MINIMAL ESTRADA INDICES OF THE TREES WITH A PERFECT MATCHING*

CHUN-XIANG ZHAI ${ }^{\dagger}$ AND WEN-HUAN WANG ${ }^{\dagger}$

Abstract

Let \mathcal{H}_{n} be the set of the trees having a perfect matching with n vertices. The ordering of the trees in \mathcal{H}_{n} according to their minimal Estrada indices is investigated. The trees with the smallest and the second smallest Estrada indices among \mathcal{H}_{n}, with $n \geq 6$, are obtained.

Key words. Estrada indices, Perfect matching, Trees.

AMS subject classifications. 05C05, 05C35.

1. Introduction. Let G be a simple graph with a vertex set $V(G)$, where $|V(G)|=n$. Let $\Phi(G, \lambda)=\operatorname{det}[\lambda I-A(G)]$ be the characteristic polynomial of G, where $A(G)$ is the adjacency matrix of G and I the unit matrix of order n [4]. Denote by $\lambda_{1} \geq \cdots \geq \lambda_{n}$ the n roots of $\Phi(G, \lambda)=0$. Obviously, $\lambda_{1}, \ldots, \lambda_{n}$ are all real numbers since $A(G)$ is a real symmetric matrix. The Estrada index (EI) of G, a newly proposed graph-spectrum-based invariant, is defined by [12]

$$
\begin{equation*}
E E(G)=\sum_{i=1}^{n} \mathrm{e}^{\lambda_{i}} \tag{1.1}
\end{equation*}
$$

Recall that a walk W of length k in G is any sequence of vertices and edges of G, namely $W=v_{0}, e_{1}, v_{1}, e_{2}, \ldots, v_{k-1}, e_{k}, v_{k}$ such that e_{i} is the edge joining vertices v_{i-1} and v_{i} for every $i=1,2, \ldots, k$. If $v_{0}=v_{k}$, then the walk W is closed and is referred to as the $\left(v_{0}, v_{0}\right)$-walk of length k. For $u, v \in V(G)$, let $\mathcal{W}_{k}(G ; u, v)$ be the set of the (u, v)-walks of length k in G, and $M_{k}(G ; u, v)$ be the number of the elements in $\mathcal{W}_{k}(G ; u, v)$. Similarly, let $\mathcal{W}_{k}(G ; v)$ be the set of the (v, v)-walks of length k in G, and $M_{k}(G ; v)$ be the number of the elements in $\mathcal{W}_{k}(G ; v)$. Let $M_{2 k}(G, u,[v])$ be the number of the close (u, u)-walks of length $2 k$ starting at u and passing v in G. For $k \geq 0$, we denote $M_{k}(G)=\sum_{i=1}^{n} \lambda_{i}^{k}$ and refer to $M_{k}(G)$ as the k-th spectral moment of G. It is well known that $M_{k}(G)$ is equal to the number of the closed walks of length

[^0]k in G [4. From the Taylor expansion of $\mathrm{e}^{\lambda_{i}}, E E(G)$ in (1.1) can be rewritten as
\[

$$
\begin{equation*}
E E(G)=\sum_{k=0}^{\infty} \frac{M_{k}(G)}{k!} \tag{1.2}
\end{equation*}
$$

\]

In particular, if G is a bipartite graph, then $M_{2 k+1}(G)=0$ for $k \geq 0$. Hence, we have

$$
\begin{equation*}
E E(G)=\sum_{k=0}^{\infty} \frac{M_{2 k}(G)}{(2 k)!} \tag{1.3}
\end{equation*}
$$

Let G_{1} and G_{2} be two bipartite graphs of order n. If $M_{2 k}\left(G_{1}\right) \geq M_{2 k}\left(G_{2}\right)$ holds for any positive integer k, then $E E\left(G_{1}\right) \geq E E\left(G_{2}\right)$ and we denote $G_{1} \succeq G_{2}$. If $G_{1} \succeq G_{2}$ and there is at least one positive integer k_{0} such that $M_{2 k_{0}}\left(G_{1}\right)>M_{2 k_{0}}\left(G_{2}\right)$, then $E E\left(G_{1}\right)>E E\left(G_{2}\right)$ and we denote $G_{1} \succ G_{2}$.

The EI has found numerical applications in biology, complex networks and chemistry. It was used to quantify the degree of folding of long-chain molecules, especially proteins [11, 12, 19]. It was also shown that the EI provides a measure of the centrality of complex network [13, 19]. In addition, a connection between the EI and the concept of extended atomic branching was pointed out by Estrada et al. [14. For some mathematical properties of EI, including the lower and upper bounds for it, one can refer to [2, 15, 17].

In addition to the ordinary Estrada index, defined in terms of the eigenvalues of the adjacency matrix, Eq. (1.1), several analogous graph invariants have recently been considered. Of these worth mentioning are the Laplacian and signless Laplacian Estrada indices [1, 20, based on the eigenvalues of the Laplacian and signless Laplacian matrix, the resolvent Estrada index [3, 18, based on the resolvent of the adjacency matrix, and the skew Estrada index of oriented graphs 16.

The characterization of graphs having the extremal Estrada indices (EIs) is an interesting problem and has been obtained successfully. For the characterization of the unicyclic graphs, the bicyclic graphs and the tricyclic graphs, ect., one can refer to [8, 23, 24, 25, 27. For the general trees and the trees with given parameters, such as the trees with a given matching number, the trees with a fixed diameter, and the trees with a given number of pendant vertices, etc., one can refer to [7, 5, 6, 10, 21, 26, Recently, Wang [22] obtained the trees with the largest and the second largest Estrada indices among the set of trees with a perfect matching. From the references, one can find that many results are related to the graphs with the maximal EIs. However, until now, only a few results about the graphs having the minimal EIs have been obtained.

Recall that molecules with the Kekulé structures are molecular graphs with perfect matchings. Let \mathcal{H}_{n} be the set of trees with a perfect matching having n vertices.

Obviously, n is an even. In this paper, we will study the ordering of the trees in \mathcal{H}_{n} in terms of their minimal EIs. Thus, we characterize the acyclic Kekuléan π-electron systems with the smallest and the second smallest EIs.
2. Transformations for studying the Estrada indices. To deduce the main results of this paper, Lemmas 2.1 2.4 are simply quoted here.

