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Abstract. Let Hn be the set of the trees having a perfect matching with n vertices. The

ordering of the trees in Hn according to their minimal Estrada indices is investigated. The trees

with the smallest and the second smallest Estrada indices among Hn, with n ≥ 6, are obtained.
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1. Introduction. Let G be a simple graph with a vertex set V (G), where

|V (G)| = n. Let Φ(G, λ) = det[λI − A(G)] be the characteristic polynomial of G,

where A(G) is the adjacency matrix of G and I the unit matrix of order n [4]. Denote

by λ1 ≥ · · · ≥ λn the n roots of Φ(G, λ) = 0. Obviously, λ1, . . . , λn are all real num-

bers since A(G) is a real symmetric matrix. The Estrada index (EI) of G, a newly

proposed graph-spectrum-based invariant, is defined by [12]

(1.1) EE(G) =

n∑

i=1

eλi .

Recall that a walk W of length k in G is any sequence of vertices and edges of

G, namely W = v0, e1, v1, e2, . . . , vk−1, ek, vk such that ei is the edge joining vertices

vi−1 and vi for every i = 1, 2, . . . , k. If v0 = vk, then the walk W is closed and is

referred to as the (v0, v0)-walk of length k. For u, v ∈ V (G), let Wk(G;u, v) be the set

of the (u, v)-walks of length k in G, and Mk(G;u, v) be the number of the elements

in Wk(G;u, v). Similarly, let Wk(G; v) be the set of the (v, v)-walks of length k in G,

and Mk(G; v) be the number of the elements in Wk(G; v). Let M2k(G, u, [v]) be the

number of the close (u, u)-walks of length 2k starting at u and passing v in G. For

k ≥ 0, we denote Mk(G) =
∑n

i=1
λk
i and refer to Mk(G) as the k-th spectral moment

of G. It is well known that Mk(G) is equal to the number of the closed walks of length
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k in G [4]. From the Taylor expansion of eλi , EE(G) in (1.1) can be rewritten as

(1.2) EE(G) =
∞∑

k=0

Mk(G)

k!
.

In particular, if G is a bipartite graph, then M2k+1(G) = 0 for k ≥ 0. Hence, we have

(1.3) EE(G) =

∞∑

k=0

M2k(G)

(2k)!
.

Let G1 and G2 be two bipartite graphs of order n. If M2k(G1) ≥ M2k(G2)

holds for any positive integer k, then EE(G1) ≥ EE(G2) and we denote G1 � G2. If

G1 � G2 and there is at least one positive integer k0 such that M2k0
(G1) > M2k0

(G2),

then EE(G1) > EE(G2) and we denote G1 ≻ G2.

The EI has found numerical applications in biology, complex networks and chem-

istry. It was used to quantify the degree of folding of long-chain molecules, especially

proteins [11, 12, 19]. It was also shown that the EI provides a measure of the cen-

trality of complex network [13, 19]. In addition, a connection between the EI and the

concept of extended atomic branching was pointed out by Estrada et al. [14]. For

some mathematical properties of EI, including the lower and upper bounds for it, one

can refer to [2, 15, 17].

In addition to the ordinary Estrada index, defined in terms of the eigenvalues

of the adjacency matrix, Eq. (1.1), several analogous graph invariants have recently

been considered. Of these worth mentioning are the Laplacian and signless Lapla-

cian Estrada indices [1, 20], based on the eigenvalues of the Laplacian and signless

Laplacian matrix, the resolvent Estrada index [3, 18], based on the resolvent of the

adjacency matrix, and the skew Estrada index of oriented graphs [16].

The characterization of graphs having the extremal Estrada indices (EIs) is an

interesting problem and has been obtained successfully. For the characterization of

the unicyclic graphs, the bicyclic graphs and the tricyclic graphs, ect., one can refer to

[8, 23, 24, 25, 27]. For the general trees and the trees with given parameters, such as

the trees with a given matching number, the trees with a fixed diameter, and the trees

with a given number of pendant vertices, etc., one can refer to [7, 5, 6, 10, 21, 26].

