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Abstract. In this article, some inequalities for τ -measurable operators which are related to two

recent results of Audenaert are proved.
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1. Introduction. Let Mn be the space of n×n complex matrices. A norm ‖| ·‖|

on Mn is called unitarily invariant if ‖|UAV ‖| = ‖|A‖| for all A ∈ Mn and all unitary

matrices U, V ∈ Mn.

Let M+
n be the positive part of Mn. In [1], Audenaert proved that if Ai, Bi ∈ M

+
n

(i = 1, 2, . . . , n), such that AiBi = BiAi, then
∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

n
∑

i=1

AiBi

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

≤

∥

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

∣

(

n
∑

i=1

A
1

2

i B
1

2

i

)2
∥

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

∣

≤

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

(

n
∑

i=1

Ai

)(

n
∑

i=1

Bi

)
∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

.(1.1)

A special case of inequality (1.1) confirms a conjecture of Hayajneh and Kittaneh in

[9] and answers a question of Bourin.

In another paper [2], Audenaert proved that for X,Y ∈ Mn and 0 ≤ q ≤ 1,

‖|XY ∗‖|2 ≤ ‖|qX∗X + (1− q)Y ∗Y ‖| ‖|(1− q)X∗X + qY ∗Y ‖|.(1.2)

As is explained in [2], inequality (1.2) interpolates between the Arithmetic-Geometric

mean and Cauchy-Schwarz matrix norm inequalities. Very recently Lin [12] gave

another proof of inequality (1.1) and (1.2).

Using the notion of the generalized singular numbers studied by Fack and Kosaki

[7], we show that the inequality (1.1) and (1.2) hold for the norm on noncommutative

Lp spaces. Our idea of proof follows the one given in [12].
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2. Preliminaries. Unless stated otherwise, M will always denote a semifinite

von Neumann algebra acting on the Hilbert space H, with a normal faithful finite

normalized trace τ . We refer to [14] for noncommutative integration. We denote the

identity of M by 1. A closed densely defined linear operator x in H with domain

D(x) ⊆ H is said to be affiliated with M if u∗xu = x for all unitary operators

u which belong to the commutant M′ of M. If x is affiliated with M, we define

its distribution function by λs(x) = τ(e⊥s (|x|)) and x will be called τ -measurable if

and only if λs(x) < ∞ for some s > 0, where e⊥s (|x|) = e(s,∞)(|x|) is the spectral

projection of |x| associated with the interval (s,∞). The set of all τ -measurable

operators will be denoted by L0(M). The set L0(M) is a ∗-algebra with sum and

product being the respective closures of the algebraic sum and product. The measure

topology in L0(M) is the vector space topology defined via the neighbourhood base

{N(ε, δ) : ε, δ > 0}, where N(ε, δ) = {x ∈ L0(M) : τ(e(ε,∞)(|x|)) ≤ δ} and e(ε,∞)(|x|)

is the spectral projection of |x| associated with the interval (ε,∞). With respect to

the measure topology, L0(M) is a complete topological ∗-algebra.

Definition 2.1. Let x ∈ L0(M) and t > 0. The t-th singular number (or

generalized singular number) of x, µt(x), is defined by

µt(x) = inf
{

‖xe‖ : e is a projection in M with τ(e⊥) ≤ t
}

.

If x, y ∈ L0(M), then we say that x is submajorized by y and write x ≺ y if and

only if

∫ a

0

µt(x)dt ≤

∫ a

0

µt(y)dt for all a ≥ 0.

We will denote simply by λ(x) and µ(x) the functions t → λt(x) and t → µt(x),

respectively. For 0 < p < ∞, Lp(M) is defined as the set of all densely-defined closed

operators x affiliated with M such that

‖x‖p = τ(|x|p)
1

p =

(
∫

∞

0

µt(x)
pdt

)
1

p

< ∞.

As usual, we put L∞(M; τ) = M and denote by ‖ · ‖∞ (= ‖ · ‖) the usual operator

norm. It is well known that Lp(M) is a Banach space under ‖ · ‖p (1 ≤ p ≤ ∞). For

every x ∈ L0(M), there is a unique polar decomposition x = u|x| where |x| ∈ L0(M)+

(the positive part of L0(M)) and u is a partial isometry operator. Let r(x) = u∗u

and l(x) = uu∗. We call r(x) and l(x) the right and left supports of x, respectively.

