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Abstract. In this note, the graphs of order n having the largest distance Laplacian eigenvalue

of multiplicity n− 2 are characterized. In particular, it is shown that if the largest eigenvalue of the

distance Laplacian matrix of a connected graph G of order n has multiplicity n − 2, then G ∼= Sn

or G ∼= Kp,p, where n = 2p. This resolves a conjecture proposed by M. Aouchiche and P. Hansen

in [M. Aouchiche and P. Hansen. A Laplacian for the distance matrix of a graph. Czechoslovak

Mathematical Journal, 64(3):751–761, 2014.]. Moreover, it is proved that if G has P5 as an induced

subgraph then the multiplicity of the largest eigenvalue of the distance Laplacian matrix of G is less

than n− 3.

Key words. Distance Laplacian matrix, Laplacian matrix, Largest eigenvalue, Multiplicity of

eigenvalues.
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1. Introduction. Let G = (V,E) be a connected graph and the distance (the

length of a shortest path) between vertices vi and vj of G be denoted by di,j . The

distance matrix of G, denoted by D(G), is the n × n matrix whose (i, j)-entry is

equal to di,j , i, j = 1, 2, . . . , n. The transmission Tr(vi) of a vertex vi is defined as

the sum of the distances from vi to all other vertices in G. For more details about

the distance matrix we suggest, for example, [5]. M. Aouchiche and P. Hansen [3]

introduced the Laplacian for the distance matrix of a connected graph G as DL(G) =

Tr(G)−D(G), where Tr(G) is the diagonal matrix of vertex transmissions. We write

(∂L
1 , ∂

L
2 , . . . , ∂

L
n = 0), for the distance Laplacian spectrum of a connected graph G,

the DL-spectrum, and assume that the eigenvalues are arranged in a nonincreasing

order. The multiplicity of the eigenvalue ∂L
i is denoted by m(∂L

i ), for 1 ≤ i ≤ n. We

often use exponents to exhibit the multiplicity of the distance Laplacian eigenvalues

when we write the DL-spectrum. The distance Laplacian matrix has been recently
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studied ([2, 4, 6]) and, in [4], M. Aouchiche and P. Hansen proposed some conjectures

about it. Among them, we consider in this work the following one:

Conjecture 1.1. [4] If G is a graph on n ≥ 3 vertices and G ≇ Kn, then

m(∂L
1 (G)) ≤ n − 2 with equality if and only if G is the star Sn or n = 2p for the

complete bipartite graph Kp,p.

In this paper, we prove the conjecture. In order to obtain this result we analyze

how the existence of P4 as an induced subgraph influences the DL-spectrum of a

connected graph. We conclude that, in this case, the largest distance Laplacian

eigenvalue has multiplicity less than or equal to n− 3. This fact motivated us to also

investigate the influence of an induced P5 subgraph in the DL-spectrum of a graph.

We prove that if a graph has an induced P5 subgraph then the largest eigenvalue

of its distance Laplacian matrix has multiplicity at most n− 4. Although we do not

make a general approach by characterizing the graphs that have the largest distance

Laplacian eigenvalue with multiplicity n − 3, some considerations on this topic are

made.

2. Preliminaries. In what follows, G = (V,E), or just G, denotes a graph with

n vertices and G denotes its complement. The diameter of a connected graph G is

denoted by diam(G). As usual, we write, respectively, Pn, Cn, Sn and Kn, for the

path, the cycle, the star and the complete graph, all with n vertices. We denote by

Kp,p and by Kp,p,p the balanced complete bipartite and tripartite graph, respectively.

Now, we recall the definitions of some operations with graphs that will be used. For

this, let G1 = (V1, E1) and G2 = (V2, E2) be vertex disjoint graphs:

• The union of G1 and G2 is the graph G1 ∪G2 (or G1+G2), whose vertex set

is V1 ∪ V2 and whose edge set is E1 ∪ E2;

• The complete product or join of graphs G1 and G2 is the graph G1 ∨ G2

obtained from G1 ∪G2 by joining each vertex of G1 with every vertex of G2.

A graph G is a cograph, also known as a decomposable graph, if no induced

subgraph of G is isomorphic to P4 [1]. About the cographs, we also have the following

characterizations:

Theorem 2.1. [1] Given a graph G, the foIlowing statements are equivalent:

• G is a cograph.

• The complement of any connected subgraph of G with at least two vertices is

disconnected.

• Every connected subgraph of G has diameter less than or equal to 2.