Recently, Wang [22] obtained the trees with the largest and the second largest Estrada

indices among the set of trees with a perfect matching. From the references, one can

find that many results are related to the graphs with the maximal EIs. However, until

now, only a few results about the graphs having the minimal EIs have been obtained.

Recall that molecules with the Kekulé structures are molecular graphs with per-

fect matchings. Let Hn be the set of trees with a perfect matching having n vertices.
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Obviously, n is an even. In this paper, we will study the ordering of the trees in Hn

in terms of their minimal EIs. Thus, we characterize the acyclic Kekuléan π-electron

systems with the smallest and the second smallest EIs.

2. Transformations for studying the Estrada indices. To deduce the main

results of this paper, Lemmas 2.1–2.4 are simply quoted here.

Let v ∈ V (G), and dG(v) be the degree of v of G. A pendant path at v of G is a

path in G connecting vertex v and a pendant vertex such that all internal vertices (if

exist) in this path have degree two and dG(v) ≥ 3.

Lemma 2.1. [21] Let w be a vertex of the nontrivial connected graph G. For

nonnegative integers p and q, let G(p, q) denote the graph obtained from G by attach-

ing at w pendant paths P = wv1v2 · · · vp and Q = wu1u2 · · ·uq of lengths p and q,

respectively. If p ≥ q ≥ 1, then EE(G(p, q)) > EE(G(p + 1, q − 1)).

Let the coalescenceG(u)·H(v) be the graph obtained fromG andH by identifying

u of G with v of H .

Lemma 2.2. [9] Let G and H be two vertex-disjoint graphs with u, v ∈ V (G) and

z ∈ V (H), where |V (H)| ≥ 2. For each positive integer k, if Mk(G;u) ≥ Mk(G; v)

and there exists at least one k such that Mk(G;u) > Mk(G; v) holds, then EE(G(u) ·

H(z)) > EE(G(v) ·H(z)).

Lemma 2.3. [8, 22] Let A, B and C be three connected graphs, and each of which

has at least two vertices. Let u and v be two different vertices of C, u′ ∈ V (A) and

v′ ∈ V (B). Let H = A(u′) · C(u), G = H(v) · B(v′) and G′ = H(u) · B(v′). Suppose

that there exists an automorphism θ of C such that θ(u) = v, then

(i) Mk(H,u) ≥ Mk(H, v) for all positive integer k and it is strict for some positive

integer k0;

(ii) Mk(G
′) ≥ Mk(G) for all positive integer k and it is strict for some positive

integer k0.

Lemma 2.4. [7] Let u be a non-isolated vertex of a simple graph H. If H1 and

H2 are the graphs obtained from H by identifying an end vertex v1 and an internal

vertex vt of the path Pa+b+1 with u, respectively (see Figs. 2.1(a) and 2.1(b)), then

M2k(H2) > M2k(H1) for n ≥ 3 and k ≥ 2.

3. The smallest and the second smallest trees with the minimal Estrada

indices in Hn. In this section, we study the ordering of the trees in Hn according

to their minimal EIs. Some definitions are introduced first.

We classify Hn into three subsets H1
n, H

2
n and H3

n, where H1
n is the subset of
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H

u
vt

Pa
︷ ︸︸ ︷

Pb
︷ ︸︸ ︷

(a) H2.

H u v1

Pa+b+1

︷ ︸︸ ︷

(b) H1.

Fig. 2.1. The transformation in Lemma 2.4.

Hn in which there exists at most one vertex having degree 3 and all other vertices

having degrees 2 or 1; H2
n is the subset of Hn in which there exists at least one vertex

having degree greater than 3; and H3
n is the subset of Hn in which there exist at least

two vertices having degrees 3 and all other vertices having degrees 2 or 1. Obviously,

Hn = H1
n ∪H2

n ∪H3
n.