Note that l(x) (resp., r(x)) is the least projection e of B(H) such that ex = x (resp.,

xe = x). If x is self-adjoint, then r(x) = l(x). This common projection is then said

to be the support of x and denoted by s(x). Let M+ = {x ∈ M : x ≥ 0}(i.e., the
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positive part of M). We write S(M)+ = {x ∈ M+ : τ(s(x)) < ∞}. Let S(M) be

the linear span of S(M)+. It is well known that (S(M), ‖ · ‖p) is dense on Lp(M).

For further results about noncommutative Lp spaces, the reader is referred to [7, 14].

Given x, y ∈ L0(M) and 0 < p < ∞, from Theorem 4.2 of [7], we have

∫ t

0

µs(xy)
pds ≤

∫ t

0

µs(y)
pµs(x)

pds, t > 0.

Let 0 < p, q, r < ∞ with 1
p
= 1

q
+ 1

r
. If x ∈ Lq(M) and y ∈ Lr(M), then the usual

Hölder inequality implies that

(∫ ∞

0

µs(xy)
p
ds

) 1

p

≤

(∫ ∞

0

(µs(y)µs(x))
p
ds

) 1

p

≤

(∫ ∞

0

µs(x)
q
ds

) 1

q

(∫ ∞

0

µs(y)
r
ds

) 1

r

.

That is

‖xy‖p ≤ ‖x‖q‖y‖r.(2.1)

3. Main result. We start this section by two simple lemmas.

Lemma 3.1. Let x1, x2, . . . , xn ∈ L0(M)+ and 1 ≤ p < ∞.

(1) If f is any nonnegative convex function on [0,∞) with f(0) = 0, then

∥

∥

∥

∥

∥

n
∑

i=1

f(xi)

∥

∥

∥

∥

∥

p

≤

∥

∥

∥

∥

∥

f

(

n
∑

i=1

xi

)∥

∥

∥

∥

∥

p

.(3.1)

(2) If f is any nonnegative concave function on [0,∞), then

∥

∥

∥

∥

∥

f

(

n
∑

i=1

xi

)∥

∥
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n
∑

i=1

f(xi)
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p

.(3.2)

Proof. (1) If f(
∑n

i=1 xi) /∈ Lp(M), then ‖f(
∑n

i=1 xi)‖p = ∞. Thus, the in-

equality (3.1) is clear. If f (
∑n

i=1 xi) ∈ Lp(M), it follows from Theorem 5.3 (i) of [6]

that

∫ t

0

µs

(

n
∑

i=1

f(xi)

)

ds ≤

∫ t

0

µs

(

f

(

n
∑

i=1

xi

))

ds, t > 0.

Then Theorem 2.1 of [4] tells us that

∫ t

0

µs

(

n
∑

i=1

f(xi)

)p

ds ≤

∫ t

0

µs

(

f

(

n
∑

i=1

xi

))p

ds, t > 0.
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Hence, ‖
∑n

i=1 f(xi)‖p ≤ ‖f(
∑n

i=1 xi)‖p.

(2) The proof can be done similarly to (1) by using Theorem 5.3(ii) of [6]. The

details are omitted.

The matrix version of Lemma 3.1 appears in [11].

Let x, y, z ∈ L0(M). The block matrix

(

x z

z∗ y

)

is positive partial transpose

(i.e., PPT) if

(

x z

z∗ y

)

≥ 0 and

(

x z∗

z y

)

≥ 0.

Lemma 3.2. Let x, y ∈ S(M)+ and z ∈ S(M). If

(

x z

z∗ y

)

is PPT and

1 ≤ p < ∞, then ‖z∗z‖p ≤ ‖xy‖p.

Proof. From the fact

(

x z

z∗ y

)

is PPT, we deduce z = x
1

2 k1y
1

2 and z∗ =

x
1

2 k2y
1

2 , where k1, k2 are contraction operators. By Lemma 2 in [3] and Lemma 2.5

in [7], we have

∫ t

0

µs(z
∗z)pds =

∫ t

0

µs

(

x
1

2 k2y
1

2x
1

2 k1y
1

2

)p

ds

=

∫ t

0

µs

(

y
1

2 x
1

2 k2y
1

2x
1

2 k1

)p

ds

≤

∫ t

0

µs

(

y
1

2 x
1

2 k2y
1

2x
1

2

)p

ds

≤

∫ t

0

µs

(

(

y
1

2 x
1

2

)2
)p

ds, t > 0.

It follows from Theorem 2 of [10] that

∫ t

0

µs(z
∗z)pds ≤

∫ t

0

µs

(

(

y
1

2 x
1

2

)2
)p

ds

≤

∫ t

0

µs(yx)
pds

=

∫ t

0

µs(xy)
pds, t > 0.

