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Abstract. The minimum rank problem for a simple graph G and a given field F is to determine

the smallest possible rank among symmetric matrices over F whose i, j-entry, i ≠ j, is nonzero

whenever i is adjacent to j, and zero otherwise; the diagonal entries can be any element in F . In

contrast, loop graphs G go one step further to restrict the diagonal i, i-entries as nonzero whenever

i has a loop, and zero otherwise. When charF ≠ 2, the odd cycle zero forcing number and the

enhanced odd cycle zero forcing number are introduced as bounds for loop graphs and simple graphs,

respectively. A relation between loop graphs and simple graphs through graph blowups is developed,

so that the minimum rank problem of some families of simple graphs can be reduced to that of much

smaller loop graphs.
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1. Introduction. For a given graph, the minimum rank problem is to deter-

mine the smallest possible rank among a family of matrices associated to the graph.

Depending on the types of graphs, the definitions of the associated matrices are dif-

ferent. In this paper, we focus on simple graphs and loop graphs, provide new bounds

for both of them, and develop their relation on the minimum rank problem through

graph blowups (which will be defined in Section 4).

A simple graph is a graph without loops or multiedges; a loop graph is a graph

where each vertex can have at most one loop. Given a field F , the set of associated

matrices of a simple graph G is denoted by SF (G) and defined as the family of

symmetric matrices over F whose i, j-entry, i ≠ j, is nonzero whenever i is adjacent

to j, and zero otherwise; in contrast, the associated matrices SF (G) of a loop graph

G is the family of symmetric matrices over F whose i, j-entry (i = j is possible) is

nonzero whenever i is adjacent to j, and zero otherwise. Note that in a loop graph,

i is adjacent to itself if and only if i has a loop. To point out the difference, the

diagonal entries can be any element in F for simple graphs; however, for loop graphs,

the zero-nonzero pattern on the diagonal is controlled by the loops. A graph without
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any loops can be considered as a simple graph G or a loop graph G without loops, but

the definitions for SF (G) and SF (G) are different, since SF (G) allows free diagonal

while SF (G) requires zero diagonal. Therefore, a simple graph is usually denoted as

G and a loop graph is denoted as G.

The minimum rank of a given graph, is defined as the smallest possible rank in

SF (G), or SF (G). For a simple graph G and a loop graph G, the minimum ranks

are written as mrF (G) = min{rank(A) ∶ A ∈ SF (G)} and mrF (G) = min{rank(A) ∶

A ∈ SF (G)} respectively. Equivalently, the problem of finding the minimum rank of

a graph can be viewed as finding the maximum nullity, which is defined as MF (G) =

max{null(A) ∶ A ∈ SF (G)} and MF (G) =max{null(A) ∶ A ∈ SF (G)}. This is because

mrF (G) +MF (G) = ∣V (G)∣ for any simple graph G, or similarly when G is replaced

by any loop graph G.

The minimum rank problem is a relaxation of the inverse eigenvalue problem,

and also essentially related to orthogonal representations and the Colin de Verdiére

type parameters (see [10]). For the study of the minimum rank problem, the zero

forcing number Z was introduced in [1], and then [13] extended to each type of graph

as a “universal” upper bound for the maximum nullity. That is, MF (G) ≤ Z(G) for

any field F and any simple graph G, or when G is replaced by a loop graph G. Zero

forcing parameters will be discussed in Section 1.1

In the sense of the maximum nullity and the zero forcing number, the relation

between simple graphs and loop graphs is bridged by the loop configurations. A loop

configuration of a simple graph G is a loop graph G obtained from G by designating

each vertex as having no loop or one loop. So for a given simple graph G with n

vertices, there are 2n possible loop configurations of G. Through this definition, the

maximum nullity of a simple graph can be obtained from the maximum nullities of

its loop configurations. That is, MF (G) =maxGMF (G), where G runs over all loop

configurations of G. Since MF (G) ≤ Z(G) for each of the loop configurations, the

enhanced zero forcing number Ẑ(G) was introduced in [4] and is defined as Ẑ(G) =

maxGZ(G), where the maximum is over all loop configurations G of G. In the same

paper, it is shown MF (G) ≤ Ẑ(G) ≤ Z(G) for any simple graph G and any field F .

This suggests that the consideration of loop graphs can improve the upper bound

given by Z(G).

