

√
√
√
√(n− 1)

[

1 + (n− 2)

(
detA

∆

) 2

n−1

]

,(3.10)

where detA is the determinant of the adjacency matrix of graph G. Moreover, equality

holds in (3.10) if and only if G ∼= Kn.

Proof. It is well known that for connected graph G, λ1 ≤ ∆ with equality holding

if and only if G is a regular graph. Using this result, from the proof of Corollary 3.2,

we get the lower bound in (3.10). Moreover, equality holds in (3.10) if and only if

G ∼= Kn.

H1 H2 H3 H4

Figure 1. Graphs H1, H2, H3 and H4.

Example 3.4. Four graphs H1, H2, H3 and H4 have been shown in Figure 1.

The numerical results related to E(G) and the bounds (that mentioned above) are
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listed in the following. These show that our bound (3.4) is better than the other three

bounds (3.1), (3.2) and (3.3) for the graphs H1, H2, H3 and H4. We should note that

these results are presenting as rounded to three decimal places.

G E(G) (3.1) (3.2) (3.3) (3.4)

H1 7.123 4.899 6.843 6.911 6.929

H2 7.664 5.292 6.633 6.486 6.964

H3 7.107 5.292 6.355 6.464 6.763

H4 6.73 4.899 6.196 6.218 6.441

Table 1. The energy and the values of the lower bounds (3.1), (3.2), (3.3), and (3.4) for the

graphs depicted in Figure 1.

4. Upper bound for the energy of graphs. In this section, we give an upper

bound on energy E(G). The rank of a matrix B is the maximal number of linearly

independent rows or columns of B. Let r be the rank of adjacency matrix A(G) of

graph G. The first Zagreb index M1 = M1(G) is equal to the sum of squares of the

vertex degrees of the graph G [13]. First we mention four upper bounds on energy

E(G) of graphs. Koolen et al. [19] gave the following upper bound in terms of n and

m:

E(G) ≤ 2m

n
+

√
√
√
√(n− 1)

[

2m−
(
2m

n

)2
]

.(4.1)

Bo Zhou [29] obtained the following upper bound in terms of n, m and the first Zagreb

index M1(G):

E(G) ≤
√

M1(G)

n
+

√
√
√
√
√(n− 1)



2m−
(√

M1(G)

n

)2


.(4.2)

Das et al. [7] gave the two following upper bounds:

E(G) ≤
√

2m(n− δ) + 4
√

m3(1 − 1/ω)(4.3)

and

E(G) ≤ 2(m− δ)

n− 1
+

√

(n− 1)

[

2m− 4(m− δ)2

(n− 1)2

]

.(4.4)
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We are now ready to give an upper bound on energy E(G) of graphs G in terms

of n, m, r, ∆ and M1(G).

Theorem 4.1. Let G be a connected graph of order n with m edges, ∆ maximum

degree and the first Zagreb index M1(G). Then

E(G) ≤ ∆+

√

2m(n2 − 2m)

n2
+ P ,(4.5)

where

P =

√
√
√
√

(
r − 1

2

) [

8m2(n2 − 2m)2

n4
− 2M1(G) − 2 (M1(G)− 2m)

2

n(n− 1)
+ 2∆4

]

and r is the rank of the adjacency matrix of graph G. Moreover, equality holds in (4.5)

if and only if G ∼= Kn or G ∼= Kn/2, n/2 or G ∼= srg

(

n, d,
d(d− 1)

n− 1
,
d(d− 1)

n− 1

)

.

Proof. Since r is the rank of the adjacency matrix of graph G, there are exactly

r non-zero eigenvalues and hence r ≤ n. We can assume that

|λ1| ≥ |λ2| ≥ · · · ≥ |λr | > 0.