Let $v \in V(G)$, and $d_{G}(v)$ be the degree of v of G. A pendant path at v of G is a path in G connecting vertex v and a pendant vertex such that all internal vertices (if exist) in this path have degree two and $d_{G}(v) \geq 3$.

Lemma 2.1. 21 Let w be a vertex of the nontrivial connected graph G. For nonnegative integers p and q, let $G(p, q)$ denote the graph obtained from G by attaching at w pendant paths $P=w v_{1} v_{2} \cdots v_{p}$ and $Q=w u_{1} u_{2} \cdots u_{q}$ of lengths p and q, respectively. If $p \geq q \geq 1$, then $E E(G(p, q))>E E(G(p+1, q-1))$.

Let the coalescence $G(u) \cdot H(v)$ be the graph obtained from G and H by identifying u of G with v of H.

Lemma 2.2. 9] Let G and H be two vertex-disjoint graphs with $u, v \in V(G)$ and $z \in V(H)$, where $|V(H)| \geq 2$. For each positive integer k, if $M_{k}(G ; u) \geq M_{k}(G ; v)$ and there exists at least one k such that $M_{k}(G ; u)>M_{k}(G ; v)$ holds, then $E E(G(u)$. $H(z))>E E(G(v) \cdot H(z))$.

Lemma 2.3. [8, 22] Let A, B and C be three connected graphs, and each of which has at least two vertices. Let u and v be two different vertices of $C, u^{\prime} \in V(A)$ and $v^{\prime} \in V(B)$. Let $H=A\left(u^{\prime}\right) \cdot C(u), G=H(v) \cdot B\left(v^{\prime}\right)$ and $G^{\prime}=H(u) \cdot B\left(v^{\prime}\right)$. Suppose that there exists an automorphism θ of C such that $\theta(u)=v$, then
(i) $M_{k}(H, u) \geq M_{k}(H, v)$ for all positive integer k and it is strict for some positive integer k_{0};
(ii) $M_{k}\left(G^{\prime}\right) \geq M_{k}(G)$ for all positive integer k and it is strict for some positive integer k_{0}.

Lemma 2.4. [7] Let u be a non-isolated vertex of a simple graph H. If H_{1} and H_{2} are the graphs obtained from H by identifying an end vertex v_{1} and an internal vertex v_{t} of the path P_{a+b+1} with u, respectively (see Figs. 2.1(a) and 2.1(b)), then $M_{2 k}\left(H_{2}\right)>M_{2 k}\left(H_{1}\right)$ for $n \geq 3$ and $k \geq 2$.
3. The smallest and the second smallest trees with the minimal Estrada indices in \mathcal{H}_{n}. In this section, we study the ordering of the trees in \mathcal{H}_{n} according to their minimal EIs. Some definitions are introduced first.

We classify \mathcal{H}_{n} into three subsets $\mathcal{H}_{n}^{1}, \mathcal{H}_{n}^{2}$ and \mathcal{H}_{n}^{3}, where \mathcal{H}_{n}^{1} is the subset of

Fig. 2.1. The transformation in Lemma 2.4
\mathcal{H}_{n} in which there exists at most one vertex having degree 3 and all other vertices having degrees 2 or $1 ; \mathcal{H}_{n}^{2}$ is the subset of \mathcal{H}_{n} in which there exists at least one vertex having degree greater than 3 ; and \mathcal{H}_{n}^{3} is the subset of \mathcal{H}_{n} in which there exist at least two vertices having degrees 3 and all other vertices having degrees 2 or 1. Obviously, $\mathcal{H}_{n}=\mathcal{H}_{n}^{1} \cup \mathcal{H}_{n}^{2} \cup \mathcal{H}_{n}^{3}$.

Let ${ }^{l} \mathrm{~T}_{b}^{r}$ be the tree obtained by attaching three pendant paths of length l, r and b at a common vertex u, where $l+r+b+1=n, l$ and r are even with $l, r \geq 0$ and b is odd with $b \geq 1$. Specially, if at least one of l and r is 0 , then ${ }^{l} \mathrm{~T}_{b}^{r}$ is the path P_{n}. Obviously, ${ }^{l} \mathrm{~T}_{b}^{r}$ has a perfect matching. By the definition of \mathcal{H}_{n}^{1}, if $T \in \mathcal{H}_{n}^{1}$, then T is ${ }^{l} \mathrm{~T}_{b}^{r}$. For example, ${ }^{l} \mathrm{~T}_{b}^{r}$ is shown in Fig. 3.1.

FIG. 3.1. ${ }^{l} T_{b}^{r}$ with $l+r+b+1=n$.
Let G in Lemma 2.1 be P_{b+1}. Repeatedly using Lemma 2.1 we can obtain Corollary 3.1.

Corollary 3.1. ${ }^{l} \mathrm{~T}_{b}^{r} \succ^{l-2} \mathrm{~T}_{b}^{r+2} \succ \cdots \succ^{4} \mathrm{~T}_{b}^{n-b-5} \succ^{2} \mathrm{~T}_{b}^{n-b-3} \succ^{0} \mathrm{~T}_{b}^{n-b-1} \cong P_{n}$, where $r \geq l \geq 2$ and $b \geq 1$.

Let G in Lemma 2.1 be P_{l+1}. Repeatedly using Lemma 2.1 we get Corollaries 3.2 and 3.3 .

Corollary 3.2. ${ }^{l} \mathrm{~T}_{b}^{r} \succ^{l} \mathrm{~T}_{r-1}^{b+1} \succ \cdots \succ^{l} \mathrm{~T}_{3}^{n-l-4} \succ^{l} \mathrm{~T}_{n-l-3}^{2} \succ^{l} \mathrm{~T}_{1}^{n-l-2} \succ^{l}$ $\mathrm{T}_{n-l-1}^{0} \cong P_{n}$, where $b>r \geq 2$.

