A NOTE ON A CONJECTURE FOR THE DISTANCE LAPLACIAN MATRIX*

CELSO M. DA SILVA JR. ${ }^{\dagger}$, MARIA AGUIEIRAS A. DE FREITAS ${ }^{\ddagger}$, AND RENATA R.
DEL-VECCHIO ${ }^{\S}$

Abstract

In this note, the graphs of order n having the largest distance Laplacian eigenvalue of multiplicity $n-2$ are characterized. In particular, it is shown that if the largest eigenvalue of the distance Laplacian matrix of a connected graph G of order n has multiplicity $n-2$, then $G \cong S_{n}$ or $G \cong K_{p, p}$, where $n=2 p$. This resolves a conjecture proposed by M. Aouchiche and P. Hansen in [M. Aouchiche and P. Hansen. A Laplacian for the distance matrix of a graph. Czechoslovak Mathematical Journal, 64(3):751-761, 2014.]. Moreover, it is proved that if G has P_{5} as an induced subgraph then the multiplicity of the largest eigenvalue of the distance Laplacian matrix of G is less than $n-3$.

Key words. Distance Laplacian matrix, Laplacian matrix, Largest eigenvalue, Multiplicity of eigenvalues.

AMS subject classifications. $05 \mathrm{C} 12,05 \mathrm{C} 50,15 \mathrm{~A} 18$.

1. Introduction. Let $G=(V, E)$ be a connected graph and the distance (the length of a shortest path) between vertices v_{i} and v_{j} of G be denoted by $d_{i, j}$. The distance matrix of G, denoted by $\mathcal{D}(G)$, is the $n \times n$ matrix whose (i, j)-entry is equal to $d_{i, j}, i, j=1,2, \ldots, n$. The transmission $\operatorname{Tr}\left(\mathrm{v}_{\mathrm{i}}\right)$ of a vertex v_{i} is defined as the sum of the distances from v_{i} to all other vertices in G. For more details about the distance matrix we suggest, for example, [5]. M. Aouchiche and P. Hansen [3] introduced the Laplacian for the distance matrix of a connected graph G as $\mathcal{D}^{L}(G)=$ $\operatorname{Tr}(\mathrm{G})-\mathcal{D}(\mathrm{G})$, where $\operatorname{Tr}(\mathrm{G})$ is the diagonal matrix of vertex transmissions. We write $\left(\partial_{1}^{L}, \partial_{2}^{L}, \ldots, \partial_{n}^{L}=0\right)$, for the distance Laplacian spectrum of a connected graph G, the \mathcal{D}^{L}-spectrum, and assume that the eigenvalues are arranged in a nonincreasing order. The multiplicity of the eigenvalue ∂_{i}^{L} is denoted by $m\left(\partial_{i}^{L}\right)$, for $1 \leq i \leq n$. We often use exponents to exhibit the multiplicity of the distance Laplacian eigenvalues when we write the \mathcal{D}^{L}-spectrum. The distance Laplacian matrix has been recently

[^0]studied ([2, 4, 6]) and, in [4], M. Aouchiche and P. Hansen proposed some conjectures about it. Among them, we consider in this work the following one:

Conjecture 1.1. [4] If G is a graph on $n \geq 3$ vertices and $G \not \equiv K_{n}$, then $m\left(\partial_{1}^{L}(G)\right) \leq n-2$ with equality if and only if G is the star S_{n} or $n=2 p$ for the complete bipartite graph $K_{p, p}$.

