PROOF OF ATIYAH'S CONJECTURE FOR TWO SPECIAL TYPES OF CONFIGURATIONS*

DRAGOMIR Ž. ĐOKOVIĆ ${ }^{\dagger}$

Abstract

To an ordered N-tuple $\left(x_{1}, \ldots, x_{N}\right)$ of distinct points in the three-dimensional Euclidean space Atiyah has associated an ordered N-tuple of complex homogeneous polynomials $\left(p_{1}, \ldots, p_{N}\right)$ in two variables x, y of degree $N-1$, each p_{i} determined only up to a scalar factor. He has conjectured that these polynomials are linearly independent. In this note it is shown that Atiyah's conjecture is true for two special configurations of N points. For one of these configurations, it is shown that a stronger conjecture of Atiyah and Sutcliffe is also valid.

Key words. Atiyah's conjecture, Hopf map, Configuration of N points in the three-dimensional Euclidean space, Complex projective line

AMS subject classifications. $51 \mathrm{M} 04,51 \mathrm{M} 16,70 \mathrm{G} 25$

1. Two conjectures. Let $\left(x_{1}, \ldots, x_{N}\right)$ be an ordered N-tuple of distinct points in the three-dimensional Euclidean space. Each ordered pair $\left(x_{i}, x_{j}\right)$ with $i \neq j$ determines a point

$$
\frac{x_{j}-x_{i}}{\left|x_{j}-x_{i}\right|}
$$

on the unit sphere S^{2}. Identify S^{2} with the complex projective line by using a stereographic projection. Hence one obtains a point $\left(u_{i j}, v_{i j}\right)$ on this projective line and a complex nonzero linear form $l_{i j}=u_{i j} x+v_{i j} y$ in two variables x and y. Define homogeneous polynomials p_{i} of degree $N-1$ by

$$
\begin{equation*}
p_{i}=\prod_{j \neq i} l_{i j}(x, y), \quad i=1, \ldots, N . \tag{1.1}
\end{equation*}
$$

Conjecture 1.1. (Atiyah [2]) The polynomials p_{1}, \ldots, p_{N} are linearly independent.

Atiyah [1], [2] has observed that his conjecture is true if the points x_{1}, \ldots, x_{N} are collinear. He has also verified the conjecture for $N=3$. The case $N=4$ has been verified by Eastwood and Norbury [4]. For additional information on the conjecture (further conjectures, generalizations, and numerical evidence) see [2], [3].

In order to state the second conjecture, one has to be more explicit. Identify the three-dimensional Euclidean space with $\mathbb{R} \times \mathbb{C}$ and denote the origin by O. Following Eastwood and Norbury [4], we make use of the Hopf map $h: \mathbb{C}^{2} \backslash\{O\} \rightarrow(\mathbb{R} \times \mathbb{C}) \backslash\{O\}$ defined by

$$
h(z, w)=\left(\left(|z|^{2}-|w|^{2}\right) / 2, z \bar{w}\right) .
$$

[^0]This map is surjective and its fibers are the circles $\left\{(z u, w u): u \in S^{1}\right\}$, where S^{1} is the unit circle. If $h(z, w)=(a, v)$, we say that (z, w) is a lift of (a, v). For instance, we can take

$$
\lambda^{-1 / 2}(\lambda, \bar{v}), \quad \lambda=a+\sqrt{a^{2}+|v|^{2}}
$$

as the lift of (a, v).
Assume that our points are $x_{i}=\left(a_{i}, z_{i}\right)$. For the sake of simplicity assume that if $i<j$ and $z_{i}=z_{j}$ then $a_{i}<a_{j}$. As the lift of the vector $x_{j}-x_{i}, i<j$, we choose

$$
\frac{1}{\sqrt{\lambda_{i j}}}\left(\lambda_{i j}, \bar{z}_{j}-\bar{z}_{i}\right),
$$

where

$$
\lambda_{i j}=a_{j}-a_{i}+\sqrt{\left(a_{j}-a_{i}\right)^{2}+\left|z_{j}-z_{i}\right|^{2}} .
$$

According to the recipe in [2], [3], [4], we always use the lift $(-\bar{w}, \bar{z})$ for the vector $x_{i}-x_{j}$ if (z, w) has been chosen as the lift of $x_{j}-x_{i}$. Hence we introduce the linear forms

$$
\begin{array}{ll}
l_{i j}(x, y)=\lambda_{i j} x+\left(\bar{z}_{j}-\bar{z}_{i}\right) y, & i<j \\
l_{i j}(x, y)=\left(z_{j}-z_{i}\right) x+\lambda_{j i} y, & i>j
\end{array}
$$

Define P to be the $N \times N$ coefficient matrix of the binary forms $p_{i}(x, y)$ defined by (1.1) using the above $l_{i j}$'s. The second conjecture that we are interested in can now be formulated as follows.