Let lTr
b be the tree obtained by attaching three pendant paths of length l, r and

b at a common vertex u, where l + r + b + 1 = n, l and r are even with l, r ≥ 0 and

b is odd with b ≥ 1. Specially, if at least one of l and r is 0, then lTr
b is the path Pn.

Obviously, lTr
b has a perfect matching. By the definition of H1

n, if T ∈ H1
n, then T is

lTr
b . For example, lTr

b is shown in Fig. 3.1.

l
︷ ︸︸ ︷

r
︷ ︸︸ ︷

b
︷ ︸︸ ︷

u

Fig. 3.1. lT r

b
with l+ r + b+ 1 = n.

Let G in Lemma 2.1 be Pb+1. Repeatedly using Lemma 2.1, we can obtain

Corollary 3.1.

Corollary 3.1.
lTr

b ≻l−2 Tr+2

b ≻ · · · ≻4 Tn−b−5

b ≻2 Tn−b−3

b ≻0 Tn−b−1

b
∼= Pn,

where r ≥ l ≥ 2 and b ≥ 1.

Let G in Lemma 2.1 be Pl+1. Repeatedly using Lemma 2.1, we get Corollaries

3.2 and 3.3.

Corollary 3.2. lTr
b ≻l Tb+1

r−1 ≻ · · · ≻l Tn−l−4
3 ≻l T2

n−l−3 ≻l Tn−l−2
1 ≻l

T0
n−l−1

∼= Pn, where b > r ≥ 2.

Corollary 3.3. lTr
b ≻l Tb−1

r+1 ≻ · · · ≻l Tn−l−4
3 ≻l T2

n−l−3 ≻l Tn−l−2
1 ≻l

T0
n−l−1

∼= Pn, where r > b ≥ 1.
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By Corollaries 3.2 and 3.3, we get Corollary 3.4.

Corollary 3.4. As r ≥ 4 and b ≥ 3, lTr
b �l Tn−l−4

3 ≻l T2
n−l−3 ≻l Tn−l−2

1 ≻l

T0
n−l−1

∼= Pn, with EE(lTr
b) = EE(lTn−l−4

3 ) if and only if b = 3.

Remark. By the definition of lTr
b , all the graphs in Corollaries 3.1–3.4 have a

perfect matching.

Let H1,1
n = {lTr

b |b = 1, l, r ≥ 0} and H1,2
n = {lTr

b |b ≥ 3, l, r ≥ 0}. Obviously,

H1
n = H1,1

n ∪ H1,2
n . From Corollaries 3.1 and 3.3, we obtain, in Theorem 3.5, the

complete ordering of the trees in H1,1
n in terms of their minimal EIs.

Theorem 3.5. For lTr
1 ∈ H1,1

n with n ≥ 8, we have the ordering as follows.

(i) As n = 4h with h ≥ 2,
n
2
−2T

n
2

1 ≻
n
2
−4 T

n
2
+2

1 ≻ · · · ≻2 Tn−4
1 ≻2 T0

n−3
∼= Pn.

(ii) As n = 4h+ 2 with h ≥ 2,
n
2
−1T

n
2
−1

1 ≻
n
2
−3 T

n
2
+1

1 ≻ · · · ≻2 Tn−4
1 ≻2 T0

n−3
∼=

Pn.

Proof. As n ≥ 8, by Corollary 3.3, we get 2Tn−4
1 ≻2 T0

n−3
∼= Pn. In Corollary

3.1, let b = 1. Using Corollary 3.1 repeatedly, we obtain Theorem 3.5.

From Corollaries 3.3 and 3.4, we obtain the first four trees in H1,2
n with the

minimal EIs in Theorem 3.6.

Theorem 3.6. Let T ∈ H1,2
n \{Pn,

2 T2
n−5,

2 Tn−6
3 } and n ≥ 8. We have

T ≻2 Tn−6
3 �2 T2

n−5 ≻2 Tn−4
1 ≻2 T0

n−3
∼= Pn,

where EE(2Tn−6
3 ) = EE(2T2

n−5) if and only if n = 8.