In this paper, we prove the conjecture. In order to obtain this result we analyze how the existence of P_{4} as an induced subgraph influences the \mathcal{D}^{L}-spectrum of a connected graph. We conclude that, in this case, the largest distance Laplacian eigenvalue has multiplicity less than or equal to $n-3$. This fact motivated us to also investigate the influence of an induced P_{5} subgraph in the \mathcal{D}^{L}-spectrum of a graph. We prove that if a graph has an induced P_{5} subgraph then the largest eigenvalue of its distance Laplacian matrix has multiplicity at most $n-4$. Although we do not make a general approach by characterizing the graphs that have the largest distance Laplacian eigenvalue with multiplicity $n-3$, some considerations on this topic are made.
2. Preliminaries. In what follows, $G=(V, E)$, or just G, denotes a graph with n vertices and \bar{G} denotes its complement. The diameter of a connected graph G is denoted by $\operatorname{diam}(G)$. As usual, we write, respectively, P_{n}, C_{n}, S_{n} and K_{n}, for the path, the cycle, the star and the complete graph, all with n vertices. We denote by $K_{p, p}$ and by $K_{p, p, p}$ the balanced complete bipartite and tripartite graph, respectively. Now, we recall the definitions of some operations with graphs that will be used. For this, let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be vertex disjoint graphs:

- The union of G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ (or $G_{1}+G_{2}$), whose vertex set is $V_{1} \cup V_{2}$ and whose edge set is $E_{1} \cup E_{2}$;
- The complete product or join of graphs G_{1} and G_{2} is the graph $G_{1} \vee G_{2}$ obtained from $G_{1} \cup G_{2}$ by joining each vertex of G_{1} with every vertex of G_{2}.

A graph G is a cograph, also known as a decomposable graph, if no induced subgraph of G is isomorphic to $P_{4}[1]$. About the cographs, we also have the following characterizations:

Theorem 2.1. [1] Given a graph G, the following statements are equivalent:

- G is a cograph.
- The complement of any connected subgraph of G with at least two vertices is disconnected.
- Every connected subgraph of G has diameter less than or equal to 2 .

We denote by $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}=0\right)$ the L-spectrum of G, i.e., the spectrum of the Laplacian matrix of G, and assume that the eigenvalues are labeled such that
$\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}=0$. It is well known that the multiplicity of the Laplacian eigenvalue 0 is equal to the number of components of G and that $\mu_{n-i}(\bar{G})=n-\mu_{i}(G)$, $\forall 1 \leq i \leq n-1$ (see [8] for more details).

The following results regarding the distance Laplacian matrix are already known.
ThEOREM 2.2. [3] Let G be a connected graph on n vertices with $\operatorname{diam}(G) \leq 2$. Let $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n-1}>\mu_{n}=0$ be the Laplacian spectrum of G. Then the distance Laplacian spectrum of G is $2 n-\mu_{n-1} \geq 2 n-\mu_{n-2} \geq \cdots \geq 2 n-\mu_{1}>\partial_{n}^{L}=0$. Moreover, for every $i \in\{1,2, \ldots, n-1\}$ the eigenspaces corresponding to μ_{i} and to $2 n-\mu_{i}$ are the same.

Theorem 2.3. [3] Let G be a connected graph on n vertices. Then $\partial_{n-1}^{L}=n$ if and only if \bar{G} is disconnected. Moreover, the multiplicity of n as an eigenvalue of \mathcal{D}^{L} is one less than the number of components of \bar{G}.

Theorem 2.4. [3] If G is a connected graph on $n \geq 2$ vertices then $m\left(\partial_{1}^{L}\right) \leq n-1$ with equality if and only if G is the complete graph K_{n}.

We finish this section enunciating the Cauchy interlacing theorem, that will be necessary for what follows::

Theorem 2.5. [7] Let A be a real symmetric matrix of order n with eigenvalues $\lambda_{1}(A) \geq \lambda_{2}(A) \geq \cdots \geq \lambda_{n}(A)$ and let M be a principal submatrix of M with order $m \leq n$ and eigenvalues $\lambda_{1}(M) \geq \lambda_{2}(M) \geq \cdots \geq \lambda_{m}(M)$. Then $\lambda_{i}(A) \geq \lambda_{i}(M) \geq$ $\lambda_{i+n-m}(A)$, for all $1 \leq i \leq m$.
3. Proof of the conjecture. The next lemmas will be useful to prove the main results of this section:

Lemma 3.1. If G is a connected graph on $n \geq 2$ vertices and Laplacian spectrum equal to $\left(n, \mu_{2}, \ldots, \mu_{2}, \mu_{2}, 0\right)$, with $\mu_{2} \neq n$, then $G \cong S_{n}$ or $G \cong K_{p, p}$, where $n=2 p$.