For the field of real numbers, it is known [8] that MR(G) = Z(G) for any simple

graph with ∣V (G)∣ ≤ 7, yet this is not the case for loop graphs. For example, let

Cn be the cycle on n vertices, as a simple graph. A loopless odd cycle C0

2k+1 is the

loop configuration of C2k+1 without any loop. For a loopless odd cycle C0

2k+1, its

maximum nullity MF (C0

2k+1) = 0 for any field F with characteristic charF ≠ 2, but

Z(C0

2k+1) = 1 [7]. That means, even for small loop graphs like C0

3
, there is a gap.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 42-59, February 2016

http:/repository.uwyo.edu/ela



ELA

44 J. C.-H. Lin

When charF ≠ 2, loopless odd cycles play an important role, and allow us to

discover new upper bounds for both loop graphs and simple graphs. In Section 2,

we define a new parameter called the odd cycle zero forcing number, Zoc(G), for loop

graphs G; meanwhile, Theorem 2.8 proves that MF (G) ≤ Zoc(G) ≤ Z(G), and Corol-

lary 2.9 states that MR(G) = Zoc(G) whenever F = R and G is a loop configuration of

a complete graph or a cycle, which fixes the gap between Z(C0

2k+1) and MR(C0

2k+1).

Following the same track of the enhanced zero forcing number, when charF ≠ 2,

the odd cycle zero forcing number for loop graphs also leads to a new bound for

simple graphs. In Section 3, the enhanced odd cycle zero forcing number Ẑoc(G)

for simple graphs is introduced with the property MF (G) ≤ Ẑoc(G) ≤ Ẑ(G) ≤ Z(G).

Example 3.3 shows that MR(K3,3,3) = Ẑoc(K3,3,3) = 6 and Ẑ(K3,3,3) = 7, where K3,3,3

is the complete tripartite (simple) graph. Corollary 4.9 and Proposition 6.1 provide

examples showing that Ẑ(G)− Ẑoc(G) and Ẑoc(G)−M
R(G) can be arbitrarily large.

Graph blowups are a transformation from a loop graph to a simple graph, and

were used for the characterization for minimum rank over finite fields [12]. In Sec-

tion 4, graph blowups are defined, and Theorem 4.7 shows that MF (H) = Ẑoc(H)

if MF (G) = Zoc(G), provided that H is a “large” blowup of G. That means the

maximum nullity of a graph blowup, which is a simple graph, can be obtained by the

maximum nullity of a much smaller loop graph.

In Section 5, the graph complement conjecture for M(G) is shown to be true for

most graph blowups; while the graph complement conjecture for Ẑoc(G) is true for

any simple graph.

1.1. Different types of zero forcing numbers. There are several different

types of zero forcing numbers, but they all serve as upper bounds for the maximum

nullity for different types of graphs. In this section, the zero forcing number Z(G)

for simple graphs G and the zero forcing number Z(G) for loop graphs G will be

discussed.

The zero forcing number starts by the zero forcing game, where vertices are blue

or white and different color-change rules may apply on different types of graphs. For

simple graphs G, the color-change rule is

● if y ∈ V (G) is the only white neighbor of x ∈ V (G) and x is blue, then y turns

blue;

for loop graphs G, the color-change rule is

● if y ∈ V (G) is the only white neighbor of x ∈ V (G) (where x = y is possible),

then y turns blue.
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So one of the major differences is for simple graphs, x should be blue first so x can

force its neighbor y to turn blue, but for loop graphs, this need not be the case. Also,

we emphasize the neighbors of x for loop graphs refers to those vertices which are

adjacent to x. So it is possible that x itself is the only white neighbor of x, when

there is a loop on x.

On a graph with vertex set V , a subset B ⊆ V is called a zero forcing set if setting

the vertices of B blue and the others white can make the whole set V change to

blue through repeated applications of the corresponding color-change rule. The zero

forcing number Z(G), or Z(G), is defined to be the minimum cardinality of a zero

forcing set on a simple graph G, or a loop graph G, using the appropriate color-change

rule.

Suppose G is a loop configuration of a simple graph G. Then any zero forcing set

of G is a zero forcing set of G, so Z(G) ≤ Z(G). This establishes the stated theorem

MF (G) ≤ Ẑ(G) ≤ Z(G)

in [4].