Corollary 3.3. ${ }^{l} \mathrm{~T}_{b}^{r} \succ^{l} \mathrm{~T}_{r+1}^{b-1} \succ \cdots \succ^{l} \mathrm{~T}_{3}^{n-l-4} \succ^{l} \mathrm{~T}_{n-l-3}^{2} \succ^{l} \mathrm{~T}_{1}^{n-l-2} \succ^{l}$ $\mathrm{T}_{n-l-1}^{0} \cong P_{n}$, where $r>b \geq 1$.

By Corollaries 3.2 and 3.3 we get Corollary 3.4.
Corollary 3.4. As $r \geq 4$ and $b \geq 3$, ${ }^{l} \mathrm{~T}_{b}^{r} \succeq^{l} \mathrm{~T}_{3}^{n-l-4} \succ^{l} \mathrm{~T}_{n-l-3}^{2} \succ^{l} \mathrm{~T}_{1}^{n-l-2} \succ^{l}$ $\mathrm{T}_{n-l-1}^{0} \cong P_{n}$, with $E E\left({ }^{l} \mathrm{~T}_{b}^{r}\right)=E E\left({ }^{l} \mathrm{~T}_{3}^{n-l-4}\right)$ if and only if $b=3$.

Remark. By the definition of ${ }^{l} \mathrm{~T}_{b}^{r}$, all the graphs in Corollaries 3.1 3.4 have a perfect matching.

Let $\mathcal{H}_{n}^{1,1}=\left\{{ }^{l} \mathrm{~T}_{b}^{r} \mid b=1, l, r \geq 0\right\}$ and $\mathcal{H}_{n}^{1,2}=\left\{{ }^{l} \mathrm{~T}_{b}^{r} \mid b \geq 3, l, r \geq 0\right\}$. Obviously, $\mathcal{H}_{n}^{1}=\mathcal{H}_{n}^{1,1} \cup \mathcal{H}_{n}^{1,2}$. From Corollaries 3.1 and 3.3, we obtain, in Theorem 3.5 the complete ordering of the trees in $\mathcal{H}_{n}^{1,1}$ in terms of their minimal EIs.

Theorem 3.5. For ${ }^{l} \mathrm{~T}_{1}^{r} \in \mathcal{H}_{n}^{1,1}$ with $n \geq 8$, we have the ordering as follows.
(i) As $n=4 h$ with $h \geq 2,{ }^{\frac{n}{2}-2} \mathrm{~T}_{1}^{\frac{n}{2}} \succ^{\frac{n}{2}-4} \mathrm{~T}_{1}^{\frac{n}{2}+2} \succ \cdots \succ^{2} \mathrm{~T}_{1}^{n-4} \succ^{2} \mathrm{~T}_{n-3}^{0} \cong P_{n}$.
(ii) As $n=4 h+2$ with $h \geq 2,{ }^{\frac{n}{2}-1} \mathrm{~T}_{1}^{\frac{n}{2}-1} \succ^{\frac{n}{2}-3} \mathrm{~T}_{1}^{\frac{n}{2}+1} \succ \cdots \succ^{2} \mathrm{~T}_{1}^{n-4} \succ^{2} \mathrm{~T}_{n-3}^{0} \cong$ P_{n}.

Proof. As $n \geq 8$, by Corollary 3.3 we get ${ }^{2} \mathrm{~T}_{1}^{n-4} \succ^{2} \mathrm{~T}_{n-3}^{0} \cong P_{n}$. In Corollary 3.1, let $b=1$. Using Corollary 3.1 repeatedly, we obtain Theorem 3.5, प

From Corollaries 3.3 and 3.4 we obtain the first four trees in $\mathcal{H}_{n}^{1,2}$ with the minimal EIs in Theorem 3.6.

Theorem 3.6. Let $T \in \mathcal{H}_{n}^{1,2} \backslash\left\{P_{n},{ }^{2} \mathrm{~T}_{n-5}^{2},{ }^{2} \mathrm{~T}_{3}^{n-6}\right\}$ and $n \geq 8$. We have

$$
T \succ^{2} \mathrm{~T}_{3}^{n-6} \succeq^{2} \mathrm{~T}_{n-5}^{2} \succ^{2} \mathrm{~T}_{1}^{n-4} \succ^{2} \mathrm{~T}_{n-3}^{0} \cong P_{n}
$$

where $E E\left({ }^{2} \mathrm{~T}_{3}^{n-6}\right)=E E\left({ }^{2} \mathrm{~T}_{n-5}^{2}\right)$ if and only if $n=8$.
Proof. As $n \geq 8$, it follows directly from Corollary 3.3 (let $l=2$) that ${ }^{2} \mathrm{~T}_{3}^{n-6} \succeq^{2}$ $\mathrm{T}_{n-5}^{2} \succ^{2} \mathrm{~T}_{1}^{n-4} \succ^{2} \mathrm{~T}_{n-3}^{0} \cong P_{n}$, where $E E\left({ }^{2} \mathrm{~T}_{3}^{n-6}\right)=E E\left({ }^{2} \mathrm{~T}_{n-5}^{2}\right)$ if and only if $n=8$.

Next, let ${ }^{l} \mathrm{~T}_{b}^{r} \in \mathcal{H}_{n}^{1,2} \backslash\left\{P_{n},{ }^{2} \mathrm{~T}_{n-5}^{2},{ }^{2} \mathrm{~T}_{3}^{n-6}\right\}$. As $b \geq 3$ and $n \geq 8$, we will prove

$$
\begin{equation*}
{ }^{l} \mathrm{~T}_{b}^{r} \succ^{2} \mathrm{~T}_{3}^{n-6} \tag{3.1}
\end{equation*}
$$

In ${ }^{l} \mathrm{~T}_{b}^{r}$, we have $l, r \geq 2$ since ${ }^{l} \mathrm{~T}_{b}^{r} \nexists P_{n}$. We assume $r \geq l \geq 2$. As $l=2$, we have $r \geq 4$ since ${ }^{l} \mathrm{~T}_{b}^{r} \not \not^{2} \mathrm{~T}_{n-5}^{2}$. Thus, as $r \geq 4$ and $b \geq 3$, (3.1) follows from Corollary 3.4 directly. As $l \geq 4$, we have $r \geq l \geq 4$. It follows from Corollary 3.1 that ${ }^{l} \mathrm{~T}_{b}^{r} \succ^{2} \mathrm{~T}_{b}^{l+r-2}$. Since $l+r-2 \geq 6$ and $b \geq 3$, by Corollary 3.4 we get ${ }^{2} \mathrm{~T}_{b}^{l+r-2} \succeq^{2} \mathrm{~T}_{3}^{n-6}$. Therefore, we have ${ }^{l} \mathrm{~T}_{b}^{r} \succ^{2} \mathrm{~T}_{3}^{n-6}$. Namely, (3.1) holds. Theorem 3.6 is thus proved.