Proof. In this case, the L-spectrum of \bar{G} is $\left(n-\mu_{2}, n-\mu_{2}, \ldots, n-\mu_{2}, 0,0\right)$ and, then, \bar{G} has exactly 2 components. As each component has no more than two distinct Laplacian eigenvalues, both are isolated vertices or complete graphs. Since the two components also have all nonzero eigenvalues equal, we have $\bar{G} \cong K_{1} \cup K_{n-1}$ or $\bar{G} \cong K_{p} \cup K_{p}$, where $n=2 p$. Therefore, $G \cong S_{n}$ or $G \cong K_{p, p}$. On the other hand, it is already known that the L-spectrum of S_{n} and $K_{p, p}$ are, respectively, $(n, 1, \ldots, 1,0)$ and $(n, p, \ldots, p, 0)$.

Lemma 3.2. Let A be a real symmetric matrix of order n with largest eigenvalue λ and M the $m \times m$ principal submatrix of A obtained from A by excluding the $n-m$ last rows and columns. If M also has λ as an eigenvalue, associated with the normalized eigenvector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right)$, then $\boldsymbol{x}^{*}=\left(x_{1}, \ldots, x_{m}, 0, \ldots, 0\right)$ is a
corresponding eigenvector to λ in A.
Proof. As λ is an eigenvalue of M corresponding to \mathbf{x}, then $\lambda=\langle M \mathbf{x}, \mathbf{x}\rangle$. So, it is enough to see that $\langle M \mathbf{x}, \mathbf{x}\rangle=\left\langle A \mathbf{x}^{*}, \mathbf{x}^{*}\right\rangle$.

A well known result about the Laplacian matrix ([8]) says that, if G is a graph with at least one edge then $\mu_{1} \geq \Delta+1$, where Δ denotes the maximum degree of G. It is possible to get an analogous lower bound for the largest distance Laplacian eigenvalue of a connected graph G :

Theorem 3.3. If G is a connected graph then $\partial_{1}^{L}(G) \geq \max _{i \in V} \operatorname{Tr}\left(\mathrm{v}_{\mathrm{i}}\right)+1$. Equality is attained if and only if $G \cong K_{n}$.

Proof. Suppose, without loss of generality, that $\operatorname{Tr}\left(\mathrm{v}_{1}\right)=\max _{\mathrm{i} \in \mathrm{V}} \operatorname{Tr}\left(\mathrm{v}_{\mathrm{i}}\right)=\operatorname{Tr}_{\max }$ and let $\mathbf{x}=\left(1, \frac{-1}{n-1}, \frac{-1}{n-1}, \ldots, \frac{-1}{n-1}\right)$. Then

$$
\partial_{1}^{L}(G)=\max _{y \perp 1} \frac{\left\langle D^{L} \mathbf{y}, \mathbf{y}\right\rangle}{\|\mathbf{y}\|^{2}} \geq \frac{\left\langle D^{L} \mathbf{x}, \mathbf{x}\right\rangle}{\|\mathbf{x}\|^{2}}=\left(1+\frac{1}{n-1}\right)^{2}\left(\frac{\sum_{i=1}^{n} d_{1, i}}{\|\mathbf{x}\|^{2}}\right)=\frac{n^{2} \operatorname{Tr}_{\max }}{(n-1)^{2}\|\mathbf{x}\|^{2}}
$$

Since, $\|\mathbf{x}\|^{2}=\frac{n}{n-1}$, we obtain

$$
\begin{equation*}
\partial_{1}^{L}(G) \geq \frac{n}{n-1} \operatorname{Tr}_{\max }=\operatorname{Tr}_{\max }+\frac{\operatorname{Tr}_{\max }}{n-1} \geq \operatorname{Tr}_{\max }+1 \tag{3.1}
\end{equation*}
$$

If the equality is attained for a connected graph G then, from (3.1), we conclude that $\operatorname{Tr}_{\max }=n-1$. As $G \cong K_{n}$ is the unique graph with this property and $\partial_{1}^{L}\left(K_{n}\right)=n$, the result is proven.