As mentioned, there is a gap between MF (G) and Z(G) when G is a loopless

odd cycle and charF ≠ 2. In fact, this also happens on some loop configurations of

complete graphs, when C0

3 appears on it. For loop configurations of complete graphs,

the maximum nullity can be found in [7] and Proposition 1.1 provides the zero forcing

number .

Proposition 1.1. Let Kn be the complete (simple) graph on n vertices and K
ℓ(s)
n

its loop configuration with s loops. Then

MR(Kℓ(s)
n ) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

n if n − s = 1 = n;

n − 1 if n − s = 0 and 1 ≤ n;

n − 2 if 1 ≤ n − s ≤ 2 ≤ n;

n − 3 if 3 ≤ n − s,

and

Z(Kℓ(s)
n ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

n if n − s = 1 = n;

n − 1 if n − s = 0 and 1 ≤ n;

n − 2 if 1 ≤ n − s and 2 ≤ n.

Proof. Since MR(G) +mrR(G) = ∣V (G)∣ for every loop graph G, the formula for

MR(K
ℓ(s)
n ) comes from Proposition 5.5 in [7]. To determine the zero forcing number,

two cases are considered. When n − s ≤ 2, the formulas for Z(K
ℓ(s)
n ) and M(K

ℓ(s)
n )

agree with each other, so it is enough to find a zero forcing set of cardinalityM(K
ℓ(s)
n ).
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When n − s = 1 = n, the graph has only one vertex, which makes a zero forcing set.

When n − s = 0 and 1 ≤ n, any set of n − 1 vertices can be a zero forcing set. When

1 ≤ n − s ≤ 2 ≤ n, any set of n − 2 vertices with loops forms a zero forcing set.

In the case of 3 ≤ n − s, by coloring all vertices blue except two vertices without

loops, it becomes a zero forcing set. However, if there are 3 white vertices initially,

then every vertex will have at least two white neighbors (beside itself), so it cannot

be a zero forcing set. As a consequence, n − 2 is the zero forcing number.

Proposition 1.2. [7] Let Cn be the (simple) cycle on n vertices and Cn one of its

loop configurations. Then MR(Cn) = Z(Cn) whenever Cn is not a loopless odd cycle.

For loopless odd cycles C0

2k+1, M
R(C0

2k+1) = 0 but Z(C0

2k+1) = 1.

Remark 1.3. The equality MF (C0

2k+1) = 0 holds for any field F with charF ≠ 2.

This is because a loop graph G with a unique spanning generalized cycle always has

M(G) = 0 if charF ≠ 2 [11] (spanning generalized cycles are called spanning composite

cycles in [7]). This states that every matrix in SF (C0

2k+1) is nonsingular whenever

charF ≠ 2. On the other hand, MF (C0

2k+1) = 1 if charF = 2, because Z(C
0

2k+1) = 1 and

the adjacency matrix of C0

2k+1 over F has determinant 0. Symmetry is also crucial,

since the asymmetric matrix

⎛
⎜
⎜
⎝

0 1 1

1 0 −1

1 1 0

⎞
⎟
⎟
⎠

follows the zero-nonzero pattern given by

C0

3
but has nullity 1.

2. Odd cycle zero forcing number Zoc(G). This section exploits Remark 1.3

to develop a new upper bound of MF (G) for loop graphs G when charF ≠ 2.

For a loop graph G and a subset of vertices W ⊆ V (G), the induced subgraph of

G on W is the loop graph obtained from G by deleting all vertices outside W , which

keeps all those edges and loops with their two endpoints in W . The odd cycle zero

forcing number is an extension of the conventional zero forcing number by adding one

more rule.

Definition 2.1. On a given loop graph G, where vertices are marked blue or

white, the color-change rule for Zoc (CCR-Zoc) is:

(a) if y ∈ V (G) is the only white neighbor of x ∈ V (G) (where x = y is possible),

then y turns blue.

(b) if W is the set of white vertices and G[W ] contains a component C, as a

loopless odd cycle, then all vertices of C turn blue.

If starting with B ⊆ V (G) as initial blue vertices makes the whole set V (G) change

to blue through repeated applications of CCR-Zoc, then B is a zero forcing set for
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Zoc (ZFS-Zoc) on G. The odd cycle zero forcing number is defined as

Zoc(G) =min{∣B∣ ∶ B is a ZFS-Zoc on G}.