Lemma 3.7. If H_{2} (see Fig. 2.1(a)) in Lemma 2.4 has a perfect matching, then H_{1} (see Fig. 2.1(b) has a perfect matching too.

Proof. If H_{2} has a perfect matching, then the vertex u of H_{2} (as shown in Fig. 2.1(a) must be matched with another vertex (denoted by w) of H_{2}. If $w \in V(H) \backslash\{u\}$, then a and b are even. If $w \notin V(H)$, then one of a and b is odd and the another is even. We can easily check that H_{1} has a perfect matching too.

By Lemmas 2.4 and 3.7, we obtain Corollary 3.8 as follows.
Corollary 3.8. Let $T \in \mathcal{H}_{n}$ with $n \geq 6$. In T, if there exists an vertex (denoted by u) satisfying that $d_{T}(u) \geq 3$ and there are two pendant paths attaching at u of T, then we have another tree $T^{\prime} \in \mathcal{H}_{n}$ satisfying $d_{T^{\prime}}(u)=d_{T}(u)-1$ and $E E(T)>E E\left(T^{\prime}\right)$.

From Corollary 3.8 we deduce Lemmas 3.9 and 3.10 as follows.
Lemma 3.9. If $T \in \mathcal{H}_{n}^{2}$, then there exists a tree $T_{1} \in \mathcal{H}_{n}^{2}$ (see Fig. 3.2(a)) such that $E E(T) \geq E E\left(T_{1}\right)$, with the equality if and only if $T \cong T_{1}$.

Proof. Let $T \in \mathcal{H}_{n}^{2}$. By the definition of \mathcal{H}_{n}^{2}, we get that T has at least one vertex having degree greater than 3 .

Case (i): Only one vertex of T (denoted by u) has degree greater than 3 .
Subcase (i.i): All the degrees of the vertices in $V(T) \backslash\{u\}$ are 2 or 1 .
Obviously, u of T is attached by $d_{T}(u)$ pendant paths of T. Using Corollary 3.8 $\left(d_{T}(u)-4\right)$ times on u of T, we get Lemma 3.9,

Subcase (i.ii): There exist $k \geq 1$ vertices in $V(T) \backslash\{u\}$ having degree 3.
We can choose one vertex (denoted by s) of T such that $d_{T}(s)=3$ and s is attached by two pendant paths of T. By Corollary 3.8, we get $E E(T)>E E\left(T^{\prime}\right)$, where $T^{\prime} \in \mathcal{H}_{n}^{2}, d_{T^{\prime}}(s)=2$, and T^{\prime} has $k-1$ vertices having degree 3 . Repeatedly using the same procedure, we obtain $E E\left(T^{\prime}\right) \geq E E\left(T^{\prime \prime}\right)$, where $T^{\prime \prime} \in \mathcal{H}_{n}^{2}$, $T^{\prime \prime}$ has only one vertex u having degree greater than 3 and all other vertices of $T^{\prime \prime}$ having degrees 2 or 1. Furthermore, by the proof of Subcase (i.i), we can get that there exists a tree $T_{1} \in \mathcal{H}_{n}^{2}$ with $E E\left(T^{\prime \prime}\right) \geq E E\left(T_{1}\right)$. Thus, we obtain $E E(T)>E E\left(T_{1}\right)$.

Case (ii): There exist $k \geq 2$ vertices of T having degrees greater than 3 .
In this case, we can choose one vertex (denoted by w) of T such that $d_{T}(w) \geq 3$ and w is attached by $\left(d_{T}(w)-1\right)$ pendant paths. Repeatedly using Corollary 3.8 $\left(d_{T}(w)-2\right)$ times on w of T, we get a new tree $T^{\prime} \in \mathcal{H}_{n}^{2}$ satisfying $d_{T^{\prime}}(w)=2$ and $E E(T)>E E\left(T^{\prime}\right)$. Repeatedly using the same procedure, we can obtain a tree $T^{\prime \prime} \in \mathcal{H}_{n}^{2}$ such that $E E\left(T^{\prime}\right) \geq E E\left(T^{\prime \prime}\right)$, where $T^{\prime \prime}$ has only one vertex having degree greater than 3 and all other vertices of $T^{\prime \prime}$ having degrees 2 or 1. Furthermore, by the proof of Subcase (i.i), we can get that there exists a tree $T_{1} \in \mathcal{H}_{n}^{2}$ with
$E E\left(T^{\prime \prime}\right) \geq E E\left(T_{1}\right)$. Thus, we obtain $E E(T)>E E\left(T_{1}\right) . \square$

(b) $T_{2}: \sum_{i=1}^{5} a_{i}=n-1$ with $a_{i} \geq 1$.

FIG. 3.2. (a) $T_{1}: \sum_{i=1}^{4} a_{i}=n-1$ with $a_{i} \geq 1$.

Lemma 3.10. If $T \in \mathcal{H}_{n}^{3}$, then there exists a tree $T_{2} \in \mathcal{H}_{n}^{3}$ (see Fig. 3.2(b)) such that $E E(T) \geq E E\left(T_{2}\right)$, with the equality if and only if $T \cong T_{2}$.