We denote by (µ1, µ2, . . . , µn = 0) the L-spectrum of G, i.e., the spectrum of

the Laplacian matrix of G, and assume that the eigenvalues are labeled such that

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 60-68, February 2016

http:/repository.uwyo.edu/ela



ELA

62 C.M. da Silva Jr., M. de Freitas, and R. Del-Vecchio

µ1 ≥ µ2 ≥ · · · ≥ µn = 0. It is well known that the multiplicity of the Laplacian

eigenvalue 0 is equal to the number of components of G and that µn−i(G) = n−µi(G),

∀1 ≤ i ≤ n− 1 (see [8] for more details).

The following results regarding the distance Laplacian matrix are already known.

Theorem 2.2. [3] Let G be a connected graph on n vertices with diam(G) ≤ 2.

Let µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0 be the Laplacian spectrum of G. Then the

distance Laplacian spectrum of G is 2n−µn−1 ≥ 2n−µn−2 ≥ · · · ≥ 2n−µ1 > ∂L
n = 0.

Moreover, for every i ∈ {1, 2, . . . , n− 1} the eigenspaces corresponding to µi and to

2n− µi are the same.

Theorem 2.3. [3] Let G be a connected graph on n vertices. Then ∂L
n−1 = n if

and only if G is disconnected. Moreover, the multiplicity of n as an eigenvalue of DL

is one less than the number of components of G.

Theorem 2.4. [3] If G is a connected graph on n ≥ 2 vertices then m(∂L
1 ) ≤ n−1

with equality if and only if G is the complete graph Kn.

We finish this section enunciating the Cauchy interlacing theorem, that will be

necessary for what follows::

Theorem 2.5. [7] Let A be a real symmetric matrix of order n with eigenvalues

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) and let M be a principal submatrix of M with order

m ≤ n and eigenvalues λ1(M) ≥ λ2(M) ≥ · · · ≥ λm(M). Then λi(A) ≥ λi(M) ≥

λi+n−m(A), for all 1 ≤ i ≤ m.

3. Proof of the conjecture. The next lemmas will be useful to prove the main

results of this section:

Lemma 3.1. If G is a connected graph on n ≥ 2 vertices and Laplacian spectrum

equal to (n, µ2, . . . , µ2, µ2, 0) , with µ2 6= n, then G ∼= Sn or G ∼= Kp,p, where n = 2p.

Proof. In this case, the L-spectrum of G is (n− µ2, n− µ2, . . . , n− µ2, 0, 0) and,

then, G has exactly 2 components. As each component has no more than two distinct

Laplacian eigenvalues, both are isolated vertices or complete graphs. Since the two

components also have all nonzero eigenvalues equal, we have G ∼= K1 ∪ Kn−1 or

G ∼= Kp ∪Kp, where n = 2p. Therefore, G ∼= Sn or G ∼= Kp,p. On the other hand, it

is already known that the L-spectrum of Sn and Kp,p are, respectively, (n, 1, . . . , 1, 0)

and (n, p, . . . , p, 0).

Lemma 3.2. Let A be a real symmetric matrix of order n with largest eigenvalue

λ and M the m × m principal submatrix of A obtained from A by excluding the

n − m last rows and columns. If M also has λ as an eigenvalue, associated with

the normalized eigenvector x = (x1, . . . , xm), then x
∗ = (x1, . . . , xm, 0, . . . , 0) is a
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corresponding eigenvector to λ in A.

Proof. As λ is an eigenvalue of M corresponding to x, then λ = 〈Mx,x〉 . So, it

is enough to see that 〈Mx,x〉 = 〈Ax∗,x∗〉 .

A well known result about the Laplacian matrix ([8]) says that, if G is a graph

with at least one edge then µ1 ≥ ∆ + 1, where ∆ denotes the maximum degree of

G. It is possible to get an analogous lower bound for the largest distance Laplacian

eigenvalue of a connected graph G:

Theorem 3.3. If G is a connected graph then ∂L
1 (G) ≥ max

i∈V
Tr(vi) + 1. Equality

is attained if and only if G ∼= Kn.

Proof. Suppose, without loss of generality, that Tr(v1) = max
i∈V

Tr(vi) = Trmax and

let x =
(

1, −1
n−1 ,

−1
n−1 , . . . ,

−1
n−1

)

. Then

∂L
1 (G) = max

y⊥1

〈

DLy,y
〉

‖y‖
2 ≥

〈

DLx,x
〉

‖x‖
2 =

(

1 +
1

n− 1

)2









n
∑

i=1

d1,i

‖x‖
2









=
n2Trmax

(n− 1)2 ‖x‖
2 .