Remark 2.2. Given an initial blue set, no matter what order the rules (a) and

(b) are applied, the process always stops at some unique final coloring where neither

color-change rule can be used. To see this, suppose at a certain step, W is the set of

white vertices and C is a loopless odd cycle as a component of G[W ]; also suppose

y ∈ V (C) is the only white neighbor of x. In this situation, we can apply rule (b), and

all vertices in V (C) turns blue; on the other hand, if we apply rule (a) instead to make

y blue, then all vertices in V (C) will eventually turn blue, since y is a (conventional)

zero forcing set of C. So the order of using rule (a) and rule (b) will not affect the

final set of blue vertices. For implementing an algorithm, one can consider rule (b)

only when rule (a) no longer applies. (A fast implementation of rule (a) exists but no

fast implementation of rule (b) currently exists. This explains our preference for rule

(a).)

The following concepts are helpful for understanding this new color-change rule.

A chronological list for Zoc records how a ZFS-Zoc makes all vertices blue, and is

defined as (Xi → Yi)
s
i=1, where at the i-th step, if rule (a) is applied, then Xi = {x}

and Yi = {y}, while if rule (b) is applied, then Xi = Yi = V (C). Here x, y, and C

are as those in Definition 2.1. A zero forcing process for Zoc (ZFP-Zoc) refers to the

initial blue set B and its chronological list. Note that a ZFS-Zoc may have different

ways of applying CCR-Zoc, so the chronological list for Zoc with a given ZFS-Zoc is

not unique. Note that we do not restrict the ZFS-Zoc of a chronological list to be a

minimum ZFS-Zoc; when it is minimum, the chronological list and ZFP-Zoc are said

to be optimal.

For a given chronological list, we can draw a corresponding digraph on V (G)

with arcs indicated by Xi → Yi. If Xi = {x} and Yi = {y}, then x → y is added; if

Xi = Yi = V (C) for some loopless odd cycle C, then an odd directed cycle is added, with

some circular orientation. With these definitions, each (weakly connected) component

of this digraph is called a maximal chain.

On a digraph, a sequence of vertices with structure v1 → v2 → ⋯ → vn is called a

directed n-path, where v1 is called the tail and vn is called the head of this directed

path; and a sequence of vertices with the structure v1 → v2 → ⋯ → vn → v1 is called

a directed n-cycle. On digraphs, a directed 1-cycle or a directed 2-cycle are possible,

and they are a vertex with a loop or two vertices with two arcs of both directions.

Example 2.3. Let G be the loop graph in Figure 2.1 and B = {3} be the initial

blue set. Then the column on the left is one possible chronological list, while the

column on the right is its reversal, which reverses the order of the list and switches
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the roles of Xi’s and Yi’s. The reversal is also a ZFP-Zoc, with the initial blue set

B′ = {6}.

{2}→ {1} {10}→ {10}
{1}→ {2} {7,8,9}→ {7,8,9}
{3}→ {4} {5}→ {4}
{5}→ {6} {6}→ {5}
{4}→ {5} {4}→ {3}

{7,8,9}→ {7,8,9} {2}→ {1}
{10}→ {10} {1}→ {2}

Following this chronological list, its maximal chains are shown in Figure 2.1, including

a vertex with a directed 1-cycle on {10}, a directed 2-cycle on {1,2}, a directed path

on {3,4,5,6}, and a directed odd cycle on {7,8,9} given by rule (b).

1

2
3

4

5

6

7

8

9

10

G

1

2
3

4

5

6

7

8

9

10

maximal chains

Fig. 2.1. The loop graph G for Example 2.3 and its maximal chains.

Example 2.3 shows all possible types of maximal chains. Proposition 2.4 and

Proposition 2.5 develop some general properties for maximal chains.

Proposition 2.4. Let G be a loop graph and B a ZFS-Zoc on G. Let ζ be a

ZFP-Zoc with its initial blue set B and Γ the corresponding digraph of ζ. By CCR-Zoc,

the following properties hold:

(1) for every vertex x ∈ B, the in-degree of x in Γ is 0;

(2) for every vertex x ∈ V (G) ∖B, the in-degree of x in Γ is 1;

(3) for every vertex x ∈ V (G), the out-degree of x in Γ is at most 1;

(4) each maximal chain is either a directed 1-cycle, a directed 2-cycle, a directed

path, or a directed odd cycle given by rule (b), where an isolated vertex without

any arcs on it is considered a directed 1-path;