This completes the proof.

The matrix version of Lemma 3.2 appears in [13].

Now, using Lemma 3.1 and Lemma 3.2, we get our first main result of this note.
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Theorem 3.3. Let 1 ≤ p, q, r < ∞ with 1
p
= 1

q
+ 1

r
. For i = 1, 2, . . . , n, let

xi ∈ Lq(M)+, yi ∈ Lr(M)+ such that xiyi = yixi. Then

∥
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∥

∥
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n
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∥
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∥
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∥

∥
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Proof. By inequality (2.1), we obtain
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.

Let 0 < s ≤ ∞. It is well known that S(M) is dense in Ls(M). Hence, there

exist

{xi,k}
∞

k=1, {yi,k}
∞

k=1, {zi,k}
∞

k=1 ⊆ S(M)

such that

‖xi − xi,k‖q → 0, ‖yi − yi,k‖r → 0, ‖zi − zi,k‖2p → 0, k → ∞.

Note that
(

xi,k x
1

2

i,ky
1

2

i,k

y
1

2

i,kx
1

2

i,k yi,k

)

=

(

x
1

2

i,k y
1

2

i,k

0 0

)∗(

x
1

2

i,k y
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2

i,k

0 0

)

≥ 0.

It is easy to see that

(

xi,k x
1

2

i,ky
1

2

i,k

y
1

2

i,kx
1

2

i,k yi,k

)

is PPT. Hence,
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i=1 xi,k
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i=1 x
1

2

i,ky
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2

i,k
∑n

i=1 y
1

2

i,kx
1

2
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∑n
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)

is PPT. It follows from Lemma 3.2 that
∥

∥

∥

∥

∥

∥
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n
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1
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)2
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∥

∥
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∥

∥

p
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∥

∥

∥

∥

∥

(

n
∑

i=1

xi,k

)(

n
∑

i=1

yi,k

)∥

∥

∥

∥

∥

p

.(3.3)
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On the other hand, inequality (2.1) implies that
∥

∥

∥
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∥
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2

i

∥

∥

∥

2r
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2

q
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∥

∥
y
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2

i − y
1

2

i,k
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∥

∥

2r
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∥

∥

∥
x

1

2

i − x
1

2

i,k

∥

∥

∥

2q
‖yi‖

1

2

r .

Put g(t) = t
1

2 , then g is nonnegative and operator monotone. According to Theorem

1.1 in [5], we obtain

∫ t

0

µs

(

x
1

2

i − x
1

2

i,k

)

ds ≤

∫ t

0

µs

(

|xi − xi,k|
1

2

)

ds, t > 0.

From the fact 2q > 1 and Theorem 2.1 of [4] and Lemma 2.5(iv) of [7], we get

∫ t

0

µs

(

x
1

2

i − x
1

2

i,k

)2q

ds ≤

∫ t

0

µs(xi − xi,k)
qds, t > 0.

This implies that
∥

∥

∥
x

1

2

i − x
1

2

i,k

∥

∥

∥

2q
≤ ‖xi − xi,k‖

1

2

q → 0, k → ∞.

Similarly,
∥

∥

∥
y

1

2

i − y
1

2

i,k

∥

∥

∥

2r
≤ ‖yi − yi,k‖

1

2

r → 0, k → ∞.

Thus,
∥

∥

∥
x

1

2

i y
1

2

i − x
1

2

i,ky
1

2

i,k

∥

∥

∥

2p
→ 0 as k → ∞, and so

∥

∥

∥

∥

∥

n
∑

i=1

x
1

2

i y
1

2

i −
n
∑

i=1

x
1

2

i,ky
1

2

i,k

∥

∥

∥

∥

∥

2p

→ 0, k → ∞.

Therefore,
∥

∥

∥

∑n

i=1 x
1

2

i,ky
1

2

i,k

∥

∥

∥

2p
→
∥

∥

∥

∑n

i=1 x
1

2

i y
1

2

i

∥

∥

∥

2p
, k → ∞. Hence,

∥

∥

∥

∥

∥

∥

(

n
∑

i=1

x
1

2

i,ky
1

2

i,k

)2
∥

∥

∥

∥

∥

∥

p

→

∥

∥

∥

∥

∥

∥

(

n
∑

i=1

x
1

2

i y
1

2

i

)2
∥

∥

∥

∥

∥

∥

p

, k → ∞.(3.4)

By an argument similar to the one presented above, we obtain

‖xiyj − xi,kyj,k‖p → 0, k → ∞.