Since, ‖x‖2 =
n

n− 1
, we obtain

∂L
1 (G) ≥

n

n− 1
Trmax = Trmax +

Trmax

n− 1
≥ Trmax + 1. (3.1)

If the equality is attained for a connected graph G then, from (3.1), we conclude that

Trmax = n− 1. As G ∼= Kn is the unique graph with this property and ∂L
1 (Kn) = n,

the result is proven.

In order to solve Conjecture 1.1, we first investigate how the existence of P4 as an

induced subgraph influences the multiplicity of the largest eigenvalue of the distance

Laplacian matrix of a graph:

Theorem 3.4. If the connected graph G has at least 4 vertices and it is not a

cograph then m(∂L
1 ) ≤ n− 3.

Proof. Let G be a connected graph on n ≥ 4 vertices which is not a cograph.

Then G has P4 as an induced subgraph. Let M be the principal submatrix of DL(G)

associated with this induced subgraph and denote the eigenvalues of M by λ1 ≥ λ2 ≥

λ3 ≥ λ4. Suppose that m(∂L
1 ) ≥ n−2. By Cauchy interlacing (Theorem 2.5) is easy to

check that λ1 = λ2 = ∂L
1 . By Lemma 3.2, if x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4)

are eigenvectors associated to ∂L
1 in M, then x∗ = (x1, x2, x3, x4, 0, . . . , 0) and y∗ =

(y1, y2, y3, y4, 0, . . . , 0) are eigenvectors associated to ∂L
1 in DL(G). As x∗,y∗⊥1, with

a linear combination of this vectors, is possible to get z∗ = (z1, z2, 0, z4, 0, . . . , 0)
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such that z∗⊥1 and it is still an eigenvector for DL(G) associated to ∂L
1 . Thus,

z = (z1, z2, 0, z4) is an eigenvector for M such that z1 + z2 + z4 = 0.

Now, we observe that there are just two options for the matrix M :

M1 =









t1 −1 −2 −3

−1 t2 −1 −2

−2 −1 t3 −1

−3 −2 −1 t4









or M2 =









t1 −1 −2 −2

−1 t2 −1 −2

−2 −1 t3 −1

−2 −2 −1 t4









,

where t1, t2, t3, t4 denote the transmissions of the vertices that induce P4 in DL(G).

From the third entry of M1z = λ1z it follows that −2z1 − z2 − z4 = 0. This,

together with the fact that z1 + z2 + z4 = 0, allow us to conclude that (0, 1, 0,−1)

is an eigenvector corresponding to ∂L
1 in M1. From the first entry of M1z = λ1z, we

have a contradiction. Similarly we have a contradiction, considering M2 instead of

M1.

The next theorem resolves the Conjecture 1.1:

Theorem 3.5. If G is a graph on n ≥ 3 vertices and G ≇ Kn, then m(∂L
1 (G)) ≤

n−2 with equality if and only if G is the star Sn or the complete bipartite graph Kp,p,

if n = 2p.

Proof. As G ≇ Kn, we already know that m(∂L
1 (G)) ≤ n − 2 (Theorem 2.4).

Therefore, it remains to check for which graphs we have m(∂L
1 (G)) = n − 2. Let G

be a connected graph satisfying this property. Thus, m(∂L
n−1(G)) = 1. We consider

two cases, when ∂L
n−1(G) = n and when ∂L

n−1(G) 6= n:

• If ∂L
n−1(G) = n, the DL-spectrum of G is

(

∂L
1 , ∂

L
1 , . . . , ∂

L
1 , n, 0

)

, with ∂L
1 (G) 6=

n. By Theorem 2.3, G is disconnected and has exactly two components. Fur-

thermore, as G is connected and G is disconnected, diam(G) ≤ 2. So, by

Theorem 2.2, the L-spectrum of G is
(

n, 2n− ∂L
1 , . . . , 2n− ∂L

1 , 2n− ∂L
1 , 0

)

and, from Lemma 3.1, G ∼= Sn or G ∼= Kp,p;

• If ∂L
n−1(G) 6= n, the DL-spectrum of G is

(

∂L
1 , ∂

L
1 , . . . , ∂

L
1 , ∂

L
n−1, 0

)

with ∂L
1 6=

∂L
n−1 and ∂L

n−1 6= n. We claim there is no graph with this property. Indeed,

by Theorem 2.3, as ∂L
n−1 6= n, G is also connected. By Theorem 2.1, G has

P4 as an induced subgraph and, therefore, by Theorem 3.4, G cannot have a

distance Laplacian eigenvalue with multiplicity n− 2.