Proof. Let $T \in \mathcal{H}_{n}^{3}$. We get that T has at least two vertices having degree 3 and all other vertices of T having degrees 2 or 1 . If T has two vertices (denoted by u and v) having degree 3 , then $T \cong T_{2}$. If T has at least three vertices having degree 3 , then by the methods similar to those for Subcase (i.ii) in Lemma 3.9, we get Lemma 3.10,

In T_{2}, if $a_{1}=a_{2}=a_{3}=a_{4}=2$, then we denote T_{2} by I_{n}.
Theorem 3.11. Let $T \in \mathcal{H}_{n}^{2}$ and $n \geq 10$, we have $T \succ^{2} \mathrm{~T}_{3}^{n-6}$ or $T \succ I_{n}$.
Proof. Let $T \in \mathcal{H}_{n}^{2}$ and $n \geq 10$. By Lemma [3.9, there exists a tree T_{1} such that $T_{1} \in \mathcal{H}_{n}^{2}$ and $T \succeq T_{1}$. Since T_{1} has a perfect matching, in T_{1}, only one of a_{i} $(1 \leq i \leq 4)$ is odd. We assume that a_{1} is odd. Therefore, a_{2}, a_{3}, and a_{4} are even. We let $a_{4} \geq a_{3} \geq a_{2} \geq 2$. Two cases are considered as follows.

Case (i): At least one of a_{2}, a_{3} and a_{4} is not less than 4.
Without loss of generality, we let $a_{4} \geq 4$. Since $a_{4} \geq a_{3} \geq 2$, by Corollaries 3.8 and 3.1, $T_{1} \succ^{a_{3}} \mathrm{~T}_{a_{1}+a_{2}}^{a_{4}} \succeq^{2} \mathrm{~T}_{a_{1}+a_{2}}^{a_{3}+a_{4}-2}$. Since $a_{1}+a_{2} \geq 3$ and $a_{3}+a_{4}-2 \geq 4$, ${ }^{2} \mathrm{~T}_{a_{1}+a_{2}}^{a_{3}+a_{4}-2} \succeq^{2} \mathrm{~T}_{3}^{n-6}$ follows from Corollary [3.4. In conclusion, we get $T \succeq T_{1} \succ^{2}$ T_{3}^{n-6} 。

Case (ii): $a_{2}=a_{3}=a_{4}=2$.
Let C in Lemma 2.3 be $P_{n-4}=v_{1} v_{2} \cdots v_{n-5} v_{n-4}, u$ in Lemma 2.3 be v_{3} of P_{n-4}, and v in Lemma 2.3 be v_{n-6} of P_{n-4}. In C, we can check that there exists an automorphism θ such that $\theta(u)=v$. Let $H=P_{n-4}\left(v_{3}\right) \cdot P_{3}\left(v_{0}\right)$, where $P_{3}=v_{0} v_{1} v_{2}$. Since $T_{1} \cong H(u) \cdot P_{3}\left(v_{0}\right)$ and $I_{n} \cong H(v) \cdot P_{3}\left(v_{0}\right)$, by Lemma 2.3, we obtain $T_{1} \succ I_{n}$ as $n \geq 10$. Therefore, $T \succeq T_{1} \succ I_{n}$ as $n \geq 10$.

To obtain the tree with the minimal EI in \mathcal{H}_{n}^{3}, we introduce Lemmas 3.12 and 3.13 first. Two trees J_{n} and K_{n} are introduced. In T_{2}, if $a_{1}=a_{2}=a_{3}=2$ and $a_{4}=4$, then we denote T_{2} by J_{n}. In T_{2}, if $a_{2}=a_{3}=2$ and $a_{1}=a_{4}=4$, then we denote T_{2} by K_{n}.

(a)

(b)

Fig. 3.3. (a) ${ }^{2} T_{n-7}^{2}$.
(b) ${ }^{2} T_{n-9}^{4}$.

Lemma 3.12. As $n \geq 12$, we have $J_{n} \succ I_{n}$.
Proof. For simplicity, let H be ${ }^{2} T_{n-7}^{2}$ (see Fig. 3.3(a) , where $n \geq 12$. In ${ }^{2} T_{n-7}^{2}$, let u, v, w, and w_{i} with $1 \leq i \leq 5$ be the eight vertices, as shown in Fig. 3.3(a) Next, we prove

$$
\begin{equation*}
M_{k}(H ; u) \geq M_{k}(H ; v) \tag{3.2}
\end{equation*}
$$

holds for all $k \geq 0$ and there exists a $k_{0} \geq 0$ such that $M_{k_{0}}(H ; u)>M_{k_{0}}(H ; v)$.
Let H_{1} be one of the two components of $H-\{u w\}$ which contains the vertex v of H, namely, H_{1} is the path $P_{4}=w v w_{2} w_{1}$. Similarly, let H_{2} be one of the two components of $H-\{v w\}$ which contains the vertex u of H. We can easily check that H_{1} is isomorphic to a subgraph (denoted by H_{2}^{\prime}) of H_{2}, where H_{2}^{\prime} is the path $P_{4}=w_{4} w_{3} u w$. Obviously, for all $k \geq 0, M_{k}\left(H_{2}^{\prime} ; u\right)=M_{k}\left(H_{1} ; v\right)$. Thus, for all $k \geq 0$, we have

$$
\begin{align*}
M_{k}\left(H_{2} ; u\right) & =M_{k}\left(H_{2}^{\prime} ; u\right)+M_{k}\left(H_{2} ; u,\left[w_{5}\right]\right) \\
& =M_{k}\left(H_{1} ; v\right)+M_{k}\left(H_{2} ; u,\left[w_{5}\right]\right) \\
& \geq M_{k}\left(H_{1} ; v\right) \tag{3.3}
\end{align*}
$$

since $M_{k}\left(H_{2} ; u,\left[w_{5}\right]\right) \geq 0$. As $k=6$, we can check that $M_{k}\left(H_{2} ; u,\left[w_{5}\right]\right)=1>0$. Therefore, $M_{6}\left(H_{2} ; u\right)>M_{6}\left(H_{1} ; v\right)$. Namely, there exist a k_{0} such $M_{k_{0}}\left(H_{2} ; u\right)>$ $M_{k_{0}}\left(H_{1} ; v\right)$. By the methods similar to those for (3.3), we can prove $M_{k}\left(H_{2} ; u, w\right) \geq$ $M_{k}\left(H_{1} ; v, w\right)$ for all $k \geq 0$.

