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A NOTE ON A CONJECTURE FOR THE DISTANCE
LAPLACIAN MATRIX*

CELSO M. DA SILVA JR.T, MARIA AGUIEIRAS A. DE FREITAS}, AND RENATA R.
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Abstract. In this note, the graphs of order n having the largest distance Laplacian eigenvalue
of multiplicity n — 2 are characterized. In particular, it is shown that if the largest eigenvalue of the
distance Laplacian matrix of a connected graph G of order n has multiplicity n — 2, then G = S,
or G = Ky p, where n = 2p. This resolves a conjecture proposed by M. Aouchiche and P. Hansen
in [M. Aouchiche and P. Hansen. A Laplacian for the distance matrix of a graph. Czechoslovak
Mathematical Journal, 64(3):751-761, 2014.]. Moreover, it is proved that if G has Ps as an induced
subgraph then the multiplicity of the largest eigenvalue of the distance Laplacian matrix of G is less
than n — 3.
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1. Introduction. Let G = (V| E) be a connected graph and the distance (the
length of a shortest path) between vertices v; and v; of G be denoted by d; ;. The
distance matrix of G, denoted by D(G), is the n x n matrix whose (i, j)-entry is
equal to d; ;, ¢,7 = 1,2,...,n. The transmission Tr(v;) of a vertex v; is defined as
the sum of the distances from v; to all other vertices in G. For more details about
the distance matrix we suggest, for example, [5]. M. Aouchiche and P. Hansen [3]
introduced the Laplacian for the distance matrix of a connected graph G as D(G) =
Tr(G) — D(G), where Tr(G) is the diagonal matrix of vertex transmissions. We write
(0F,0F ... 0 = 0), for the distance Laplacian spectrum of a connected graph G,
the Dl-spectrum, and assume that the eigenvalues are arranged in a nonincreasing
order. The multiplicity of the eigenvalue 9 is denoted by m(dF), for 1 <i < n. We
often use exponents to exhibit the multiplicity of the distance Laplacian eigenvalues
when we write the DY-spectrum. The distance Laplacian matrix has been recently
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studied ([2, 4, 6]) and, in [4], M. Aouchiche and P. Hansen proposed some conjectures
about it. Among them, we consider in this work the following one:

CONJECTURE 1.1. [4] If G is a graph on n > 3 vertices and G 2 K, then
m(0F(@)) < n — 2 with equality if and only if G is the star S, or n = 2p for the
complete bipartite graph K, ;.

In this paper, we prove the conjecture. In order to obtain this result we analyze
how the existence of P; as an induced subgraph influences the DZ-spectrum of a
connected graph. We conclude that, in this case, the largest distance Laplacian
eigenvalue has multiplicity less than or equal to n — 3. This fact motivated us to also
investigate the influence of an induced Ps subgraph in the D¥-spectrum of a graph.
We prove that if a graph has an induced P; subgraph then the largest eigenvalue
of its distance Laplacian matrix has multiplicity at most n — 4. Although we do not
make a general approach by characterizing the graphs that have the largest distance
Laplacian eigenvalue with multiplicity n — 3, some considerations on this topic are
made.

2. Preliminaries. In what follows, G = (V, E), or just G, denotes a graph with
n vertices and G denotes its complement. The diameter of a connected graph G is
denoted by diam(G). As usual, we write, respectively, P,, Cy, S, and K,, for the
path, the cycle, the star and the complete graph, all with n vertices. We denote by
K, , and by K,, , , the balanced complete bipartite and tripartite graph, respectively.
Now, we recall the definitions of some operations with graphs that will be used. For
this, let G1 = (V1, E1) and G2 = (Va, Es) be vertex disjoint graphs:

e The union of G; and Gs is the graph G; UG3 (or G1 + G2), whose vertex set
is V3 U V4 and whose edge set is Fq U Es;

e The complete product or join of graphs G; and G5 is the graph Gy V Gs
obtained from G U G» by joining each vertex of G; with every vertex of Gs.