Proof. As n ≥ 8, it follows directly from Corollary 3.3 (let l = 2) that 2Tn−6
3 �2

T2
n−5 ≻2 Tn−4

1 ≻2 T0
n−3

∼= Pn, where EE(2Tn−6
3 ) = EE(2T2

n−5) if and only if n = 8.

Next, let lTr
b ∈ H1,2

n \{Pn,
2 T2

n−5,
2 Tn−6

3 }. As b ≥ 3 and n ≥ 8, we will prove

(3.1) lTr
b ≻2 Tn−6

3 .

In lTr
b , we have l, r ≥ 2 since lTr

b ≇ Pn. We assume r ≥ l ≥ 2. As l = 2,

we have r ≥ 4 since lTr
b ≇2 T2

n−5. Thus, as r ≥ 4 and b ≥ 3, (3.1) follows from

Corollary 3.4 directly. As l ≥ 4, we have r ≥ l ≥ 4. It follows from Corollary

3.1 that lTr
b ≻2 Tl+r−2

b . Since l + r − 2 ≥ 6 and b ≥ 3, by Corollary 3.4, we get
2Tl+r−2

b �2 Tn−6
3 . Therefore, we have lTr

b ≻2 Tn−6
3 . Namely, (3.1) holds. Theorem

3.6 is thus proved.

Lemma 3.7. If H2 (see Fig. 2.1(a)) in Lemma 2.4 has a perfect matching, then

H1 (see Fig. 2.1(b)) has a perfect matching too.
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Proof. If H2 has a perfect matching, then the vertex u of H2 (as shown in Fig.

2.1(a)) must be matched with another vertex (denoted by w) ofH2. If w ∈ V (H)\{u},

then a and b are even. If w /∈ V (H), then one of a and b is odd and the another is

even. We can easily check that H1 has a perfect matching too.

By Lemmas 2.4 and 3.7, we obtain Corollary 3.8 as follows.

Corollary 3.8. Let T ∈ Hn with n ≥ 6. In T , if there exists an vertex

(denoted by u) satisfying that dT (u) ≥ 3 and there are two pendant paths attaching

at u of T , then we have another tree T ′ ∈ Hn satisfying dT ′(u) = dT (u) − 1 and

EE(T ) > EE(T ′).

From Corollary 3.8, we deduce Lemmas 3.9 and 3.10 as follows.

Lemma 3.9. If T ∈ H2
n, then there exists a tree T1 ∈ H2

n (see Fig. 3.2(a)) such

that EE(T ) ≥ EE(T1), with the equality if and only if T ∼= T1.

Proof. Let T ∈ H2
n. By the definition of H2

n, we get that T has at least one vertex

having degree greater than 3.

Case (i): Only one vertex of T (denoted by u) has degree greater than 3.

Subcase (i.i): All the degrees of the vertices in V (T ) \ {u} are 2 or 1.

Obviously, u of T is attached by dT (u) pendant paths of T . Using Corollary 3.8

(dT (u)− 4) times on u of T , we get Lemma 3.9.

Subcase (i.ii): There exist k ≥ 1 vertices in V (T ) \ {u} having degree 3.

We can choose one vertex (denoted by s) of T such that dT (s) = 3 and s is

attached by two pendant paths of T . By Corollary 3.8, we get EE(T ) > EE(T ′),

where T ′ ∈ H2
n, dT ′(s) = 2, and T ′ has k − 1 vertices having degree 3. Repeatedly

using the same procedure, we obtain EE(T ′) ≥ EE(T ′′), where T ′′ ∈ H2
n, T

′′ has

only one vertex u having degree greater than 3 and all other vertices of T ′′ having

degrees 2 or 1. Furthermore, by the proof of Subcase (i.i), we can get that there exists

a tree T1 ∈ H2
n with EE(T ′′) ≥ EE(T1). Thus, we obtain EE(T ) > EE(T1).