As $k \geq 0$, we obtain

$$
\begin{align*}
& M_{k}(H ; v)=M_{k}(H ; v,[u])+M_{k}\left(H_{1} ; v\right), \tag{3.4}\\
& M_{k}(H ; u)=M_{k}(H ; u,[v])+M_{k}\left(H_{2} ; u\right) . \tag{3.5}
\end{align*}
$$

From (3.4) and (3.5), to obtain (3.2), we only need to prove

$$
M_{k}(H ; u,[v]) \geq M_{k}(H ; v,[u])
$$

since (3.3) holds.
For an arbitrary $W \in \mathcal{W}_{k}(H ; v,[u])$, we decompose W into $W_{1} W_{2}$, where W_{1} is the shortest (v, u)-section of W (consisting of a (v, w)-walk in H_{1} and a single edge $w u$), and W_{2} is the remaining (u, v)-section of W. Thus, we get

$$
\begin{equation*}
M_{k}(H ; v,[u])=\sum_{\substack{k_{1}+k_{2}=k \\ k_{1}, k_{2} \geq 2 \\ k_{1}, k_{2} \text { are all even }}} M_{k_{1}-1}\left(H_{1} ; v, w\right) M_{k_{2}}(H ; u, v) . \tag{3.6}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
M_{k}(H ; u,[v])=\sum_{\substack{k_{1}+k_{2}=k \\ k_{1}, k_{2} \geq 2 \\ k_{1}, k_{2} \text { are all even }}} M_{k_{1}-1}\left(H_{2} ; u, w\right) M_{k_{2}}(H ; v, u) \tag{3.7}
\end{equation*}
$$

For all even $k_{2} \geq 0$, obviously $M_{k_{2}}(H ; u, v)=M_{k_{2}}(H ; v, u)$. Since for all $k_{1} \geq 0$, $M_{k_{1}-1}\left(H_{2} ; u, w\right) \geq M_{k_{1}-1}\left(H_{1} ; v, w\right)$, it follows from (3.6) and (3.7) that

$$
M_{k}(H ; u,[v]) \geq M_{k}(H ; v,[u])
$$

Furthermore, by (3.3), (3.4), and (3.5), we get (3.2).
Obviously, $J_{n} \cong H(u) \cdot P_{3}\left(v_{0}\right)$ and $I_{n} \cong H(v) \cdot P_{3}\left(v_{0}\right)$, where $P_{3}=v_{0} v_{1} v_{2}$. Thus, by Lemma 2.2, we obtain Lemma 3.13,

Lemma 3.13. As $n \geq 14$, we have $K_{n} \succ J_{n} \succ I_{n}$.
Proof. For simplicity, let Q be ${ }^{2} T_{n-9}^{4}$ (see Fig. 3.3(b) , where $n \geq 14$. In ${ }^{2} T_{n-9}^{4}$, let u, v, w, and w_{i} with $1 \leq i \leq 5$ be the eight vertices, as shown in Fig.3.3(b). By the methods similar to those for (3.3) in Lemma 3.12, we can prove $M_{k}(Q ; u) \geq M_{k}(Q ; v)$ for all $k \geq 0$ and there exists a $k_{0}=6$ such that $M_{k_{0}}(Q ; u)>M_{k_{0}}(Q ; v)$.

Obviously, $K_{n} \cong Q(u) \cdot P_{3}\left(v_{0}\right)$ and $J_{n} \cong Q(v) \cdot P_{3}\left(v_{0}\right)$, where $P_{3}=v_{0} v_{1} v_{2}$. By Lemma 2.2 we get $K_{n} \succ J_{n}$ as $n \geq 14$. Furthermore, by Lemma 3.12 we obtain Lemma 3.13, ㅁ

Let $\mathcal{H}_{n}^{3,1}=\left\{T \in H_{n}^{3} \mid \exists T_{2}\right.$ such that $T \succeq T_{2}$ and T_{2} has $a_{1}=a_{3}=1$ and $\left.a_{2}, a_{4} \geq 2\right\}$ and $\mathcal{H}_{n}^{3,2}=\mathcal{H}_{n}^{3} \backslash \mathcal{H}_{n}^{3,1}$. By Lemmas 3.10 3.13 we get Theorem 3.14 as follows.

Theorem 3.14. Let $T \in \mathcal{H}_{n}^{3}$ and $n \geq 14$.
(i) If $T \in \mathcal{H}_{n}^{3,1}$, then $T \succ^{2} \mathrm{~T}_{1}^{n-4}$.
(ii) If $T \in \mathcal{H}_{n}^{3,2}$, then $T \succ^{2} \mathrm{~T}_{n-5}^{2}$ or $T \succeq I_{n}$.

Proof. (i) $T \in \mathcal{H}_{n}^{3,1}$ with $n \geq 14$.
If $T \in \mathcal{H}_{n}^{3,1}$, then by Lemma 3.10, there exists a tree T_{2} such that $T_{2} \in \mathcal{H}_{n}^{3}$ and $T \succeq T_{2}$. Furthermore, by the definition of $\mathcal{H}_{n}^{3,1}, T_{2}$ (see Fig. 3.2(b)) has $a_{1}=a_{3}=1$. Since T_{2} has a perfect matching, a_{2} and a_{4} of T_{2} must be even with $a_{2}, a_{4} \geq 2$. As $a_{3}+a_{4}+a_{5} \geq 4$, by Corollaries 3.8 and 3.1, we obtain $T_{2} \succ^{a_{2}} \mathrm{~T}_{1}^{a_{3}+a_{4}+a_{5}} \succeq^{2} \mathrm{~T}_{1}^{n-4}$. Thus, Theorem 3.14(i) holds.
(ii) $T \in \mathcal{H}_{n}^{3,2}$ with $n \geq 14$.

If $T \in \mathcal{H}_{n}^{3,2}$, then by Lemma 3.10, there exists a tree T_{2} such that $T_{2} \in \mathcal{H}_{n}^{3}$ and $T \succeq T_{2}$. Since T_{2} has a perfect matching, all $a_{i}(1 \leq i \leq 4)$ of T_{2} are even or at most two of $a_{i}(1 \leq i \leq 4)$ are odd. Two cases are considered as follows.