A graph G is a cograph, also known as a decomposable graph, if no induced
subgraph of G is isomorphic to Py [1]. About the cographs, we also have the following
characterizations:

THEOREM 2.1. [1] Given a graph G, the following statements are equivalent:

e G is a cograph.

e The complement of any connected subgraph of G with at least two vertices is
disconnected.

e FEvery connected subgraph of G has diameter less than or equal to 2.

We denote by (u1, 2, ..., pun = 0) the L-spectrum of G, i.e., the spectrum of
the Laplacian matrix of G, and assume that the eigenvalues are labeled such that
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w1 > po > oo+ > pn = 0. It is well known that the multiplicity of the Laplacian
eigenvalue 0 is equal to the number of components of G and that ji,,—;(G) = n—pu;(G),
V1 <i<n-—1 (see [8] for more details).

The following results regarding the distance Laplacian matrix are already known.

THEOREM 2.2. [3] Let G be a connected graph on n vertices with diam(G) < 2.
Let gy > po > -+ > fp—1 > pp = 0 be the Laplacian spectrum of G. Then the
distance Laplacian spectrum of G 18 2n— fbp—1 > 20— fhy—o > + -+ > 20— g > 6,’;“ =0.
Moreover, for every i € {1,2,...,n— 1} the eigenspaces corresponding to p; and to
2n — u; are the same.

THEOREM 2.3. [3] Let G be a connected graph on n vertices. Then 0% | = n if
and only if G is disconnected. Moreover, the multiplicity of n as an eigenvalue of D
is one less than the number of components of G.

THEOREM 2.4. [3] If G is a connected graph on n > 2 vertices then m(0F) < n—1
with equality if and only if G is the complete graph K, .

We finish this section enunciating the Cauchy interlacing theorem, that will be
necessary for what follows::

THEOREM 2.5. [7] Let A be a real symmetric matriz of order n with eigenvalues
A(A) > Aa(A) > -+« > M\ (A) and let M be a principal submatriz of M with order
m < n and eigenvalues A1 (M) > Ao(M) > -+ > N\ (M). Then \;(A) > \(M) >
Aign—m(A), for all 1 <i<m.

3. Proof of the conjecture. The next lemmas will be useful to prove the main
results of this section:

LemMA 3.1. If G is a connected graph on n > 2 vertices and Laplacian spectrum
equal to (n, fia, . .., o, 2, 0), with us # n, then G = S, or G = K, ,,, where n = 2p.

Proof. In this case, the L-spectrum of G is (n— po,n — pig,...,n— u2,0,0) and,
then, G has exactly 2 components. As each component has no more than two distinct
Laplacian eigenvalues, both are isolated vertices or complete graphs. Since the two
components also have all nonzero eigenvalues equal, we have G = K; U K,,_; or
G =~ K, UK, where n = 2p. Therefore, G = S,, or G = K, ,. On the other hand, it
is already known that the L-spectrum of S, and K, , are, respectively, (n,1,...,1,0)
and (n,p,...,p,0). 0

LEMMA 3.2. Let A be a real symmetric matriz of order n with largest eigenvalue
A and M the m x m principal submatriz of A obtained from A by excluding the
n —m last rows and columns. If M also has \ as an eigenvalue, associated with
the normalized eigenvector x = (x1,...,%m), then € = (x1,...,2m,0,...,0) is a
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corresponding eigenvector to X\ in A.

Proof. As )\ is an eigenvalue of M corresponding to x, then A = (Mx,x) . So, it
is enough to see that (Mx,x) = (Ax*,x*). 0

A well known result about the Laplacian matrix ([8]) says that, if G is a graph
with at least one edge then p; > A + 1, where A denotes the maximum degree of
G. Tt is possible to get an analogous lower bound for the largest distance Laplacian
eigenvalue of a connected graph G:

THEOREM 3.3. If G is a connected graph then 0F(G) > max Tr(vi) + 1. Equality
1€
is attained if and only if G = K, .