(5) B is the set of tails of the directed paths in Γ.
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Proof. Since B is a ZFS-Zoc, each vertex in B is blue initially and each vertex

outside B turns blue exactly once, implying (1) and (2). A directed odd cycle given

by rule (b) always forms a component itself in Γ, and each vertex of it has out-degree

1. If x → y1 and x → y2 are arcs in Γ, then y1 and y2 are two white neighbors of

x and rule (a) cannot apply. Therefore (3) holds. For (4), since every vertex of Γ

has in-degree at most 1 and out-degree 1, Γ is a disjoint union of directed cycles and

directed paths. Since each directed n-cycle with n ≥ 3 cannot be obtained by rule (a),

it must be a directed odd cycle given by rule (b). Finally, for (5), B corresponds to

those vertices with in-degree 0, which is the set of tails of each directed path in Γ.

In contrast to the color-change rule on simple graphs, a vertex does not need to

be blue to start its force. Let (Xi → Yi)
s
i=1 be a chronological list for Zoc on a loop

graph G. By Proposition 2.4, each vertex x ∈ V (G) is in at most one Xi for some i.

If x ∈ Xi is blue already before Xi → Yi applies, or x ∉ Xi for any i, then x is said to

be blue-first.

Proposition 2.5. Let ζ be a ZFP-Zoc on a loop graph G and π a maximal chain.

Then the following properties hold:

(1) if π is a directed 1-cycle on the vertex x, then x is not blue-first and has a

loop in G;

(2) if π is a directed 2-cycle, then one of its two vertices is blue-first while the

other is not, and the vertex which is not blue-first has no loop in G;

(3) if π is a directed odd cycle given by rule (b), then every vertex of π is not

blue-first and has no loop in G;

(4) if x, y are in different maximal chains and x, y are not blue-first, then there

is no edge between x and y in G.

Proof. Directed 1-cycles and directed 2-cycles can only be given by rule (a). If

π is a directed 1-cycle given by {x} → {x} in the chronological list, then x is not

yet blue when this happens, and x has a loop in G by rule (a). If π is a directed

2-cycle given by {x} → {y} first and {y} → {x} later in the chronological list, then

x is not blue-first while y is, and x has no loop in G by rule (a). Rule (b) gives (3)

immediately. If x and y are as in (4) but x is adjacent to y in G, then neither of them

can turn blue, a contradiction.

Proposition 2.6. If (Xi → Yi)
s
i=1 is a chronological list for Zoc on G, then for

i < j there are no edges between Xi and Yj .

Proof. At the i-th step, Yj is not yet blue, since i < j. Suppose there is an edge

between Xi and Yj . Then Yj provides extra white neighbors to Xi other than Yi.

Thus, Xi would not have a unique white neighbor, nor be an isolated loopless odd
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cycle. Hence, Xi → Yi is impossible, a contradiction.

Proposition 2.7. Let ζ be a ZFP-Zoc on G with initial blue set B and chrono-

logical list (Xi → Yi)
s
i=1. Then B = V (G) ∖ ⋃s

i=1 Yi. Also, (Yi → Xi)
1

i=s is again a

ZFP-Zoc, starting with the initial blue set B′ = V (G) ∖ ⋃s
i=1Xi. And B′ is also a

ZFS-Zoc on G with ∣B∣ = ∣B′∣. This new zero forcing process is the reversal of ζ.

Proof. The initial blue set B of a chronological list is those vertices not being

changed to blue, so B = V (G)∖⋃s
i=1 Yi. By Proposition 2.4, Xi’s are mutually disjoint

sets, and so are the Yi’s. Also, ∣Xi∣ = ∣Yi∣ for each i by definition. Hence, ∣B∣ = ∣B′∣

by the choice of B′. To see the reversal works, we claim that Yi →Xi is a legal move

under CCR-Zoc when B′ = ⋃s
j=i+1 Xj is all blue. At this situation, ⋃i

j=1Xj is the set

of white vertices, and Proposition 2.6 states that Xi is the only white set connected

to Yi. Therefore, Yi →Xi works consecutively from s to 1.

We note that the proof of Proposition 2.7 is analogous to that in [3] for simple

graphs.

Theorem 2.8. For any loop graph G and any field F with charF ≠ 2, MF (G) ≤

Zoc(G) ≤ Z(G).

Proof. Since the color change rules for Z(G) are a subset of the color change rules

for Zoc(G), Zoc(G) ≤ Z(G).