Let us consider the matrix A2(G). Since the (i, j) entry of A2(G) is

{
di if i = j,

|Ni ∩Nj | otherwise,

we have

n∑

i=1

λ4
i = tr(A4) =

n∑

i=1

d2i + 2
∑

1≤i<j≤n

|Ni ∩Nj |2.(4.6)

By the Cauchy-Schwarz inequality, we have




∑

1≤i<j≤n

|Ni ∩Nj|





2

≤ n(n− 1)

2

∑

1≤i<j≤n

|Ni ∩Nj |2(4.7)

with equality holding if and only if |Ni ∩Nj | = |Nk ∩Nℓ| for any (vi, vj) 6= (vk, vℓ),

i 6= j, k 6= ℓ. From (2.3), we get

∑

vi∈V (G)

∑

vj∈V (G), j 6=i

|Ni ∩Nj | =
∑

vi∈V (G)

∑

vj : vivj∈E(G)

(dj − 1).
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We denote the average degree of the adjacent vertices of vertex vi of graph G by

mi. From the above, we get

2
∑

1≤i<j≤n

|Ni ∩Nj| =
∑

vi∈V (G)

di mi −
∑

vi∈V (G)

di.

Since

M1(G) =

n∑

i=1

d2i =
∑

vi∈V (G)

di mi and

n∑

i=1

di = 2m,

we get

∑

1≤i<j≤n

|Ni ∩Nj | =
1

2
M1(G)−m.(4.8)

From (4.6), (4.7) and (4.8), we get

r∑

i=1

λ4
i =

n∑

i=1

λ4
i ≥ M1(G) +

1

n(n− 1)
(M1(G)− 2m)

2
(4.9)

with equality holding in (4.9) if and only if |Ni ∩Nj | = |Nk ∩Nℓ| for any (vi, vj) 6=
(vk, vℓ), i 6= j, k 6= ℓ.

Since

r∑

i=1

λ2
i = 2m,(4.10)

and by the Cauchy-Schwarz inequality, we have

E(G) =

r∑

i=1

|λi| = λ1 +

√
√
√
√

r∑

i=2

λ2
i + 2

∑

2≤i<j≤r

|λi λj |

= λ1 +

√

2m− λ2
1 + 2

∑

2≤i<j≤r

|λi λj |

≤ λ1 +

√
√
√
√2m− λ2

1 +

√

2(r − 1)(r − 2)
∑

2≤i<j≤r

λ2
i λ

2
j(4.11)

= λ1 +

√
√
√
√
√
√2m− λ2

1 +

√
√
√
√
√(r − 1)(r − 2)





(
r∑

i=2

λ2
i

)2

−
r∑

i=2

λ4
i



.
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Since

2m

n
≤ λ1 ≤ ∆

with (4.9) and (4.10), we get

E(G) ≤ λ1 +

√
√
√
√
√2m− λ2

1 +

√
√
√
√(r − 1)(r − 2)

[

(2m− λ2
1)

2 −M1(G)− (M1(G)− 2m)
2

n(n− 1)
+ λ4

1

]

≤ ∆

+

√
√
√
√
√

2m(n2 − 2m)

n2
+

√
√
√
√

(
r − 1

2

) [

8m2(n2 − 2m)2

n4
− 2M1(G)− 2 (M1(G) − 2m)

2

n(n− 1)
+ 2∆4

]

.

(4.12)

This completes the first part of the proof.

Suppose that equality holds in (4.5). Then all the inequalities in the above must

be equalities. From equality in (4.12), we get

λ1 = ∆ =
2m

n
.

Therefore, G is a regular graph. Suppose G is d-regular graph. Since r is the

rank of the adjacency matrix of connected graph G, we have r ≥ 2. We consider two

cases: (i) r = 2, (ii) r > 2.

Case (i) : r = 2. In this case, G has two non-zero eigenvalues. Since

n∑

i=1

λi = 0,

we must have λ1 = −λn, λ2 = λ3 = · · · = λn−1 = 0. By (1.2), we get λ2
1 = m = 4m2

n2 ,

that is, m = n2

4 and λ1 = n/2 = −λn. Hence, G ∼= Kn/2, n/2.

Case (ii) : r > 2. From equality in (4.11), we get

|λ2| = |λ3| = · · · = |λr|.(4.13)

From equality in (4.9), we get

|Ni ∩Nj | = |Nk ∩Nℓ| for any (vi, vj) 6= (vk, vℓ), i 6= j, k 6= ℓ.(4.14)
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If any (vi, vj) ∈ E(G) (i 6= j), then G ∼= Kn and also the equality holds in (4.13).