Proof. Suppose, without loss of generality, that Tr(vq) = max Tr(vi) = Trimax and

1€
let x = (1,7:711,7:—_11,...,"’—_11) . Then
n
dy
. <DLy,y> <DLX,X> 1 2 Z; L 72 Trmax
(@) = max 7 2 = \! ~1 7| = 2 <2
v Il [ n 1] (n = 1) Ix]|
Since, |x|* = L, we obtain
n—1
n Trmax
O(G) 2 — Trmax = Trmax + —= > Trmax + 1. (3.1)

If the equality is attained for a connected graph G then, from (3.1), we conclude that
Trmax = n — 1. As G = K, is the unique graph with this property and 0f(K,,) = n,
the result is proven. O

In order to solve Conjecture 1.1, we first investigate how the existence of P, as an
induced subgraph influences the multiplicity of the largest eigenvalue of the distance
Laplacian matrix of a graph:

THEOREM 3.4. If the connected graph G has at least 4 vertices and it is not a
cograph then m(9F) <n — 3.

Proof. Let G be a connected graph on n > 4 vertices which is not a cograph.
Then G has P, as an induced subgraph. Let M be the principal submatrix of D (@)
associated with this induced subgraph and denote the eigenvalues of M by A1 > Ao >
A3 > 4. Suppose that m(9F) > n—2. By Cauchy interlacing (Theorem 2.5) is easy to
check that A\; = Ay = 0F. By Lemma 3.2, if x = (21, 72, 3, 24) and y = (y1, Y2, Y3, Y1)
are eigenvectors associated to 81L in M, then x* = (z1,22,3,24,0,...,0) and y* =
(Y1,Y2, Y3, 4,0, ...,0) are eigenvectors associated to 0F in DF(G). As x*,y* L1, with
a linear combination of this vectors, is possible to get z* = (z1,29,0,24,0,...,0)
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such that z*11 and it is still an eigenvector for DI(G) associated to 9F. Thus,
z = (21, 22,0, 24) is an eigenvector for M such that z1 + 23 + z4 = 0.

Now, we observe that there are just two options for the matrix M:

-1 -2 -3 t, -1 -2 -2
1oty -1 -2 1ty -1 -2
M, = Mo —
! —2 1 oty -1 | oM R T T
3 —2 1 1y R

where t1,ts, t3,t4 denote the transmissions of the vertices that induce P, in DF (G).

From the third entry of M1z = Az it follows that —2z; — 29 — 24 = 0. This,
together with the fact that z; 4+ 22 + 24 = 0, allow us to conclude that (0,1,0,—1)
is an eigenvector corresponding to df in M;. From the first entry of Mz = \1z, we
have a contradiction. Similarly we have a contradiction, considering M5 instead of
My. O

The next theorem resolves the Conjecture 1.1:

THEOREM 3.5. If G is a graph on n > 3 vertices and G % K,,, then m(9F(Q)) <
n—2 with equality if and only if G is the star S, or the complete bipartite graph K, p,
if n = 2p.

Proof. As G % K,, we already know that m(0¥(G)) < n — 2 (Theorem 2.4).
Therefore, it remains to check for which graphs we have m(9f(G)) = n — 2. Let G
be a connected graph satisfying this property. Thus, m(d%_;(G)) = 1. We consider
two cases, when 0% (G) = n and when 9%_,(G) # n:

e If 9L | (G) = n, the DX-spectrum of G is (0f, 07, ...,0f,n,0), with 0F(G) #
n. By Theorem 2.3, G is disconnected and has exactly two components. Fur-
thermore, as G is connected and G is disconnected, diam(G) < 2. So, by
Theorem 2.2, the L-spectrum of G is (n, 2n — 0k ... 2n — O0F 2n — OF, O)
and, from Lemma 3.1, G = S, or G = K ;

e If 95 1(G) # n, the DX-spectrum of G is (9f,0F,...,0f,0_1,0) with 0f #
oL | and 0F | # n. We claim there is no graph with this property. Indeed,
by Theorem 2.3, as L ; # n, G is also connected. By Theorem 2.1, G has
P, as an induced subgraph and, therefore, by Theorem 3.4, G cannot have a

distance Laplacian eigenvalue with multiplicity n — 2.