Let n = ∣V (G)∣, k = Zoc(G), and B a ZFS-Zoc of cardinality k. Also let (Xi →
Yi)

s
i=1 be the corresponding chronological list with s steps. Let A ∈ SF (G) be a matrix

with null(A) =MF (G). Apply row/column permutations on A so that the columns

follow the order of Xi’s and the rows follow the order of Yi’s, and put all remaining

columns to the right and rows to the bottom. Note that the permutations will not

change the rank, but the new matrix will be of the form

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A[Y1,X1] ? ?

O A[Y2,X2] ?

⋮ ⋱ ⋮

O ⋯ O A[Ys,Xs]

? ? ⋯ ?

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where A[Yj ,Xi] is the submatrix of A induced by rows in Yj and columns in Xi.

This contains an upper-triangular block matrix, since Proposition 2.6 ensures

A[Yj ,Xi] = O if i < j. Every diagonal block A[Yi,Xi] is either a 1×1 nonzero matrix,

or a matrix described by a loopless odd cycle, which is nonsingular by Remark 1.3.

This means the rank of A is at least ∣⋃s
i Yi∣ = n − k. Therefore MF (G) = null(A) ≤

k = Zoc(G).
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The proof of Theorem 2.8 is based on Remark 1.3, and that is why we need

charF ≠ 2.

Corollary 2.9. For any loop configuration G of a complete graph or a cycle,

MR(G) = Zoc(G).

Proof. If there are at least 3 nonloop vertices {x, y, z} on a loop configuration

G of a complete graph, then V (G) ∖ {x, y, z} is a ZFS-Zoc on G. If G is a loopless

odd cycle, then the empty set is a ZFS-Zoc on G. Together with Proposition 1.1 and

Proposition 1.2, MR(G) = Zoc(G) for these loop graphs.

We end this section with Example 2.10, showing the gap Z(G) −Zoc(G) can be

arbitrarily large for loop graphs.

Fig. 2.2. The graph K1⋁(2K3) for Example 2.10.

Example 2.10. Let Gn = K1⋁(nK3) be the simple graph defined as the join

of a vertex and n copies of K3, the complete graph on 3 vertices. Figure 2.2 shows

G2. Let G0

n be the loop configuration of Gn without any loop and x ∈ V (G0

n) the

vertex adjacent to all other vertices. Then Zoc(G
0

n) = 1, since {x} is a ZFS-Zoc on G0

n.

However, Z(G0

n) = n + 1. To see this, observe that G0

n − x is n copies of the loopless

odd cycle C0

3. In G0

n each copy of C0

3 needs at least one blue vertex, for otherwise

there is no way to turn this copy blue; taking only these n blue vertices does not

allow forcing to begin, but these n vertices along with x becomes a (conventional)

zero forcing set on G0

n. So n + 1 blue vertices is the minimum requirement. Also,

MR(G0

n) = 1 = Zoc(G
0

n), since it does not contain a unique spanning composite cycle

(see [7]).

3. Enhanced odd cycle zero forcing number Ẑoc. The enhanced zero forcing

number demonstrates that an upper bound for loop graphs can lead to an upper bound

for simple graphs. This also applies to the odd cycle zero forcing number.

Definition 3.1. Let G be a simple graph. Running over all loop configurations

G of G, the enhanced odd cycle zero forcing number Ẑoc(G) for the simple graph G is

Ẑoc(G) =max
G

Zoc(G).

The proof of the next theorem follows that of Corollary 2.24 in [4].
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Theorem 3.2. For any simple graph G and any field F with charF ≠ 2, MF (G) ≤

Ẑoc(G) ≤ Ẑ(G).

Proof. Let A be a matrix in SF (G) such that null(A) =MF (G). Following the

zero-nonzero pattern on the diagonal entries of A, A must fall into SF (G) for some

loop configuration G of G. As a consequence,

MF (G) = null(A) ≤MF (G) ≤ Zoc(G) ≤ Ẑoc(G),

by Theorem 2.8. And again by Theorem 2.8, Zoc(G) ≤ Z(G), so Ẑoc(G) ≤ Ẑ(G) by

definitions.

1

2

3

4 5 6

7

8

9

Fig. 3.1. Labeled K3,3,3.

Example 3.3. Let G be the complete tripartite graph K3,3,3 (as a simple graph),

which is shown in Figure 3.1. For this graph, we show that Z(G) = 7 = Ẑ(G) but

Ẑoc(G) = 6 =M
R(G).