In order to solve Conjecture 1.1, we first investigate how the existence of P_{4} as an induced subgraph influences the multiplicity of the largest eigenvalue of the distance Laplacian matrix of a graph:

Theorem 3.4. If the connected graph G has at least 4 vertices and it is not a cograph then $m\left(\partial_{1}^{L}\right) \leq n-3$.

Proof. Let G be a connected graph on $n \geq 4$ vertices which is not a cograph. Then G has P_{4} as an induced subgraph. Let M be the principal submatrix of $\mathcal{D}^{L}(G)$ associated with this induced subgraph and denote the eigenvalues of M by $\lambda_{1} \geq \lambda_{2} \geq$ $\lambda_{3} \geq \lambda_{4}$. Suppose that $m\left(\partial_{1}^{L}\right) \geq n-2$. By Cauchy interlacing (Theorem 2.5) is easy to check that $\lambda_{1}=\lambda_{2}=\partial_{1}^{L}$. By Lemma 3.2, if $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ are eigenvectors associated to ∂_{1}^{L} in M, then $\mathbf{x}^{*}=\left(x_{1}, x_{2}, x_{3}, x_{4}, 0, \ldots, 0\right)$ and $\mathbf{y}^{*}=$ $\left(y_{1}, y_{2}, y_{3}, y_{4}, 0, \ldots, 0\right)$ are eigenvectors associated to ∂_{1}^{L} in $\mathcal{D}^{L}(G)$. As $\mathbf{x}^{*}, \mathbf{y}^{*} \perp \mathbf{1}$, with a linear combination of this vectors, is possible to get $z^{*}=\left(z_{1}, z_{2}, 0, z_{4}, 0, \ldots, 0\right)$
such that $\mathbf{z}^{*} \perp \mathbf{1}$ and it is still an eigenvector for $\mathcal{D}^{L}(G)$ associated to ∂_{1}^{L}. Thus, $\mathbf{z}=\left(z_{1}, z_{2}, 0, z_{4}\right)$ is an eigenvector for M such that $z_{1}+z_{2}+z_{4}=0$.

Now, we observe that there are just two options for the matrix M :

$$
M_{1}=\left[\begin{array}{cccc}
t_{1} & -1 & -2 & -3 \\
-1 & t_{2} & -1 & -2 \\
-2 & -1 & t_{3} & -1 \\
-3 & -2 & -1 & t_{4}
\end{array}\right] \quad \text { or } \quad M_{2}=\left[\begin{array}{cccc}
t_{1} & -1 & -2 & -2 \\
-1 & t_{2} & -1 & -2 \\
-2 & -1 & t_{3} & -1 \\
-2 & -2 & -1 & t_{4}
\end{array}\right]
$$

where $t_{1}, t_{2}, t_{3}, t_{4}$ denote the transmissions of the vertices that induce P_{4} in $\mathcal{D}^{L}(G)$.
From the third entry of $M_{1} \mathbf{z}=\lambda_{1} \mathbf{z}$ it follows that $-2 z_{1}-z_{2}-z_{4}=0$. This, together with the fact that $z_{1}+z_{2}+z_{4}=0$, allow us to conclude that $(0,1,0,-1)$ is an eigenvector corresponding to ∂_{1}^{L} in M_{1}. From the first entry of $M_{1} \mathbf{z}=\lambda_{1} \mathbf{z}$, we have a contradiction. Similarly we have a contradiction, considering M_{2} instead of M_{1}. ㅁ

The next theorem resolves the Conjecture 1.1:
Theorem 3.5. If G is a graph on $n \geq 3$ vertices and $G \not \equiv K_{n}$, then $m\left(\partial_{1}^{L}(G)\right) \leq$ $n-2$ with equality if and only if G is the star S_{n} or the complete bipartite graph $K_{p, p}$, if $n=2 p$.