Otherwise, there exists at least one (vi, vj) /∈ E(G) (i 6= j). Using (4.14), we get

λ = |Ni ∩Nj | = |Nk ∩Nℓ| = µ for (vi, vj) ∈ E(G), (vk, vℓ) /∈ E(G).

By Lemma 2.7 with the above result, we get

λ = µ =
d(d− 1)

n− 1
.

Since G is d-regular graph, from the above we must have

G ∼= srg

(

n, d,
d(d− 1)

n− 1
,
d(d− 1)

n− 1

)

.

Moreover, by Lemma 2.4, (4.13) holds for srg

(

n, d,
d(d− 1)

n− 1
,
d(d − 1)

n− 1

)

.

Conversely, we have to prove that the equality holds in (4.5) for Kn, Kn/2, n/2

and srg

(

n, d,
d(d− 1)

n− 1
,
d(d− 1)

n− 1

)

. First consider G ∼= Kn.

∆ = n− 1, r = n, 2m = n(n− 1) and M1(Kn) = n(n− 1)2.

Thus, we have

P =

√
√
√
√

(
r − 1

2

) [

8m2(n2 − 2m)2

n4
− 2M1(G) − 2 (M1(G)− 2m)

2

n(n− 1)
+ 2∆4

]

=

√

(n− 1)(n− 2)

2
[2(n− 1)2 − 2n(n− 1)2 − 2n(n− 1)(n− 2)2 + 2(n− 1)4]

= (n− 1)(n− 2),

and hence,

∆ +

√

2m(n2 − 2m)

n2
+ P = 2(n− 1) = E(Kn).

Next consider G ∼= Kn/2, n/2. We have r = 2, ∆ = n/2 and 2m = n2/2. Then

P = 0, and hence,

∆ +

√

2m(n2 − 2m)

n2
+ P = n = E(Kn/2, n/2).

Finally, consider the case that G ∼= srg

(

n, d,
d(d− 1)

n− 1
,
d(d− 1)

n− 1

)

. Therefore,

r = n and M1(G) = n d2. By Corollary 2.5, we get

E(G) = d+
√

(n− 1) d (n− d).
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Now,

P =

√
√
√
√

(
r − 1

2

) [

8m2(n2 − 2m)2

n4
− 2M1(G) − 2 (M1(G)− 2m)

2

n(n− 1)
+ 2∆4

]

=

√

(n− 1)(n− 2)

2

[

2d2(n− d)2 − 2nd2 − 2nd2 (d− 1)2

n− 1
+ 2d4

]

=
√

(n− 2) d2 [(n− 1)(n− d)2 − n(n− 1)− n(d− 1)2 + d2(n− 1)]

= (n− 2) d (n− d),

and hence,

∆ +

√

2m(n2 − 2m)

n2
+ P = d+

√

(n− 1) d (n− d) = E(G).

Corollary 4.2. Let G be a d-regular connected graph of order n. Then

E(G) ≤ d+
√

(n− 1) d (n− d)(4.15)

with equality holding if and only if G ∼= Kn or G ∼= srg

(

n, d,
d(d− 1)

n− 1
,
d(d− 1)

n− 1

)

.

Proof. Since r ≤ n and di = d in (4.5), we get the required result in (4.15).

Moreover, equality holds in (4.15) if and only if G ∼= srg

(

n, d,
d(d− 1)

n− 1
,
d(d− 1)

n− 1

)

or G ∼= Kn, by Theorem 4.1.

Corollary 4.3. Let G be a connected graph of order n with m edges, maximum

degree ∆ and the first Zagreb index M1(G). Then

E(G) ≤ ∆+

√

2m(n2 − 2m)

n2
+ P ,(4.16)

where

P =

√
√
√
√

(
n− 1

2

) [

8m2(n2 − 2m)2

n4
− 2M1(G)− 2 (M1(G) − 2m)

2

n(n− 1)
+ 2∆4

]

.

Moreover, equality holds in (4.16) if and only if G ∼= srg

(

n, d,
d(d− 1)

n− 1
,
d(d− 1)

n− 1

)

or G ∼= Kn.