We start by showing Z(G) = 7 = Ẑ(G). First consider the simple graph G and a

zero forcing set B on G. If ∣B⋂{1,2,3}∣ < 2, then there is no way to turn all of {1,2,3}

blue. So each of the clusters {1,2,3}, {4,5,6}, and {7,8,9} contains at least 2 blue

vertices. But 6 vertices with 2 in each clusters is not enough to make V (G) all blue.

Therefore, {1,2,3,4,5,7,8} is a minimum zero forcing set on G, and Z(G) = 7. This

same argument also works for the zero forcing number of the loop graph G0, where

G0 is the loop configuration of G without any loop. So 7 = Z(G0) ≤ Ẑ(G) ≤ Z(G) = 7

and Ẑ(G) = 7 also.

Next we show Ẑoc(G) = 6 =M
R(G). Let G be a loop configuration of K3,3,3. As-

sume each vertex in {1,2,3} has a loop. Then the initial blue set B = {4,5,6,7,8,9}

can make all vertices blue by rule (a), so Zoc(G) ≤ 6 in this case. Similarly, {1,2,3}

can be replaced by the other clusters {4,5,6} and {7,8,9}. So now assume at least

one vertex in each cluster does not have a loop, say 1, 4, and 7. In this case,

{2,3,5,6,8,9} forms a ZFS-Zoc, since {1,4,7} forms a loopless odd cycle and rule

(b) applies. Throughout all cases, Ẑoc(G) ≤ 6. On the other hand, MR(G) ≥ 6,

because its adjacency matrix over R has nullity 6. Therefore, Ẑoc(G) = 6 =M
R(G).
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Finally, if we consider the adjacency matrix of G over F2, the field of two elements,

then its nullity is 7 instead of 6. So 7 ≤MF2(G) ≤ Ẑ(G) = 7. The discrepancy between

Ẑ(G) and Ẑoc(G) is because Ẑ(G) ≥ MF (G) works for an arbitrary field F , but

Ẑoc(G) ≥M
F (G) works only when charF ≠ 2.

4. Graph blowups. The simple graph K3,3,3 in Example 3.3 demonstrates a

relation between the zero forcing number for simple graphs and that for loop graphs.

Let C0

3
be the loopless odd cycle on 3 vertices. The simple graph K3,3,3 can be viewed

as the simple graph obtained from C0

3
by replacing each vertex with a cluster of t = 3

isolated vertices and replacing each edge with a complete bipartite graph joining the

corresponding clusters. Example 3.3 satisfies

Z(K3,3,3) = Ẑ(K3,3,3) = (t − 1) × ∣V (C
0

3
)∣ +Z(C0

3
)

and

Ẑoc(K3,3,3) = (t − 1) × ∣V (C
0

3)∣ +Zoc(C
0

3)

with t = 3.

The transformation of C0

3 to K3,3,3 is called a blowup. In this section, we discuss

how graph blowups can bridge loop graphs and simple graphs.





0 1 0
1 4 7
0 7 0





















0 0 1 1 1 0
0 0 1 1 1 0
1 1 4 4 4 7
1 1 4 4 4 7
1 1 4 4 4 7
0 0 7 7 7 0

















loop graph G simple graph H

A ∈ SF (G) A′ ∈ SF (H)

(2, 3, 1)-blowup

(2, 3, 1)-blowup

Fig. 4.1. An illustration of the blowup of graphs and matrices.

Definition 4.1. Let G be a loop graph with V (G) = {vi}
n
i=1, and (t1, t2, . . . , tn)

a sequence of n positive integers. The (t1, t2, . . . , tn)-blowup of G is the simple graph

obtained from G by replacing vi with a cluster Vi of ti vertices and for each edge vivj
(i = j is possible), joining every vertex of Vi with every vertex of Vj .

Definition 4.2. Let A = [ai,j] be a symmetric matrix indexed by {vi}
n
i=1.

and (t1, t2, . . . , tn) a sequence of n positive integers. Denote n′ = ∑n
i=1 ti. The

(t1, t2, . . . , tn)-blowup of A is the n′ × n′ matrix obtained from A by replacing the

i, j-entry ai,j of A with ai,jJti,tj , where Jti,tj is the ti × tj all one matrix.
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These definitions are illustrated in Figure 4.1.