Case (i): All a_{i} of T_{2} are even with $a_{i} \geq 2$, where $1 \leq i \leq 4$.
Subcase (i.i): At least one of $a_{1}+a_{2}$ and $a_{3}+a_{4}$ is not less than 8.
We assume $a_{1}+a_{2} \geq 8$. Since $a_{1}+a_{2}-2 \geq 6$ and $a_{3}+a_{4}+a_{5} \geq 5$, by Corollaries 3.8, 3.1] and 3.4, $T_{2} \succ^{a_{1}} \mathrm{~T}_{a_{3}+a_{4}+a_{5}}^{a_{2}} \succeq^{2} \mathrm{~T}_{a_{3}+a_{4}+a_{5}}^{a_{1}+a_{2}-2} \succ^{2} \mathrm{~T}_{3}^{n-6}$. Thus, we have $T \succeq T_{2} \succ^{2} \mathrm{~T}_{3}^{n-6} \succ^{2} \mathrm{~T}_{n-5}^{2}$ (by Corollary (3.3).

Subcase (i.ii): $a_{1}+a_{2}$ and $a_{3}+a_{4}$ are less than 8.
If $a_{1}+a_{2}=4$ and $a_{3}+a_{4}=4$, then $T_{2} \cong I_{n}$, namely $T \succeq T_{2} \cong I_{n}$. If $a_{1}+a_{2}=4$ and $a_{3}+a_{4}=6$ or $a_{1}+a_{2}=6$ and $a_{3}+a_{4}=4$, then $T_{2} \cong J_{n}$. By Lemma 3.12 we have $J_{n} \succ I_{n}$. Thus, $T \succeq T_{2} \cong J_{n} \succ I_{n}$. If $a_{1}+a_{2}=a_{3}+a_{4}=6$, then $T_{2} \cong K_{n}$. From Lemma 3.13, we get $T \succeq T_{2} \cong K_{n} \succ I_{n}$.

Case (ii): At most two of $a_{i}(1 \leq i \leq 4)$ of T_{2} are odd.
Subcase (ii.i): One of $a_{i}(1 \leq i \leq 4)$ of T_{2} is odd.
We assume that a_{1} is odd. Obviously, a_{2}, a_{3}, a_{4} are all even and not less than 2. As $a_{1} \geq 1$, from Corollary 3.8, Corollary 3.1 and Theorem 3.5, we obtain $T_{2} \succ^{a_{3}}$ $\mathrm{T}_{a_{1}+a_{2}+a_{5}}^{a_{4}} \succeq^{2} \mathrm{~T}_{a_{1}+a_{2}+a_{5}}^{a_{3}+a_{4}-2} \succeq^{2} \mathrm{~T}_{n-5}^{2}$ since $a_{3} \geq 2$ and $a_{1}+a_{2}+a_{5} \geq 4$. Thus, $T \succeq$ $T_{2} \succ^{2} \mathrm{~T}_{n-5}^{2}$.

Subcase (ii.ii): Two of $a_{i}(1 \leq i \leq 4)$ of T_{2} are odd.
Let a_{1} and a_{3} be odd. Obviously, a_{2} and a_{4} are even and not less than 2. Since $T \notin \mathcal{H}_{n}^{3,1}$, one of a_{1} and a_{3} is not less than 3. Let $a_{3} \geq 3$. From Corollaries 3.8,
3.1 and 3.4 we get $T_{2} \succ^{a_{4}} \mathrm{~T}_{a_{3}}^{a_{1}+a_{2}+a_{5}} \succeq^{2} \mathrm{~T}_{a_{3}}^{a_{1}+a_{2}+a_{5}+a_{4}-2} \succeq^{2} \mathrm{~T}_{n-6}^{3}$ since $a_{3} \geq 3$ and $a_{1}+a_{2}+a_{5}+a_{4}-2 \geq 4$. Therefore, $T \succeq T_{2} \succ^{2} \mathrm{~T}_{3}^{n-6} \succ^{2} \mathrm{~T}_{n-5}^{2}$ (by Corollary 3.3).

From Theorems 3.5 3.14 we obtain the ordering of the trees in \mathcal{H}_{n} according to their minimal EIs, as shown in Theorem 3.15

Theorem 3.15. Let $T \in \mathcal{H}_{n}$ and $n \geq 14$.
(i) If $T \in \mathcal{H}_{n}^{1,1} \cup \mathcal{H}_{n}^{3,1}$, then $E E(T)>E E\left({ }^{2} T_{1}^{n-4}\right)>E E\left(P_{n}\right)$, where $T \nexists$ $P_{n},{ }^{2} T_{1}^{n-4}$.
(ii) If $T \in \mathcal{H}_{n}^{1,2} \cup \mathcal{H}_{n}^{2} \cup \mathcal{H}_{n}^{3,2}$, then $E E(T)>E E\left({ }^{2} T_{n-5}^{2}\right)>E E\left({ }_{1}^{2} T_{1}^{n-4}\right)>E E\left(P_{n}\right)$, where $T \nexists P_{n},{ }^{2} T_{1}^{n-4},{ }^{2} T_{2}^{n-5}$.

Proof. Let $T \in \mathcal{H}_{n}$ with $n \geq 14$ and $T \nexists P_{n},{ }^{2} T_{1}^{n-4}$. From Theorems 3.5 and 3.14(i), we get Theorem 3.15(i). As $n \geq 14,{ }^{2} T_{3}^{n-6} \succ^{2} T_{n-5}^{2}$ follows from Corollary 3.3 and $I_{n} \succ^{2} T_{n-5}^{2}$ follows from Corollary 3.8, By Theorems 3.6, 3.11 and 3.14(ii), we get Theorem 3.15(ii).

Let $T \in \mathcal{H}_{n}$. We can check that $T \cong P_{2}$ as $n=2, T \cong P_{4}$ as $n=4$, and $T \cong P_{6},{ }^{2} T_{1}^{2}$ as $n=6$. By Lemma [2.4, we have $E E\left({ }^{2} T_{1}^{n-4}\right)>E E\left(P_{n}\right)$ as $n=6$. Next, for $n=8,10,12$, we have Theorem 3.16 as follows.