It is already known [4] the DY-spectra of the star and the complete bipartite
graph, and this complete the proof:

e DE-spectrum of S, : ((2n — 1)(*=2) n, 0);
e Dl-spectrum of K, , : ((3p)™~2),n,0). O
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4. Graphs with P; as forbidden subgraph. In the previous section, we es-
tablished a relationship between the DE-spectrum of a connected graph and the ex-
istence of a P, induced subgraph. Then, it is natural to think how the existence of
a P5 induced subgraph could influence its D¥-spectrum. In this case, we prove the
following theorem, regarding the largest distance Laplacian eigenvalue:

THEOREM 4.1. If G is a connected graph onn > 5 vertices and m(0F (G)) =n—3
then G does not have a Ps as induced subgraph.

Proof. Suppose that G has a Ps as an induced subgraph and let M be the principal
submatrix of DX (G) corresponding to the vertices in this Ps. Denote the eigenvalues
of M by A\i > X > A3 > Ay > As5. If m(0F) = n — 3, by Cauchy interlacing
theorem it follows that A\; = Ay = OF. By Lemma 3.2, if x = (21,22, 73,24, 75)
and y = (y1,¥2,V3,V4,Ys) are eigenvectors associated to OF for M, then x* =
(21,22, 23,24, 25,0,...,0) and y* = (y1,92,Y3,Y4,95,0,...,0) are eigenvectors for
DE(Q), associated to OF. As x*,y* L1, with a linear combination of this vectors, is
possible to get z* = (21, 22, 23, 24,0,...,0) such that z* L1. and it is still an eigenvec-
tor for DL(G) associated to OF. Then, z = (z1, 22, 23, 24, 0) is an eigenvector for M
such that z1 + 29 + 23 + 24 = 0.

Now, we observe that the matrix M can be written as

31 -1 =2 —dia —dis
-1 ta -1 =2 —dys

M=| -2 -1 t; -1 -2 |, (4.1)
“diy -2 1ty -1

—dsy —dsp —2 -1 ts

where t1, to, t3, ta, ts denote the transmissions of the vertices that induce Ps in D (@),
di5=2,30r 4, dys =2or 3and dy 4 =2or 3. As Psis an induced subgraph, it is
easy to check that if d; 5 = 4 then dy5 = 3 and dy 4 = 3. Considering the following
cases, we see that all possibilities lead to a contradiction:

o dis=2and dp5 = 2
As z11, from the fifth entry of Mz = dfz, it follows that z;, = 0. So, using
also the fourth entry of this equation, we have

—di,421 — 220 — 23 = 0,
21+ 290+ 23 =0.

If diy = 2, then 23 = 0 and z; = —=z2. So, we can assume that z =
(—=1,1,0,0,0) is an eigenvector of M, which is a contradiction according to
the third entry of the equation. If d; 4 = 3, then 23 = 2; and 2z = —22;. So,
we can assume that z = (1,—2,1,0,0) is an eigenvector of M. From the third
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entry of the equation, we conclude that t3 = Of, which is a contradiction
(Theorem 3.3).

L] d175 = 2 and d2,5 =3:
As z 11, from the fifth entry of Mz = 0Fz, it follows that 2, = 24 = 1 and
z1 + 23 = —2. So, we can consider z = (z1,1,—2 — 21,1,0), and from the
second entry of the same equation, we conclude that t5 = 81L.

o If d1,5 = 3 and d275 =2
As z 11, from the fifth entry of Mz = 61Lz, it follows that z; = z4 = 1 and
29 + z3 = —2. So, we can consider z = (1, —2 — z3, 23, 1,0), and we have

t1+2—z3—dig = 0F,
—d174+4+23+t4:81L.