Case (ii): There exist k ≥ 2 vertices of T having degrees greater than 3.

In this case, we can choose one vertex (denoted by w) of T such that dT (w) ≥ 3

and w is attached by (dT (w) − 1) pendant paths. Repeatedly using Corollary 3.8

(dT (w) − 2) times on w of T , we get a new tree T ′ ∈ H2
n satisfying dT ′(w) = 2

and EE(T ) > EE(T ′). Repeatedly using the same procedure, we can obtain a tree

T ′′ ∈ H2
n such that EE(T ′) ≥ EE(T ′′), where T ′′ has only one vertex having degree

greater than 3 and all other vertices of T ′′ having degrees 2 or 1. Furthermore,

by the proof of Subcase (i.i), we can get that there exists a tree T1 ∈ H2
n with
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EE(T ′′) ≥ EE(T1). Thus, we obtain EE(T ) > EE(T1).

a1

︷ ︸︸ ︷
a2

︷ ︸︸ ︷

a3
︷ ︸︸ ︷

a4
︷ ︸︸ ︷

u

(a)

a1

︷ ︸︸ ︷
a2

︷ ︸︸ ︷

a3
︷ ︸︸ ︷

a4
︷ ︸︸ ︷

{

a5

u

v
(b)

Fig. 3.2. (a) T1 :
4∑

i=1

ai = n− 1 with ai ≥ 1. (b) T2 :
5∑

i=1

ai = n− 1 with ai ≥ 1.

Lemma 3.10. If T ∈ H3
n, then there exists a tree T2 ∈ H3

n (see Fig. 3.2(b)) such

that EE(T ) ≥ EE(T2), with the equality if and only if T ∼= T2.

Proof. Let T ∈ H3
n. We get that T has at least two vertices having degree 3 and

all other vertices of T having degrees 2 or 1. If T has two vertices (denoted by u and

v) having degree 3, then T ∼= T2. If T has at least three vertices having degree 3,

then by the methods similar to those for Subcase (i.ii) in Lemma 3.9, we get Lemma

3.10.

In T2, if a1 = a2 = a3 = a4 = 2, then we denote T2 by In.

Theorem 3.11. Let T ∈ H2
n and n ≥ 10, we have T ≻2 Tn−6

3 or T ≻ In.

Proof. Let T ∈ H2
n and n ≥ 10. By Lemma 3.9, there exists a tree T1 such

that T1 ∈ H2
n and T � T1. Since T1 has a perfect matching, in T1, only one of ai

(1 ≤ i ≤ 4) is odd. We assume that a1 is odd. Therefore, a2, a3, and a4 are even. We

let a4 ≥ a3 ≥ a2 ≥ 2. Two cases are considered as follows.

Case (i): At least one of a2, a3 and a4 is not less than 4.

Without loss of generality, we let a4 ≥ 4. Since a4 ≥ a3 ≥ 2, by Corollaries

3.8 and 3.1, T1 ≻a3 Ta4

a1+a2
�2 Ta3+a4−2

a1+a2
. Since a1 + a2 ≥ 3 and a3 + a4 − 2 ≥ 4,

2Ta3+a4−2
a1+a2

�2 Tn−6
3 follows from Corollary 3.4. In conclusion, we get T � T1 ≻2

Tn−6
3 .

Case (ii): a2 = a3 = a4 = 2.

Let C in Lemma 2.3 be Pn−4 = v1v2 · · · vn−5vn−4, u in Lemma 2.3 be v3 of

Pn−4, and v in Lemma 2.3 be vn−6 of Pn−4. In C, we can check that there exists an

automorphism θ such that θ(u) = v. Let H = Pn−4(v3) · P3(v0), where P3 = v0v1v2.