Proof. As $G \nsubseteq K_{n}$, we already know that $m\left(\partial_{1}^{L}(G)\right) \leq n-2$ (Theorem 2.4). Therefore, it remains to check for which graphs we have $m\left(\partial_{1}^{L}(G)\right)=n-2$. Let G be a connected graph satisfying this property. Thus, $m\left(\partial_{n-1}^{L}(G)\right)=1$. We consider two cases, when $\partial_{n-1}^{L}(G)=n$ and when $\partial_{n-1}^{L}(G) \neq n$:

- If $\partial_{n-1}^{L}(G)=n$, the \mathcal{D}^{L}-spectrum of G is $\left(\partial_{1}^{L}, \partial_{1}^{L}, \ldots, \partial_{1}^{L}, n, 0\right)$, with $\partial_{1}^{L}(G) \neq$ n. By Theorem 2.3, \bar{G} is disconnected and has exactly two components. Furthermore, as G is connected and \bar{G} is disconnected, $\operatorname{diam}(G) \leq 2$. So, by Theorem 2.2, the L-spectrum of G is $\left(n, 2 n-\partial_{1}^{L}, \ldots, 2 n-\partial_{1}^{L}, 2 n-\partial_{1}^{L}, 0\right)$ and, from Lemma 3.1, $G \cong S_{n}$ or $G \cong K_{p, p}$;
- If $\partial_{n-1}^{L}(G) \neq n$, the \mathcal{D}^{L}-spectrum of G is $\left(\partial_{1}^{L}, \partial_{1}^{L}, \ldots, \partial_{1}^{L}, \partial_{n-1}^{L}, 0\right)$ with $\partial_{1}^{L} \neq$ ∂_{n-1}^{L} and $\partial_{n-1}^{L} \neq n$. We claim there is no graph with this property. Indeed, by Theorem 2.3, as $\partial_{n-1}^{L} \neq n, \bar{G}$ is also connected. By Theorem 2.1, G has P_{4} as an induced subgraph and, therefore, by Theorem 3.4, G cannot have a distance Laplacian eigenvalue with multiplicity $n-2$.

It is already known [4] the \mathcal{D}^{L}-spectra of the star and the complete bipartite graph, and this complete the proof:

- \mathcal{D}^{L}-spectrum of $S_{n}:\left((2 n-1)^{(n-2)}, n, 0\right)$;
- \mathcal{D}^{L}-spectrum of $K_{p, p}:\left((3 p)^{(n-2)}, n, 0\right)$.

4. Graphs with P_{5} as forbidden subgraph. In the previous section, we established a relationship between the \mathcal{D}^{L}-spectrum of a connected graph and the existence of a P_{4} induced subgraph. Then, it is natural to think how the existence of a P_{5} induced subgraph could influence its \mathcal{D}^{L}-spectrum. In this case, we prove the following theorem, regarding the largest distance Laplacian eigenvalue:

Theorem 4.1. If G is a connected graph on $n \geq 5$ vertices and $m\left(\partial_{1}^{L}(G)\right)=n-3$ then G does not have a P_{5} as induced subgraph.

Proof. Suppose that G has a P_{5} as an induced subgraph and let M be the principal submatrix of $\mathcal{D}^{L}(G)$ corresponding to the vertices in this P_{5}. Denote the eigenvalues of M by $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \lambda_{4} \geq \lambda_{5}$. If $m\left(\partial_{1}^{L}\right)=n-3$, by Cauchy interlacing theorem it follows that $\lambda_{1}=\lambda_{2}=\partial_{1}^{L}$. By Lemma 3.2, if $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)$ are eigenvectors associated to ∂_{1}^{L} for M, then $\mathbf{x}^{*}=$ $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, 0, \ldots, 0\right)$ and $\mathbf{y}^{*}=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, 0, \ldots, 0\right)$ are eigenvectors for $\mathcal{D}^{L}(G)$, associated to ∂_{1}^{L}. As $\mathbf{x}^{*}, \mathbf{y}^{*} \perp \mathbf{1}$, with a linear combination of this vectors, is possible to get $z^{*}=\left(z_{1}, z_{2}, z_{3}, z_{4}, 0, \ldots, 0\right)$ such that $\mathbf{z}^{*} \perp \mathbf{1}$. and it is still an eigenvector for $\mathcal{D}^{L}(G)$ associated to ∂_{1}^{L}. Then, $\mathbf{z}=\left(z_{1}, z_{2}, z_{3}, z_{4}, 0\right)$ is an eigenvector for M such that $z_{1}+z_{2}+z_{3}+z_{4}=0$.