If dy 4 = 2, by Theorem 3.3 we have

z3 =1 — 0f < -1,
23:8%7t421.

If di.4 = 3, again by Theorem 3.3, we have

Z3:t1781[‘71§72,
23261[‘—754—120.

o If d1,5 = d2,5 =3:
As z 11, from the fifth entry of Mz = 0lz, it follows that z3 = —2z4 and
21+ 22 = 1. So, we can consider z = (21,1 — 21, —2,+1,0), and we have

—z) — 2tz — 2 = —20F,
(2 — d174)21 + 1ty = alL

If dy 4 =2, then ty = 5‘1L, which is a contradiction. If dy 4 = 3, then

{Zl = 2(811‘ - t3 - 1),

— L
Zl*tﬁlfalv

which is a contradiction, since Theorem 3.3 implies z; < 0 and z; > 0.

[ ] d175 = 4, d275 =3 and d1,4 =3
As z 11, from the fifth entry of Mz = 0}z, it follows that —321 — 225 — 23 = 0.
From this fact and the fourth entry of this equation, we obtain t424 = 2,0F.
If z4 # 0, we get a contradiction. If z4 = 0, we conclude that —2z1 — 2o =
0. So, we can consider z = (1,-2,1,0,0), which implies in ¢t; = 6{“, a
contradiction. 0O
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Although by this theorem we cannot completely describe the graphs that have
largest distance Laplacian eigenvalue with multiplicity n — 3, it is possible to obtain
a partial characterization and some remarks about this issue.

ProposiTION 4.2. Let G be a connected graph with order n > 4 such that
m(81) =n—3. If 0L | = n is an eingenvalue with multiplicity 2 then G = Kz n
orG%K%’anl VK, or G2 K, sV K.

Proof. As 0%, =n, G is disconnected and diam(G) = 2. Moreover, by Theorem
2.2, the L-spectrum of G is

(n—0kF,...,n—09F 0,0,0),

that is, G has three components, all of them with the same nonzero eigenvalue. So,
the three components are isolated vertices or complete graphs with the same order,
that is, G = Ky UKz UKy, if 3 | n, G = Ko UKu UK, if 2| (n— 1), or
G2 K, UK UK.

Finally, as the graphs we have cited above have diameter 2, by Theorem 2.2, its
enough to know its L-spectrum to write the DY-spectrum:

w3

)

|

An (n—3)
e Dl-spectrum of K» FRE (?) ;02,0 ;

. 3n—1)""% 9
e D —spectrumofKanl’anl VvV K 5 ;0.0 |;

e Dl spectrum of K,,_oV K> : ((Q(n — 1))(”_3), n®), 0). O

To finish the characterization of the graphs whose largest eigenvalue of the dis-
tance Laplacian matrix has multiplicity n — 3 we should analyze two situations:

e If 9L | = n is an eigenvalue with multiplicity one;
o If 876_1 #n.

Although we have not characterized precisely these two cases, proceeding similarly
to the last proposition, we can conclude in the first case that if the DY-spectrum of a
connected graph G is (0F,...,0F, 0L _,.n,0) then the L-spectrum of G is written as
(OF —n,...,0F —n,0L ,—n,0,0). So, G is a graph with 2 components such that the
largest Laplacian eigenvalue has multiplicity n—3. For example, the graph G = K> ,,_»
has this property since the D*-spectrum is equal to ((2n — 2)("=3) n 4+ 2,n,0).

In the last case, as L | # n, then G is a connected graph. So, G has P, as an
induced subgraph. On the other hand, from Theorem 4.1, G does not have P5 as an

induced subgraph. For example, C5 satisfies this condition, since its D'-spectrum is
(15+x/5 154v5 15-v5 15-v5 0)
2 T2 T 2 T 2 oY)
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