Proof. Since r ≤ n, the result follows from Theorem 4.1.
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H5 H6 H7 H8

Figure 2. Graphs H5, H6, H7 and H8.

G E(G) (4.1) (4.2) (4.3) (4.4) (4.5)

H5 4.899 7.396 7.348 8.807 7.657 5.498

H6 5.657 9.333 9.153 11.314 9.555 6.981

H7 6.928 9.333 9.291 11.314 9.555 8.667

H8 8 10.324 10.324 13.556 11.494 8.257

Table 2. The energy and the values of the upper bounds (4.1), (4.2), (4.3), (4.4), and (4.5)

for the graphs depicted in Fig. 2.

Example 4.4. Four graphs H5, H6, H7 and H8 have been shown in Figure 2.

The numerical results related to E(G) and the bounds (that mentioned above) are

listed in Table 2 (these results are presenting as rounded to three decimal places).

From the Table 2, we show that our bound (4.5) is better than the other four bounds

(4.1), (4.2), (4.3), and (4.4) for the graphs H5, H6, H7 and H8.

5. Relation between energy and Laplacian energy of graphs. In this

section, we give a relation between energy and Laplacian energy of graphs. Let σ

(1 ≤ σ ≤ n− 1) be the largest positive integer such that

µσ ≥ 2m

n
.(5.1)

Then from [6], we have

LE(G) =
n∑

i=1

∣
∣
∣
∣
µi −

2m

n

∣
∣
∣
∣
= 2Sσ(G)− 4mσ

n
(5.2)

= max
1≤i≤n

{

2Si(G) − 4mi

n

}

,(5.3)
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where

Sσ(G) =

σ∑

i=1

µi.

H9

Figure 3. Graph H9.

For G = K1, n−1 (n > 2),

LE(G) = 2n− 4 +
4

n
> 2

√
n− 1 = E(G).

For G = H9, (see, [27])

LE(G) ≈ 14.9799 < 15.035 ≈ E(G).

From the above, it is easy to see that energy and Laplacian energy are incompa-

rable. So it is interesting to find an upper bound on LE(G) − E(G). Recently, So

et al. [26] presented the following relation between energy and Laplacian energy of

graphs with using Ky Fan Theorem,

LE(G) ≤ E(G) +

n∑

i=1

∣
∣
∣
∣
di −

2m

n

∣
∣
∣
∣
.(5.4)

We now give another relation between energy and Laplacian energy of graphs.

Theorem 5.1. Let G be a graph of order n with m edges and vertex degrees

d1, d2, . . . , dn. Then

LE(G) ≤ E(G) + 2

σ∑

i=1

(

di −
2m

n

)

,(5.5)

where σ is the largest positive integer satisfying (5.1).
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Proof. For any k (1 ≤ k ≤ n),

k∑

i=1

λi(−A(G)) = −
k∑

i=1

λn−i+1,

where λi(−A(G)) is the i-th largest eigenvalue of −A(G). Using this result with

Lemma 2.2, we get

k∑

i=1

µi ≤
k∑

i=1

di −
k∑

i=1

λn−i+1.

From the definition of graph energy, we have

E(G) =

n∑

i=1

|λi| = 2
∑

λi≥0

λi = −2
∑

λi<0

λi = 2 max

{

−
k∑

i=1

λn−i+1 : 1 ≤ k ≤ n− 1

}

≥ −2

k∑

i=1

λn−i+1 for any k, 1 ≤ k ≤ n− 1.

From the above two results, for any k, we get

2
k∑

i=1

µi ≤ 2
k∑

i=1

di + E(G).

Since σ is the largest positive integer satisfying (5.1), from the above, we can write

2

σ∑

i=1

µi −
4mσ

n
≤ 2

σ∑

i=1

di + E(G)− 4mσ

n
.

Using (5.2), from the above, we get the required result in (5.5).

Remark 5.2. Our result in (5.5) is always better than the result in (5.4).