It follows that
∥

∥

∥

∥

∥

(

n
∑

i=1

xi

)(

n
∑

i=1

yi

)

−

(

n
∑

i=1

xi,k

)(

n
∑

i=1

yi,k

)∥

∥

∥

∥

∥

p

→ 0, k → ∞,
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which tells us that
∥

∥

∥

∥

∥

(

n
∑

i=1

xi,k

)(

n
∑

i=1

yi,k

)
∥

∥

∥

∥

∥

p

→

∥

∥

∥

∥

∥

(

n
∑

i=1

xi

)(

n
∑

i=1

yi

)
∥

∥

∥

∥

∥

p

, k → ∞.(3.5)

Combing (3.3) and (3.4) with (3.5), we have
∥

∥

∥

∥

∥

∥

(

n
∑

i=1

x
1

2

i y
1

2

i

)2
∥

∥

∥

∥

∥

∥

p

≤

∥

∥

∥

∥

∥

(

n
∑

i=1

xi

)(

n
∑

i=1

yi

)∥

∥

∥

∥

∥

p

.

Theorem 3.3 includes a special case as follows.

Corollary 3.4. Let 1 ≤ p, q, r < ∞ with 1
p
= 1

q
+ 1

r
and s, t > 0. For t, s > 0,

let x ∈ Ltq(M)+, y ∈ Lsr(M)+. Then

‖xt+s + yt+s‖p ≤ ‖(xt + yt)(xs + ys)‖p.

Proof. If we replace n, x1, y1, x2, y2 by 2, xt, xs, yt, ys, respectively, in Theorem

3.3, we deduce that

‖xt+s + yt+s‖p ≤ ‖(xt + yt)(xs + ys)‖p.

Lemma 3.5. Let x, y ∈ S(M)+ and 0 ≤ q ≤ 1. If 1 ≤ p < ∞, then

‖xqy1−q‖p ≤ ‖qx+ (1 − q)y‖p.

Proof. The result follows immediately from Theorem 3.3 of [8].

Now, using Lemma 3.5, we get our another main result of this note.

Theorem 3.6. Let 1 ≤ p < ∞ and 0 ≤ q ≤ 1. For all x, y ∈ L2p(M), we have

‖xy∗‖2p ≤ ‖qx∗x+ (1− q)y∗y‖p‖(1− q)x∗x+ qy∗y‖p.

Proof. Since S(M) is dense in Ls(M)(0 < s ≤ ∞), then there exist

{xi}
∞

k=1, {yi}
∞

k=1 ⊆ S(M)

such that

‖xi − x‖2p → 0, ‖yi − y‖2p → 0, k → ∞.
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By inequality (2.1), Lemma 2 in [3] and Lemma 2.5 in [7], we have

‖xiy
∗

i ‖
2
p =

(
∫ ∞

0

µt(yix
∗

i xiy
∗

i )
p

2 dt

)
2

p

=

(
∫ ∞

0

µt(x
∗

i xiy
∗

i yi)
p

2 dt

)
2

p

=

(
∫ ∞

0

µt((y
∗

i yi)
q(x∗

i xi)
1−q(x∗

i xi)
q(y∗i yi)

1−q)
p

2 dt

)
2

p

= ‖(y∗i yi)
q(x∗

i xi)
1−q(x∗

i xi)
q(y∗i yi)

1−q‖ p

2

≤
∥

∥(y∗i yi)
q(x∗

i xi)
1−q
∥

∥

p

∥

∥(x∗

i xi)
q(y∗i yi)

1−q
∥

∥

p

for all 0 ≤ q ≤ 1. It follows from Lemma 3.5 that

‖(y∗i yi)
q(x∗

i xi)
1−q‖p ≤ ‖q(y∗i yi) + (1− q)(x∗

i xi)‖p

and

‖(x∗

i xi)
q(y∗i yi)

1−q‖p ≤ ‖q(x∗

i xi) + (1− q)(y∗i yi)‖p.

Hence,

‖xiy
∗

i ‖
2
p ≤ ‖q(y∗i yi) + (1− q)(x∗

i xi)‖p‖q(x
∗

i xi) + (1− q)(y∗i yi)‖p.

A similar argument to the proof of Theorem 3.3 shows that

‖xy∗‖2p ≤ ‖q(y∗y) + (1 − q)(x∗x)‖p‖q(x
∗x) + (1− q)(y∗y)‖p.
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