Now, we observe that the matrix M can be written as

$$
M=\left[\begin{array}{ccccc}
t_{1} & -1 & -2 & -d_{1,4} & -d_{1,5} \tag{4.1}\\
-1 & t_{2} & -1 & -2 & -d_{2,5} \\
-2 & -1 & t_{3} & -1 & -2 \\
-d_{1,4} & -2 & -1 & t_{4} & -1 \\
-d_{5,1} & -d_{5,2} & -2 & -1 & t_{5}
\end{array}\right]
$$

where $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}$ denote the transmissions of the vertices that induce P_{5} in $\mathcal{D}^{L}(G)$, $d_{1,5}=2,3$ or $4, d_{2,5}=2$ or 3 and $d_{1,4}=2$ or 3 . As P_{5} is an induced subgraph, it is easy to check that if $d_{1,5}=4$ then $d_{2,5}=3$ and $d_{1,4}=3$. Considering the following cases, we see that all possibilities lead to a contradiction:

- $d_{1,5}=2$ and $d_{2,5}=2$:

As $\mathbf{z} \perp \mathbf{1}$, from the fifth entry of $M \mathbf{z}=\partial_{1}^{L} \mathbf{z}$, it follows that $z_{4}=0$. So, using also the fourth entry of this equation, we have

$$
\left\{\begin{array}{l}
-d_{1,4} z_{1}-2 z_{2}-z_{3}=0 \\
z_{1}+z_{2}+z_{3}=0
\end{array}\right.
$$

If $d_{1,4}=2$, then $z_{3}=0$ and $z_{1}=-z_{2}$. So, we can assume that $\mathbf{z}=$ $(-1,1,0,0,0)$ is an eigenvector of M, which is a contradiction according to the third entry of the equation. If $d_{1,4}=3$, then $z_{3}=z_{1}$ and $z_{2}=-2 z_{1}$. So, we can assume that $\mathbf{z}=(1,-2,1,0,0)$ is an eigenvector of M. From the third
entry of the equation, we conclude that $t_{3}=\partial_{1}^{L}$, which is a contradiction (Theorem 3.3).

- $d_{1,5}=2$ and $d_{2,5}=3$:

As $\mathbf{z} \perp \mathbf{1}$, from the fifth entry of $M \mathbf{z}=\partial_{1}^{L} \mathbf{z}$, it follows that $z_{2}=z_{4}=1$ and $z_{1}+z_{3}=-2$. So, we can consider $\mathbf{z}=\left(z_{1}, 1,-2-z_{1}, 1,0\right)$, and from the second entry of the same equation, we conclude that $t_{2}=\partial_{1}^{L}$.

- If $d_{1,5}=3$ and $d_{2,5}=2$:

As $\mathbf{z} \perp \mathbf{1}$, from the fifth entry of $M \mathbf{z}=\partial_{1}^{L} \mathbf{z}$, it follows that $z_{1}=z_{4}=1$ and $z_{2}+z_{3}=-2$. So, we can consider $\mathbf{z}=\left(1,-2-z_{3}, z_{3}, 1,0\right)$, and we have

$$
\left\{\begin{array}{l}
t_{1}+2-z_{3}-d_{1,4}=\partial_{1}^{L} \\
-d_{1,4}+4+z_{3}+t_{4}=\partial_{1}^{L}
\end{array}\right.
$$

If $d_{1,4}=2$, by Theorem 3.3 we have

$$
\left\{\begin{array}{l}
z_{3}=t_{1}-\partial_{1}^{L} \leq-1 \\
z_{3}=\partial_{1}^{L}-t_{4} \geq 1
\end{array}\right.
$$