Since T1
∼= H(u) · P3(v0) and In ∼= H(v) · P3(v0), by Lemma 2.3, we obtain T1 ≻ In

as n ≥ 10. Therefore, T � T1 ≻ In as n ≥ 10.
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To obtain the tree with the minimal EI in H3
n, we introduce Lemmas 3.12 and

3.13 first. Two trees Jn and Kn are introduced. In T2, if a1 = a2 = a3 = 2 and

a4 = 4, then we denote T2 by Jn. In T2, if a2 = a3 = 2 and a1 = a4 = 4, then we

denote T2 by Kn.

w5

w4 w3 u w v w2 w1

(a)

w5

w4 w3 u w v w2 w1

(b)

Fig. 3.3. (a) 2T 2

n−7
. (b) 2T 4

n−9
.

Lemma 3.12. As n ≥ 12, we have Jn ≻ In.

Proof. For simplicity, let H be 2T 2
n−7 (see Fig. 3.3(a)), where n ≥ 12. In 2T 2

n−7,

let u, v, w, and wi with 1 ≤ i ≤ 5 be the eight vertices, as shown in Fig. 3.3(a). Next,

we prove

(3.2) Mk(H ;u) ≥ Mk(H ; v)

holds for all k ≥ 0 and there exists a k0 ≥ 0 such that Mk0
(H ;u) > Mk0

(H ; v).

Let H1 be one of the two components of H − {uw} which contains the vertex

v of H , namely, H1 is the path P4 = wvw2w1. Similarly, let H2 be one of the two

components of H − {vw} which contains the vertex u of H . We can easily check

that H1 is isomorphic to a subgraph (denoted by H ′

2) of H2, where H ′

2 is the path

P4 = w4w3uw. Obviously, for all k ≥ 0, Mk(H
′

2;u) = Mk(H1; v). Thus, for all k ≥ 0,

we have

Mk(H2;u)= Mk(H
′

2;u) +Mk(H2;u, [w5])

= Mk(H1; v) +Mk(H2;u, [w5])

≥ Mk(H1; v)(3.3)

since Mk(H2;u, [w5]) ≥ 0. As k = 6, we can check that Mk(H2;u, [w5]) = 1 > 0.

Therefore, M6(H2;u) > M6(H1; v). Namely, there exist a k0 such Mk0
(H2;u) >

Mk0
(H1; v). By the methods similar to those for (3.3), we can prove Mk(H2;u,w) ≥

Mk(H1; v, w) for all k ≥ 0.

As k ≥ 0, we obtain

(3.4) Mk(H ; v) = Mk(H ; v, [u]) +Mk(H1; v),

(3.5) Mk(H ;u) = Mk(H ;u, [v]) +Mk(H2;u).
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From (3.4) and (3.5), to obtain (3.2), we only need to prove

Mk(H ;u, [v]) ≥ Mk(H ; v, [u])

since (3.3) holds.

For an arbitrary W ∈ Wk(H ; v, [u]), we decompose W into W1W2, where W1 is

the shortest (v, u)-section of W (consisting of a (v, w)-walk in H1 and a single edge

wu), and W2 is the remaining (u, v)-section of W . Thus, we get

Mk(H ; v, [u]) =
∑

k1 + k2 = k

k1, k2 ≥ 2

k1, k2 are all even

Mk1−1(H1; v, w)Mk2
(H ;u, v).(3.6)

Similarly,

Mk(H ;u, [v]) =
∑

k1 + k2 = k

k1, k2 ≥ 2

k1, k2 are all even

Mk1−1(H2;u,w)Mk2
(H ; v, u).(3.7)

For all even k2 ≥ 0, obviously Mk2
(H ;u, v) = Mk2

(H ; v, u). Since for all k1 ≥ 0,

Mk1−1(H2;u,w) ≥ Mk1−1(H1; v, w), it follows from (3.6) and (3.7) that

Mk(H ;u, [v]) ≥ Mk(H ; v, [u]).

Furthermore, by (3.3), (3.4), and (3.5), we get (3.2).