Conjecture 1.2. (Atiyah and Sutcliffe [3, Conjecture 2]; see also [4]) If $r_{i j}=$ $\left|x_{j}-x_{i}\right|$, then

$$
|\operatorname{det}(P)| \geq \prod_{i<j}\left(2 \lambda_{i j} r_{i j}\right)
$$

As $2 \lambda_{i j} r_{i j}=\lambda_{i j}^{2}+\left|z_{j}-z_{i}\right|^{2}$, this conjecture can be rewritten as

$$
\begin{equation*}
|\operatorname{det}(P)| \geq \prod_{i<j}\left(\lambda_{i j}^{2}+\left|z_{j}-z_{i}\right|^{2}\right) \tag{1.2}
\end{equation*}
$$

Obviously, this conjecture is stronger than Conjecture 1.1.
2. Two special cases of Atiyah's conjecture. We shall prove Atiyah's conjecture in the following two cases:
(A) $N-1$ of the points x_{1}, \ldots, x_{N} are collinear.
(B) $N-2$ of the points x_{1}, \ldots, x_{N} are on a line L and the line segment joining the remaining two points has its midpoint on L and is perpendicular to L.

ELA

Let L and M be two perpendicular lines in the three-dimensional Euclidean space intersecting at the origin, O. Let $N=m+n$ and assume that the points x_{1}, \ldots, x_{m} are on L and x_{m+1}, \ldots, x_{N} are on M but not on L. Set $y_{j}=x_{m+j}$ for $j=1, \ldots, n$.

Without any loss of generality, we may assume that $L=\mathbb{R} \times\{0\}$ and $M=\{0\} \times \mathbb{R}$. Write $x_{i}=\left(a_{i}, 0\right)$ for $i=1, \ldots, m$ and $y_{j}=\left(0, b_{j}\right)$ for $j=1, \ldots, n$. We may also assume that $a_{1}<a_{2}<\cdots<a_{m}$ and $b_{1}<b_{2}<\cdots<b_{n}$.

The lifts of the nonzero vectors $x_{j}-x_{i}, i, j \in\{1, \ldots, N\}$ are given in Table 2.1, where we have set

$$
\lambda_{i j}=a_{i}+\sqrt{a_{i}^{2}+b_{j}^{2}} .
$$

Vectors	Index restrictions	Lifts	Linear forms
$x_{r}-x_{i}$	$1 \leq i<r \leq m$	$\left(2\left(a_{r}-a_{i}\right)\right)^{1 / 2}(1,0)$	$2\left(a_{r}-a_{i}\right) x$
$x_{i}-x_{r}$	$1 \leq i<r \leq m$	$\left(2\left(a_{r}-a_{i}\right)\right)^{1 / 2}(0,1)$	$2\left(a_{r}-a_{i}\right) y$
$y_{s}-y_{j}$	$1 \leq j<s \leq n$	$\left(b_{s}-b_{j}\right)^{1 / 2}(1,1)$	$\left(b_{s}-b_{j}\right)(y+x)$
$y_{j}-y_{s}$	$1 \leq j<s \leq n$	$\left(b_{s}-b_{j}\right)^{1 / 2}(-1,1)$	$\left(b_{s}-b_{j}\right)(y-x)$
$x_{i}-y_{j}$	$1 \leq i \leq m, 1 \leq j \leq n$	$\lambda_{i j}^{-1 / 2}\left(\lambda_{i j},-b_{j}\right)$	$\lambda_{i j} x-b_{j} y$
$y_{j}-x_{i}$	$1 \leq i \leq m, 1 \leq j \leq n$	$\lambda_{i j}^{-1 / 2}\left(b_{j}, \lambda_{i j}\right)$	$b_{j} x+\lambda_{i j} y$

Table 2.1
The lifts of the vectors $x_{j}-x_{i}$.