If $d_{1,4}=3$, again by Theorem 3.3, we have

$$
\left\{\begin{array}{l}
z_{3}=t_{1}-\partial_{1}^{L}-1 \leq-2 \\
z_{3}=\partial_{1}^{L}-t_{4}-1 \geq 0
\end{array}\right.
$$

- If $d_{1,5}=d_{2,5}=3$:

As $\mathbf{z} \perp \mathbf{1}$, from the fifth entry of $M \mathbf{z}=\partial_{1}^{L} \mathbf{z}$, it follows that $z_{3}=-2 z_{4}$ and $z_{1}+z_{2}=1$. So, we can consider $\mathbf{z}=\left(z_{1}, 1-z_{1},-2,+1,0\right)$, and we have

$$
\left\{\begin{array}{l}
-z_{1}-2 t_{3}-2=-2 \partial_{1}^{L} \\
\left(2-d_{1,4}\right) z_{1}+t_{4}=\partial_{1}^{L}
\end{array}\right.
$$

If $d_{1,4}=2$, then $t_{4}=\partial_{1}^{L}$, which is a contradiction. If $d_{1,4}=3$, then

$$
\left\{\begin{array}{l}
z_{1}=2\left(\partial_{1}^{L}-t_{3}-1\right) \\
z_{1}=t_{4}-\partial_{1}^{L}
\end{array}\right.
$$

which is a contradiction, since Theorem 3.3 implies $z_{1}<0$ and $z_{1}>0$.

- $d_{1,5}=4, d_{2,5}=3$ and $d_{1,4}=3$:

As $\mathbf{z} \perp \mathbf{1}$, from the fifth entry of $M \mathbf{z}=\partial_{1}^{L} \mathbf{z}$, it follows that $-3 z_{1}-2 z_{2}-z_{3}=0$. From this fact and the fourth entry of this equation, we obtain $t_{4} z_{4}=z_{4} \partial_{1}^{L}$. If $z_{4} \neq 0$, we get a contradiction. If $z_{4}=0$, we conclude that $-2 z_{1}-z_{2}=$ 0 . So, we can consider $\mathbf{z}=(1,-2,1,0,0)$, which implies in $t_{1}=\partial_{1}^{L}$, a contradiction.

Although by this theorem we cannot completely describe the graphs that have largest distance Laplacian eigenvalue with multiplicity $n-3$, it is possible to obtain a partial characterization and some remarks about this issue.

Proposition 4.2. Let G be a connected graph with order $n \geq 4$ such that $m\left(\partial_{1}^{L}\right)=n-3$. If $\partial_{n-1}^{L}=n$ is an eingenvalue with multiplicity 2 then $G \cong K_{\frac{n}{3}, \frac{n}{3}, \frac{n}{3}}$, or $G \cong K_{\frac{n-1}{2}, \frac{n-1}{2}} \vee K_{1}$, or $G \cong \bar{K}_{n-2} \vee K_{2}$.

Proof. As $\partial_{n-1}^{L}=n, \bar{G}$ is disconnected and $\operatorname{diam}(G)=2$. Moreover, by Theorem 2.2, the L-spectrum of \bar{G} is

$$
\left(n-\partial_{1}^{L}, \ldots, n-\partial_{1}^{L}, 0,0,0\right)
$$

that is, \bar{G} has three components, all of them with the same nonzero eigenvalue. So, the three components are isolated vertices or complete graphs with the same order, that is, $\bar{G} \cong K_{\frac{n}{3}} \cup K_{\frac{n}{3}} \cup K_{\frac{n}{3}}$, if $3 \mid n, \bar{G} \cong K_{\frac{n-1}{2}} \cup K_{\frac{n-1}{2}} \cup K_{1}$, if $2 \mid(n-1)$, or $\bar{G} \cong K_{n-2} \cup K_{1} \cup K_{1}$.