Obviously, Jn ∼= H(u) · P3(v0) and In ∼= H(v) · P3(v0), where P3 = v0v1v2. Thus,

by Lemma 2.2, we obtain Lemma 3.13.

Lemma 3.13. As n ≥ 14, we have Kn ≻ Jn ≻ In.

Proof. For simplicity, let Q be 2T 4
n−9 (see Fig. 3.3(b)), where n ≥ 14. In 2T 4

n−9,

let u, v, w, and wi with 1 ≤ i ≤ 5 be the eight vertices, as shown in Fig. 3.3(b). By the

methods similar to those for (3.3) in Lemma 3.12, we can prove Mk(Q;u) ≥ Mk(Q; v)

for all k ≥ 0 and there exists a k0 = 6 such that Mk0
(Q;u) > Mk0

(Q; v).

Obviously, Kn
∼= Q(u) · P3(v0) and Jn ∼= Q(v) · P3(v0), where P3 = v0v1v2. By

Lemma 2.2, we get Kn ≻ Jn as n ≥ 14. Furthermore, by Lemma 3.12, we obtain

Lemma 3.13.

Let H3,1
n =

{
T ∈ H3

n| ∃T2 such that T � T2 and T2 has a1 = a3 = 1 and

a2, a4 ≥ 2
}
and H3,2

n = H3
n\H

3,1
n . By Lemmas 3.10–3.13, we get Theorem 3.14 as

follows.
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Theorem 3.14. Let T ∈ H3
n and n ≥ 14.

(i) If T ∈ H3,1
n , then T ≻2 Tn−4

1 .

(ii) If T ∈ H3,2
n , then T ≻2 T2

n−5 or T � In.

Proof. (i) T ∈ H3,1
n with n ≥ 14.

If T ∈ H3,1
n , then by Lemma 3.10, there exists a tree T2 such that T2 ∈ H3

n and

T � T2. Furthermore, by the definition of H3,1
n , T2 (see Fig. 3.2(b)) has a1 = a3 = 1.

Since T2 has a perfect matching, a2 and a4 of T2 must be even with a2, a4 ≥ 2. As

a3 + a4 + a5 ≥ 4, by Corollaries 3.8 and 3.1, we obtain T2 ≻a2 Ta3+a4+a5

1 �2 Tn−4
1 .

Thus, Theorem 3.14(i) holds.

(ii) T ∈ H3,2
n with n ≥ 14.

If T ∈ H3,2
n , then by Lemma 3.10, there exists a tree T2 such that T2 ∈ H3

n and

T � T2. Since T2 has a perfect matching, all ai (1 ≤ i ≤ 4) of T2 are even or at most

two of ai (1 ≤ i ≤ 4) are odd. Two cases are considered as follows.

Case (i): All ai of T2 are even with ai ≥ 2, where 1 ≤ i ≤ 4.

Subcase (i.i): At least one of a1 + a2 and a3 + a4 is not less than 8.

We assume a1 + a2 ≥ 8. Since a1 + a2 − 2 ≥ 6 and a3 + a4 + a5 ≥ 5, by

Corollaries 3.8, 3.1 and 3.4, T2 ≻a1 Ta2

a3+a4+a5
�2 Ta1+a2−2

a3+a4+a5
≻2 Tn−6

3 . Thus, we have

T � T2 ≻2 Tn−6
3 ≻2 T2

n−5 (by Corollary 3.3).

Subcase (i.ii): a1 + a2 and a3 + a4 are less than 8.

If a1+ a2 = 4 and a3 + a4 = 4, then T2
∼= In, namely T � T2

∼= In. If a1+ a2 = 4

and a3 + a4 = 6 or a1 + a2 = 6 and a3 + a4 = 4, then T2
∼= Jn. By Lemma 3.12, we

have Jn ≻ In. Thus, T � T2
∼= Jn ≻ In. If a1 + a2 = a3 + a4 = 6, then T2

∼= Kn.