It is already known [4] the DL-spectra of the star and the complete bipartite

graph, and this complete the proof:

• DL-spectrum of Sn : ((2n− 1)(n−2), n, 0);

• DL-spectrum of Kp,p : ((3p)(n−2), n, 0).
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4. Graphs with P5 as forbidden subgraph. In the previous section, we es-

tablished a relationship between the DL-spectrum of a connected graph and the ex-

istence of a P4 induced subgraph. Then, it is natural to think how the existence of

a P5 induced subgraph could influence its DL-spectrum. In this case, we prove the

following theorem, regarding the largest distance Laplacian eigenvalue:

Theorem 4.1. If G is a connected graph on n ≥ 5 vertices and m(∂L
1 (G)) = n−3

then G does not have a P5 as induced subgraph.

Proof. Suppose that G has a P5 as an induced subgraph and letM be the principal

submatrix of DL(G) corresponding to the vertices in this P5. Denote the eigenvalues

of M by λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ λ5. If m(∂L
1 ) = n − 3, by Cauchy interlacing

theorem it follows that λ1 = λ2 = ∂L
1 . By Lemma 3.2, if x = (x1, x2, x3, x4, x5)

and y = (y1, y2, y3, y4, y5) are eigenvectors associated to ∂L
1 for M, then x∗ =

(x1, x2, x3, x4, x5, 0, . . . , 0) and y∗ = (y1, y2, y3, y4, y5, 0, . . . , 0) are eigenvectors for

DL(G), associated to ∂L
1 . As x∗,y∗⊥1, with a linear combination of this vectors, is

possible to get z∗ = (z1, z2, z3, z4, 0, . . . , 0) such that z∗⊥1. and it is still an eigenvec-

tor for DL(G) associated to ∂L
1 . Then, z = (z1, z2, z3, z4, 0) is an eigenvector for M

such that z1 + z2 + z3 + z4 = 0.

Now, we observe that the matrix M can be written as

M =















t1 −1 −2 −d1,4 −d1,5

−1 t2 −1 −2 −d2,5

−2 −1 t3 −1 −2

−d1,4 −2 −1 t4 −1

−d5,1 −d5,2 −2 −1 t5















, (4.1)

where t1, t2, t3, t4, t5 denote the transmissions of the vertices that induce P5 in DL(G),

d1,5=2,3 or 4, d2,5 = 2 or 3 and d1,4 = 2 or 3. As P5 is an induced subgraph, it is

easy to check that if d1,5 = 4 then d2,5 = 3 and d1,4 = 3. Considering the following

cases, we see that all possibilities lead to a contradiction:

• d1,5 = 2 and d2,5 = 2:

As z⊥1, from the fifth entry of Mz = ∂L
1 z, it follows that z4 = 0. So, using

also the fourth entry of this equation, we have

{

−d1,4z1 − 2z2 − z3 = 0,

z1 + z2 + z3 = 0.

If d1,4 = 2, then z3 = 0 and z1 = −z2. So, we can assume that z =

(−1, 1, 0, 0, 0) is an eigenvector of M, which is a contradiction according to

the third entry of the equation. If d1,4 = 3, then z3 = z1 and z2 = −2z1. So,

we can assume that z = (1,−2, 1, 0, 0) is an eigenvector of M. From the third
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entry of the equation, we conclude that t3 = ∂L
1 , which is a contradiction

(Theorem 3.3).

• d1,5 = 2 and d2,5 = 3:

As z⊥1, from the fifth entry of Mz = ∂L
1 z, it follows that z2 = z4 = 1 and

z1 + z3 = −2. So, we can consider z = (z1, 1,−2 − z1, 1, 0), and from the

second entry of the same equation, we conclude that t2 = ∂L
1 .

• If d1,5 = 3 and d2,5 = 2:

As z⊥1, from the fifth entry of Mz = ∂L
1 z, it follows that z1 = z4 = 1 and

z2 + z3 = −2. So, we can consider z = (1,−2− z3, z3, 1, 0), and we have

{

t1 + 2− z3 − d1,4 = ∂L
1 ,

−d1,4 + 4 + z3 + t4 = ∂L
1 .

If d1,4 = 2, by Theorem 3.3 we have

{

z3 = t1 − ∂L
1 ≤ −1,

z3 = ∂L
1 − t4 ≥ 1.