Theorem 3.16. Let $T \in \mathcal{H}_{n}$ and $n=8,10,12$. We have

$$
E E(T)>E E\left({ }^{2} T_{1}^{n-4}\right)>E E\left(P_{n}\right)
$$

where $T \not \equiv P_{n},{ }^{2} T_{1}^{n-4}$.
Proof. Let $T \in \mathcal{H}_{n}$ with $n=8,10,12$ and $T \not \equiv P_{n},{ }^{2} T_{1}^{n-4}$. If $T \in \mathcal{H}_{n}^{1}$, then by Theorems 3.5 and [3.6, we get Theorem 3.16] If $T \in \mathcal{H}_{n}^{2} \cup \mathcal{H}_{n}^{3}$, then by Lemma 3.9, Lemma 3.10 and Corollary 3.8, there exits a tree ${ }^{l} T_{b}^{r} \in \mathcal{H}_{n}^{1}$ such that $E E(T)>E E\left({ }^{l} T_{b}^{r}\right)$, where ${ }^{l} T_{b}^{r} \neq P_{n}$. Furthermore, by Theorems 3.5 and 3.6, we have $E E\left({ }^{l} T_{b}^{r}\right) \geq E E\left({ }^{2} T_{1}^{n-4}\right)$, where ${ }^{l} T_{b}^{r} \not \neq P_{n}$. Thus, we get Theorem 3.16 as $T \in \mathcal{H}_{n}^{2} \cup \mathcal{H}_{n}^{3}$.

Acknowledgment. The work was supported by the National Natural Science Foundation of China under Grant No. 11001166 and the Shanghai Leading Academic Discipline Project under Project No. S30104. The authors would like to thank the anonymous referee for his/her suggestion which improved the first section.

REFERENCES

[1] S. Azami. On Laplacian and signless Laplacian Estrada indices of graphs. MATCHCommunications in Mathematical and in Computer Chemistry, 74:411-418, 2015.
[2] H. Bamdad, F. Ashraf, and I. Gutman. Lower bounds for Estrada index and Laplacian Estrada index. Applied Mathematics Letters, 23:739-742, 2010.
[3] X.D. Chen and J.G. Qian. On resolvent Estrada index. MATCH-Communications in Mathematical and in Computer Chemistry, 73:163-174, 2015.
[4] D.M. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs Theory and Application. Academic Press, New York, 1980.
[5] K.C. Das and S.G. Lee. On the Estrada index conjecture. Linear Algebra and its Applications, 431:1351-1359, 2009.
[6] H.Y. Deng. A note on the Estrada index of trees. MATCH-Communications in Mathematical and in Computer Chemistry, 62:607-610, 2009.
[7] H.Y. Deng. A proof of a conjecture on the Estrada index. MATCH-Communications in Mathematical and in Computer Chemistry, 62:599-606, 2009.
[8] Q.Y. Deng and H.Y. Chen. On extremal bipartite unicyclic graphs. Linear Algebra and its Applications, 444:89-99, 2014.
[9] Z.B. Du and B. Zhou. On the Estrada index of graphs with given number of cut edges. Electronic Journal of Linear Algebra, 22:586-592, 2011.
[10] Z.B. Du and B. Zhou. The Estrada index of trees. Linear Algebra and its Applications, 435:24622467, 2011.
[11] E. Estrada. Characterization of the amino acid contribution to the folding degree of proteins. Proteins: Structure, Function, and Bioinformatics, 54:727-737, 2004.
[12] E. Estrada. Characterization of 3D molecular structure. Chemical Physics Letters, 319:713-718, 2000.
[13] E. Estrada and J.A. Rodriguez-Velazquez. Subgraph centrality in complex networks. Physical Review E, 71:056103, 2005.
[14] E. Estrada, J.A. Rodriguez-Velazquez, and M. Randić. Atomic branching in molecules. International Journal of Quantum Chemistry, 106:823-832, 2006.
[15] G.H. Fath-Tabar and A.R. Ashrafi. New upper bounds for Estrada index of bipartite graphs. Linear Algebra and its Applications, 435:2607-2611, 2011.
[16] N. Gao, L. Qiao, B. Ning, and S.G. Zhang. Coulson-type integral formulas for the Estrada index of graphs and the skew Estrada index of oriented graphs. MATCH-Communications in Mathematical and in Computer Chemistry, 73:133-148, 2015.
[17] I. Gutman. Lower bounds for Estrada index. Publications de lInstitut Mathematique, 83:1-7, 2008.
[18] I. Gutman, B. Furtula, X. Chen, and J. Qian. Resolvent Estrada index - Computational and mathematical studies. MATCH-Communications in Mathematical and in Computer Chemistry, 74:431-440, 2015.
[19] I. Gutman and A. Graovac. Estrada index of cycles and paths. Chemical Physics Letters, 436:294-296, 2007.
[20] F. Huang, X.L. Li, and S.J. Wang. On maximum Laplacian Estrada indices of trees with some given parameters. MATCH-Communications in Mathematical and in Computer Chemistry, 74:419-429, 2015.
[21] A. Ilić and D. Stevanović. The Estrada index of chemical trees. Journal of Mathematical Chemistry, 47:305-314, 2010.
[22] W.H. Wang. Estrada indices of the trees with a perfect matching. MATCH-Communications in Mathematical and in Computer Chemistry, 75:373-383, 2016.
[23] L. Wang, Y.Z. Fan, and Y. Wang. Maximum Estrada index of bicyclic graphs. Discrete Applied Mathematics, 180:194-199, 2015.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 31, pp. 134-146, March 2016

ELA

146
C.X. Zhai and W.H. Wang
[24] H.Z. Wang, L.Y. Kang, and E.F. Shan. On the Estrada index of cacti. Electronic Journal of Linear Algebra, 27:798-808, 2014.
[25] W.H. Wang and W.W. Xu. Graphs with the maximal Estrada indices. Linear Algebra and its Applications, 446:314-328, 2014.
[26] J.B. Zhang, B. Zhou, and J.P. Li. On Estrada index of trees. Linear Algebra and its Applications, 434:215-223, 2011.
[27] Z.X. Zhu, L.S. Tan, and Z.Y. Qiu. Tricyclic graph with maximal Estrada index. Discrete Applied Mathematics, 162:364-372, 2014.

[^0]: *Received by the editors on January 5, 2016. Accepted for publication on February 16, 2016. Handling Editor: Bryan L. Shader.
 ${ }^{\dagger}$ Department of Mathematics, Shanghai University, Shanghai 200444, China (whwang@shu.edu.cn).