From Lemma 3.13, we get T � T2
∼= Kn ≻ In.

Case (ii): At most two of ai (1 ≤ i ≤ 4) of T2 are odd.

Subcase (ii.i): One of ai (1 ≤ i ≤ 4) of T2 is odd.

We assume that a1 is odd. Obviously, a2, a3, a4 are all even and not less than

2. As a1 ≥ 1, from Corollary 3.8, Corollary 3.1 and Theorem 3.5, we obtain T2 ≻a3

Ta4

a1+a2+a5
�2 Ta3+a4−2

a1+a2+a5
�2 T2

n−5 since a3 ≥ 2 and a1 + a2 + a5 ≥ 4. Thus, T �

T2 ≻2 T2
n−5.

Subcase (ii.ii): Two of ai (1 ≤ i ≤ 4) of T2 are odd.

Let a1 and a3 be odd. Obviously, a2 and a4 are even and not less than 2. Since

T 6∈ H3,1
n , one of a1 and a3 is not less than 3. Let a3 ≥ 3. From Corollaries 3.8,
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3.1 and 3.4, we get T2 ≻a4 Ta1+a2+a5
a3

�2 Ta1+a2+a5+a4−2
a3

�2 T3
n−6 since a3 ≥ 3 and

a1 + a2 + a5 + a4 − 2 ≥ 4. Therefore, T � T2 ≻
2 Tn−6

3 ≻2 T2
n−5 (by Corollary 3.3).

From Theorems 3.5–3.14, we obtain the ordering of the trees in Hn according to

their minimal EIs, as shown in Theorem 3.15.

Theorem 3.15. Let T ∈ Hn and n ≥ 14.

(i) If T ∈ H1,1
n ∪ H3,1

n , then EE(T ) > EE(2T n−4
1 ) > EE(Pn), where T ≇

Pn,
2T n−4

1 .

(ii) If T ∈ H1,2
n ∪H2

n∪H
3,2
n , then EE(T ) > EE(2T 2

n−5) > EE(2T n−4
1 ) > EE(Pn),

where T ≇ Pn,
2T n−4

1 ,2 T n−5
2 .

Proof. Let T ∈ Hn with n ≥ 14 and T ≇ Pn,
2T n−4

1 . From Theorems 3.5 and

3.14(i), we get Theorem 3.15(i). As n ≥ 14, 2T n−6
3 ≻2 T 2

n−5 follows from Corollary

3.3 and In ≻2 T 2
n−5 follows from Corollary 3.8. By Theorems 3.6, 3.11, and 3.14(ii),

we get Theorem 3.15(ii).

Let T ∈ Hn. We can check that T ∼= P2 as n = 2, T ∼= P4 as n = 4, and

T ∼= P6,
2 T 2

1 as n = 6. By Lemma 2.4, we have EE(2T n−4
1 ) > EE(Pn) as n = 6.

Next, for n = 8, 10, 12, we have Theorem 3.16 as follows.

Theorem 3.16. Let T ∈ Hn and n = 8, 10, 12. We have

EE(T ) > EE(2T n−4
1 ) > EE(Pn),

where T ≇ Pn,
2T n−4

1 .

Proof. Let T ∈ Hn with n = 8, 10, 12 and T ≇ Pn,
2T n−4

1 . If T ∈ H1
n,

then by Theorems 3.5 and 3.6, we get Theorem 3.16. If T ∈ H2
n ∪ H3

n, then by

Lemma 3.9, Lemma 3.10 and Corollary 3.8, there exits a tree lT r
b ∈ H1

n such that

EE(T ) > EE(lT r
b ), where

lT r
b 6∼= Pn. Furthermore, by Theorems 3.5 and 3.6, we

have EE(lT r
b ) ≥ EE(2T n−4

1 ), where lT r
b 6∼= Pn. Thus, we get Theorem 3.16 as

T ∈ H2
n ∪H3

n.
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