The associated polynomials p_{i} (up to scalar factors) are given by

$$
\begin{align*}
& p_{i}(x, y)=x^{m-i} y^{i-1} \prod_{j=1}^{n}\left(b_{j} x+\lambda_{i j} y\right), \quad 1 \leq i \leq m \tag{2.1}\\
& p_{m+j}(x, y)=(y+x)^{n-j}(y-x)^{j-1} \prod_{i=1}^{m}\left(\lambda_{i j} x-b_{j} y\right), \quad 1 \leq j \leq n . \tag{2.2}
\end{align*}
$$

Theorem 2.1. Conjecture 1.1 is valid under the hypothesis (A).
Proof. In this case we have $n=1$. Without any loss of generality we may assume that $b_{1}=-1$. After dehomogenizing the polynomials p_{i} (or $-p_{i}$) by setting $x=1$, we obtain the polynomials:

$$
\begin{aligned}
& y^{i-1}\left(1-\lambda_{i} y\right), \quad 1 \leq i \leq m \\
& \prod_{i=1}^{m}\left(y+\lambda_{i}\right)
\end{aligned}
$$

where $\lambda_{i}=\lambda_{i 1}>0$. The coefficient matrix of these polynomials is

$$
\left[\begin{array}{ccccccc}
1 & -\lambda_{1} & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & -\lambda_{2} & 0 & & 0 & 0 \\
0 & 0 & 1 & -\lambda_{3} & & 0 & 0 \\
\vdots & & & & & & \\
0 & 0 & 0 & 0 & & 1 & -\lambda_{m} \\
E_{m} & E_{m-1} & E_{m-2} & E_{m-3} & & E_{1} & 1
\end{array}\right]
$$

where E_{k} is the k-th elementary symmetric function of $\lambda_{1}, \ldots, \lambda_{m}$. Its determinant,

$$
1+\lambda_{m} E_{1}+\lambda_{m-1} \lambda_{m} E_{2}+\cdots+\lambda_{1} \lambda_{2} \cdots \lambda_{m} E_{m}
$$

is positive.
Theorem 2.2. Conjecture 1.1 is valid under the hypothesis (B).
Proof. In this case $n=2$ and $b_{1}+b_{2}=0$. Without any loss of generality we may assume that $b_{1}=-1$. After dehomogenizing the polynomials p_{i} (or $-p_{i}$) by setting $x=1$, we obtain the polynomials:

$$
\begin{aligned}
& y^{i-1}\left(1-\lambda_{i}^{2} y^{2}\right), \quad 1 \leq i \leq m \\
& (y+1) \prod_{i=1}^{m}\left(y+\lambda_{i}\right) \\
& (y-1) \prod_{i=1}^{m}\left(y-\lambda_{i}\right)
\end{aligned}
$$

where $\lambda_{i}=\lambda_{i 1}>0$. The coefficient matrix of these polynomials is

$$
\left[\begin{array}{cccccccc}
1 & 0 & -\lambda_{1}^{2} & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & -\lambda_{2}^{2} & & 0 & 0 & 0 \\
\vdots & & & & & & & \\
0 & 0 & 0 & & & 1 & 0 & -\lambda_{m}^{2} \\
\tilde{E}_{m+1} & \tilde{E}_{m} & \tilde{E}_{m-1} & & & \tilde{E}_{2} & \tilde{E}_{1} & 1 \\
(-1)^{m+1} \tilde{E}_{m+1} & (-1)^{m} \tilde{E}_{m} & (-1)^{m-1} \tilde{E}_{m-1} & & & \tilde{E}_{2} & -\tilde{E}_{1} & 1
\end{array}\right],
$$

where \tilde{E}_{k} is the k-th elementary symmetric function of $1, \lambda_{1}, \ldots, \lambda_{m}$. Its determinant is $2 p q$ where

$$
\begin{aligned}
p & =1+\lambda_{m}^{2} \tilde{E}_{2}+\lambda_{m-2}^{2} \lambda_{m}^{2} \tilde{E}_{4}+\cdots \\
q & =\tilde{E}_{1}+\lambda_{m-1}^{2} \tilde{E}_{3}+\lambda_{m-3}^{2} \lambda_{m-1}^{2} \tilde{E}_{5}+\cdots
\end{aligned}
$$

and thus it is positive.
3. Atiyah and Sutcliffe conjecture is valid in case (A). In the general setup of the previous section, the Conjecture 1.2 asserts that

$$
\begin{equation*}
|\operatorname{det}(P)| \geq 2^{\binom{n}{2}} \prod_{i, j}\left(\lambda_{i j}^{2}+b_{j}^{2}\right) . \tag{3.1}
\end{equation*}
$$

ELA

where P is the coefficient matrix (of order $N=m+n$) of the polynomials (2.1) and (2.2).