If d1,4 = 3, again by Theorem 3.3, we have

{

z3 = t1 − ∂L
1 − 1 ≤ −2,

z3 = ∂L
1 − t4 − 1 ≥ 0.

• If d1,5 = d2,5 = 3:

As z⊥1, from the fifth entry of Mz = ∂L
1 z, it follows that z3 = −2z4 and

z1 + z2 = 1. So, we can consider z = (z1, 1− z1,−2,+1, 0), and we have

{

−z1 − 2t3 − 2 = −2∂L
1 ,

(2 − d1,4)z1 + t4 = ∂L
1 .

If d1,4 = 2, then t4 = ∂L
1 , which is a contradiction. If d1,4 = 3, then

{

z1 = 2(∂L
1 − t3 − 1),

z1 = t4 − ∂L
1 ,

which is a contradiction, since Theorem 3.3 implies z1 < 0 and z1 > 0.

• d1,5 = 4, d2,5 = 3 and d1,4 = 3:

As z⊥1, from the fifth entry of Mz = ∂L
1 z, it follows that −3z1−2z2−z3 = 0.

From this fact and the fourth entry of this equation, we obtain t4z4 = z4∂
L
1 .

If z4 6= 0, we get a contradiction. If z4 = 0, we conclude that −2z1 − z2 =

0. So, we can consider z = (1,−2, 1, 0, 0), which implies in t1 = ∂L
1 , a

contradiction.
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Although by this theorem we cannot completely describe the graphs that have

largest distance Laplacian eigenvalue with multiplicity n− 3, it is possible to obtain

a partial characterization and some remarks about this issue.

Proposition 4.2. Let G be a connected graph with order n ≥ 4 such that

m(∂L
1 ) = n− 3. If ∂L

n−1 = n is an eingenvalue with multiplicity 2 then G ∼= Kn

3
,n
3
,n
3
,

or G ∼= Kn−1

2
,n−1

2

∨K1, or G ∼= Kn−2 ∨K2.

Proof. As ∂L
n−1 = n, G is disconnected and diam(G) = 2. Moreover, by Theorem

2.2, the L-spectrum of G is

(n− ∂L
1 , . . . , n− ∂L

1 , 0, 0, 0),

that is, G has three components, all of them with the same nonzero eigenvalue. So,

the three components are isolated vertices or complete graphs with the same order,

that is, G ∼= Kn

3
∪ Kn

3
∪ Kn

3
, if 3 | n, G ∼= Kn−1

2

∪ Kn−1

2

∪ K1, if 2 | (n − 1), or

G ∼= Kn−2 ∪K1 ∪K1.

Finally, as the graphs we have cited above have diameter 2, by Theorem 2.2, its

enough to know its L-spectrum to write the DL-spectrum:

• DL-spectrum of Kn

3
,n
3
,n
3
:

(

(

4n

3

)(n−3)

, n(2), 0

)

;

• DL-spectrum of Kn−1

2
,
n−1

2

∨K1 :

(

(

3n− 1

2

)(n−3)

, n(2), 0

)

;

• DL-spectrum of Kn−2 ∨K2 :
(

(2(n− 1))(n−3), n(2), 0
)

.

To finish the characterization of the graphs whose largest eigenvalue of the dis-

tance Laplacian matrix has multiplicity n− 3 we should analyze two situations:

• If ∂L
n−1 = n is an eigenvalue with multiplicity one;

• If ∂L
n−1 6= n.

Although we have not characterized precisely these two cases, proceeding similarly

to the last proposition, we can conclude in the first case that if the DL-spectrum of a

connected graph G is (∂L
1 , . . . , ∂

L
1 , ∂

L
n−2, n, 0) then the L-spectrum of G is written as

(∂L
1 −n, . . . , ∂L

1 −n, ∂L
n−2−n, 0, 0). So, G is a graph with 2 components such that the

largest Laplacian eigenvalue has multiplicity n−3. For example, the graphG ∼= K2,n−2

has this property since the DL-spectrum is equal to ((2n− 2)(n−3), n+ 2, n, 0).

In the last case, as ∂L
n−1 6= n, then G is a connected graph. So, G has P4 as an

induced subgraph. On the other hand, from Theorem 4.1, G does not have P5 as an

induced subgraph. For example, C5 satisfies this condition, since its DL-spectrum is
(

15+
√
5

2 , 15+
√
5

2 , 15−
√
5

2 , 15−
√
5

2 , 0
)

.
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