Finally, as the graphs we have cited above have diameter 2, by Theorem 2.2, its enough to know its L-spectrum to write the \mathcal{D}^{L}-spectrum:

- \mathcal{D}^{L}-spectrum of $K_{\frac{n}{3}, \frac{n}{3}, \frac{n}{3}}:\left(\left(\frac{4 n}{3}\right)^{(n-3)}, n^{(2)}, 0\right)$;
- \mathcal{D}^{L}-spectrum of $K_{\frac{n-1}{2}, \frac{n-1}{2}} \vee K_{1}:\left(\left(\frac{3 n-1}{2}\right)^{(n-3)}, n^{(2)}, 0\right)$;
- \mathcal{D}^{L}-spectrum of $\bar{K}_{n-2} \vee K_{2}:\left((2(n-1))^{(n-3)}, n^{(2)}, 0\right)$.

To finish the characterization of the graphs whose largest eigenvalue of the distance Laplacian matrix has multiplicity $n-3$ we should analyze two situations:

- If $\partial_{n-1}^{L}=n$ is an eigenvalue with multiplicity one;
- If $\partial_{n-1}^{L} \neq n$.

Although we have not characterized precisely these two cases, proceeding similarly to the last proposition, we can conclude in the first case that if the \mathcal{D}^{L}-spectrum of a connected graph G is $\left(\partial_{1}^{L}, \ldots, \partial_{1}^{L}, \partial_{n-2}^{L}, n, 0\right)$ then the L-spectrum of \bar{G} is written as $\left(\partial_{1}^{L}-n, \ldots, \partial_{1}^{L}-n, \partial_{n-2}^{L}-n, 0,0\right)$. So, \bar{G} is a graph with 2 components such that the largest Laplacian eigenvalue has multiplicity $n-3$. For example, the graph $G \cong K_{2, n-2}$ has this property since the \mathcal{D}^{L}-spectrum is equal to $\left((2 n-2)^{(n-3)}, n+2, n, 0\right)$.

In the last case, as $\partial_{n-1}^{L} \neq n$, then \bar{G} is a connected graph. So, G has P_{4} as an induced subgraph. On the other hand, from Theorem 4.1, G does not have P_{5} as an induced subgraph. For example, C_{5} satisfies this condition, since its \mathcal{D}^{L}-spectrum is $\left(\frac{15+\sqrt{5}}{2}, \frac{15+\sqrt{5}}{2}, \frac{15-\sqrt{5}}{2}, \frac{15-\sqrt{5}}{2}, 0\right)$.

Acknowledgment. The authors are very grateful to Vladimir Nikiforov for the remarks and suggestions.

REFERENCES

[1] D. Corneil, H. Lerchs, and L. Burlingham. Complement reducible graphs. Discrete Applied Mathematics, 3:163-174, 1981.
[2] F. Tian, D. Wong, and J. Rou. Proof for four conjectures about the distance Laplacian and distance signless Laplacian eigenvalues of a graph. Linear Algebra and its Applications, 471:10-20, 2015.
[3] M. Aouchiche and P. Hansen. Two Laplacians for the distance matrix of a graph. Linear Algebra and its Applications, 439(1):21-33, 2013.
[4] M. Aouchiche and P. Hansen. A Laplacian for the distance matrix of a graph. Czechoslovak Mathematical Journal, 64(3):751-761, 2014.
[5] M. Aouchiche and P. Hansen. Distance spectra of graphs: A survey. Linear Algebra and its Applications, 458:301-386, 2014.
[6] M. Nath and S. Paul. On the distance Laplacian spectra of graphs. Linear Algebra and its Applications, 460:97-110, 2014.
[7] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge Univ. Press, New York, 1992.
[8] R. Merris. Laplacian matrices of graphs: A survey. Linear Algebra and its Applications, 197/198:143-176, 1994.

[^0]: *Received by the editors on May 4, 2015. Accepted for publication on December 31, 2015. Handling Editor: Bryan L. Shader.
 ${ }^{\dagger}$ COPPE - Universidade Federal do Rio de Janeiro and Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca, Rio de Janeiro, Brasil (celsomjr@gmail.com). Supported by CNPq.
 \ddagger Instituto de Matematica and COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil (maguieiras@im.ufrj.br). Supported by CNPq and Faperj.
 §Instituto de Matematica, Universidade Federal Fluminense, Niteroi, Brasil (renata@vm.uff.br). Supported by CNPq.