In case (A) this inequality takes the form

$$
\begin{equation*}
1+\lambda_{m} E_{1}+\lambda_{m-1} \lambda_{m} E_{2}+\cdots+\lambda_{1} \lambda_{2} \cdots \lambda_{m} E_{m} \geq \prod_{i=1}^{m}\left(1+\lambda_{i}^{2}\right) \tag{3.2}
\end{equation*}
$$

where, as in the proof of Theorem 2.1, we assume that $b_{1}=-1$ and E_{k} denotes the k-th elementary symmetric function of $\lambda_{1}, \ldots, \lambda_{m}$. Thus we have

$$
\lambda_{i}=a_{i}+\sqrt{1+a_{i}^{2}}>0
$$

and

$$
\begin{equation*}
\lambda_{1}<\lambda_{2}<\cdots<\lambda_{m} . \tag{3.3}
\end{equation*}
$$

Let $E_{k}^{(2)}$ denote the k-th elementary symmetric function of $\lambda_{1}^{2}, \ldots, \lambda_{m}^{2}$. In view of (3.3), we have

$$
\lambda_{m-k+1} \lambda_{m-k+2} \cdots \lambda_{m} E_{k} \geq E_{k}^{(2)}, \quad 0 \leq k \leq m .
$$

The inequality (3.2) is a consequence of the inequalities just written since

$$
\prod_{i=1}^{m}\left(1+\lambda_{i}^{2}\right)=\sum_{k=0}^{m} E_{k}^{(2)}
$$

Hence we have the following result.
Theorem 3.1. Conjecture 1.2 is valid in case (A).
In case (B) the inequality (3.1) takes the form:

$$
\begin{aligned}
& \left(1+\lambda_{m}^{2} \tilde{E}_{2}+\lambda_{m-2}^{2} \lambda_{m}^{2} \tilde{E}_{4}+\cdots\right)\left(\tilde{E}_{1}+\lambda_{m-1}^{2} \tilde{E}_{3}+\lambda_{m-3}^{2} \lambda_{m-1}^{2} \tilde{E}_{5}+\cdots\right) \\
& \quad \geq \prod_{i=1}^{m}\left(1+\lambda_{i}^{2}\right)^{2}
\end{aligned}
$$

where \tilde{E}_{k} are as in the proof of Theorem 2.2.
It is easy to verify that this inequality holds for $m=1$, but we were not able to prove it in general. If we set all $\lambda_{i}=\lambda>0$, then the above inequality specializes to

$$
\begin{aligned}
& {\left[\left(1+\lambda^{2}\right)^{m}+\sum_{k \geq 0}\binom{m}{2 k+1}\left(\lambda^{4 k+3}-\lambda^{4 k+2}\right)\right] \times} \\
& {\left[\left(1+\lambda^{2}\right)^{m}-\sum_{k \geq 0}\binom{m}{2 k+1}\left(\lambda^{4 k+2}-\lambda^{4 k+1}\right)\right] \geq\left(1+\lambda^{2}\right)^{2 m} .}
\end{aligned}
$$

The Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 9, pp. 132-137, August 2002

ELA

Since

$$
\sum_{k \geq 0}\binom{m}{2 k+1}\left(\lambda^{4 k+3}-\lambda^{4 k+2}\right)=\frac{1}{2}(\lambda-1)\left[\left(1+\lambda^{2}\right)^{m}-\left(1-\lambda^{2}\right)^{m}\right]
$$

it is easy to verify that the specialized inequality is valid.

REFERENCES

[1] M. Atiyah. The geometry of classical particles. In Surveys in Differential Geometry, Vol. VII, S.-T. Yau, ed., International Press, 2000, pp. 1-15.
[2] M. Atiyah. Configurations of points. Philosophical Transactions of the Royal Society of London, Series A, 359:1375-1387, 2001.
[3] M. Atiyah and P. Sutcliffe. The geometry of point particles. arXiv:hep-th/0105179 v2, 15 October 2001.
[4] M. Eastwood and P. Norbury. A proof of Atiyah's conjecture on configurations of four points in Euclidean three-space. Geometry and Topology, 5:885-893, 2001.

[^0]: *Received by the editors on 26 May 2002. Accepted for publication on 17 July 2002. Handling editor: Shmuel Friedland.
 ${ }^{\dagger}$ Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada (djokovic@uwaterloo.ca). The author was supported in part by the NSERC Grant A-5285.