Proof. Let ν be the largest positive integer such that dν ≥ 2m
n (assume that

d1 ≥ d2 ≥ · · · ≥ dn). Thus, we have

ν∑

i=1

(

di −
2m

n

)

=

ν∑

i=1

di −
2mν

n
= 2m−

n∑

i=ν+1

di −
2mν

n

=
2m(n− ν)

n
−

n∑

i=ν+1

di =

n∑

i=ν+1

(
2m

n
− di

)

.

Moreover,

n∑

i=1

∣
∣
∣
∣
di −

2m

n

∣
∣
∣
∣
=

ν∑

i=1

(

di −
2m

n

)

+

n∑

i=ν+1

(
2m

n
− di

)

.
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From the above two relations, we get

n∑

i=1

∣
∣
∣
∣
di −

2m

n

∣
∣
∣
∣
= 2

ν∑

i=1

(

di −
2m

n

)

.(5.6)

Now we have to show that

ν∑

i=1

(

di −
2m

n

)

= max

{
k∑

i=1

(

di −
2m

n

)

: 1 ≤ k ≤ n

}

,

that is,

k∑

i=1

(

di −
2m

n

)

≤
ν∑

i=1

(

di −
2m

n

)

for any k, k = 1, 2, . . . , n.(5.7)

If k = ν, then the equality holds in (5.7). Otherwise, k 6= ν. We now consider

two following cases:

Case (i) : k < ν. Since

ν∑

i=k+1

(

di −
2m

n

)

≥ 0 and

ν∑

i=1

(

di −
2m

n

)

=

k∑

i=1

(

di −
2m

n

)

+

ν∑

i=k+1

(

di −
2m

n

)

,

we get the result in (5.7).

Case (ii) : k > ν. Again, since

k∑

i=ν+1

(

di −
2m

n

)

< 0,

we have

k∑

i=1

(

di −
2m

n

)

=

ν∑

i=1

(

di −
2m

n

)

+

k∑

i=ν+1

(

di −
2m

n

)

<

ν∑

i=1

(

di −
2m

n

)

which gives the result in (5.7). Thus,

n∑

i=1

∣
∣
∣
∣
di −

2m

n

∣
∣
∣
∣
= 2

ν∑

i=1

(

di −
2m

n

)

= 2 max

{
k∑

i=1

(

di −
2m

n

)

: 1 ≤ k ≤ n

}

≥ 2

σ∑

i=1

(

di −
2m

n

)

.
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So et al. [26] obtained a lower bound for bipartite graph as follows:

LE(G) ≥
n∑

i=1

∣
∣
∣
∣
di −

2m

n

∣
∣
∣
∣
.(5.8)

In [16], it has been proved the following result: For connected graph G with vertex

degrees d1 ≥ d2 ≥ · · · ≥ dn > 0, we have

k∑

i=1

µi ≥
k∑

i=1

di + 1 for any k, 1 ≤ k ≤ n− 1.(5.9)

Now we present a lower bound on LE of graph G that always is better than the lower

bound in (5.8). Moreover, our result is true for all connected graphs.

Theorem 5.3. Let G be a connected graph of order n with m edges. Then

LE(G) ≥ 2 +

n∑

i=1

∣
∣
∣
∣
di −

2m

n

∣
∣
∣
∣
.(5.10)

Proof. Let ν be the largest positive integer such that dν ≥ 2m
n . Using the result

(5.9), from (5.3), we get

LE(G) ≥ 2Sν −
4mν

n

≥ 2

(
ν∑

i=1

di + 1

)

− 4mν

n

= 2

ν∑

i=1

(

di −
2m

n

)

+ 2

= 2 +

n∑

i=1

∣
∣
∣
∣
di −

2m

n

∣
∣
∣
∣

by (5.6).
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Laplacian energy of graphs. MATCH Commun. Math. Comput. Chem., 61:395–401, 2009.

[28] V. Trevisan, J.B. Carvalho, R. Del-Vecchio, and C. Vinagre. Laplacian energy of diameter 3

trees. Appl. Math. Lett., 24:918–923, 2011.

[29] B. Zhou. Energy of graphs. MATCH Commun. Math. Comput. Chem., 51:111–118, 2004.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 167-186, March 2016

http:/repository.uwyo.edu/ela