Lemma 4.3. Let G be a loop graph with V (G) = {vi}
n
i=1, and (t1, t2, . . . , tn)

a sequence of n positive integers. Let H be the (t1, t2, . . . , tn)-blowup of G. Then

mrF (H) ≤mrF (G) and MF (H) ≥ ∑n
i=1(ti − 1) +M

F (G) for any field F .

Proof. Let A be a matrix in SF (G) and A′ the (t1, t2, . . . , tn)-blowup of A.

Then A′ is a matrix in SF (H). Also, since deleting repeated rows and columns

does not change the rank, rank(A) = rank(A′). Therefore, mrF (H) ≤ mrF (G) and

MF (H) ≥ ∑n
i=1(ti − 1) +M

F (G) for any field F .

Lemma 4.4. Let G be a loop graph on n vertices and (t1, t2, . . . , tn) a sequence

of n positive integers with ti ≥ 2 for all i. Let H be the (t1, t2, . . . , tn)-blowup of G.

Then

Z(H) = Z(H′) =
n

∑
i=1

(ti − 1) +Z(G),

where H′ is the loop configuration of H such that every vertex in a cluster correspond-

ing to a clique has a loop while the others do not have a loop.

The second equality also holds if Z is replaced by Zoc. That is,

Zoc(H
′) =

n

∑
i=1

(ti − 1) +Zoc(G).

Proof. We consider Z(H) first.

Let V (G) = {vi}
n
i=1 and Vi the cluster of ti vertices. On the simple graph H , if

there are two white vertices in a cluster Vi, then there is no way to make Vi all blue.

So in order to be a zero forcing set on H , each Vi has at most one white vertex. This

ensures Z(H) ≥ ∑n
i=1(ti − 1). Say the cluster Vi is blue if all its vertices is blue, and

Vi is one-white if one of its vertices is white. Then Z(H) will be ∑n
i=1(ti − 1) plus the

minimum number of blue clusters.

Assume each Vi is either blue or one-white. Denote Vi → Vj if x → y happens on

H for some x ∈ Vi and y ∈ Vj . Since ti ≥ 2, each one-white cluster contains at least

one blue vertex. Suppose vi has no loop in G, then Vi → Vj on H does not require Vi

to be blue; similarly, vi → vj on G does not require vi to be blue. Suppose vi has a

loop in G, then Vi → Vi can happen when all other neighbors are blue already; this

is the same case for vi → vi. Therefore, when each cluster is either blue or one-white,

Vi → Vj on H if and only if vi → vj on G. So the minimum number of blue clusters is

Z(G) and

Z(H) =
n

∑
i=1

(ti − 1) +Z(G).
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The same argument works when H is replaced by H′. It also works when rule

(b) comes in. Suppose that {vi}i∈α forms a loopless odd cycle on G for some index

set α and rule (b) can be applied on it. Then at this step each cluster in {Vi}i∈α is

one-white and the only white vertices in each of them form a loopless odd cycle on

H′. So Zoc(H
′) = ∑n

i=1(ti − 1) +Zoc(G) holds.

Lemma 4.5. Let G be a loop graph on n vertices and (t1, t2, . . . , tn) a sequence

of n positive integers with ti ≥ 3 for all i. Let H be the (t1, t2, . . . , tn)-blowup of G.

Then

Ẑoc(H) =
n

∑
i=1

(ti − 1) +Zoc(G).

Proof. Let h = ∑n
i=1(ti−1)+Zoc(G). By Lemma 4.4, at least one loop configuration

H′ of H has Zoc(H
′) = h, so it is enough to show that any loop configuration H of H

has Zoc(H) ≤ h.

Let H be a loop configuration of H and B be a minimum ZFS-Zoc of G. We

adopt the notation from Lemma 4.4. We mark Vi blue if vi ∈ B and one-white if

vi ∉ B; whenever a cluster Vi is marked one-white, we pick the only white vertex to

be a nonloop vertex, unless every vertex in Vi has a loop. Call this set B′. Starting

with B′, we can do the corresponding forces Vi → Vj whenever vi → vj happens in

G. If rule (b) never applies in G, then B′ is a ZFS-Zoc of H with ∣B′∣ = h and we

are done. So assume rule (b) first happens at some step, and it applies to a loopless

odd cycle C on G. Denote V (C) = {vi}i∈α for some index set α. If every cluster Vi in

{Vi}i∈α contains a nonloop vertex on the loop configuration H, then by the choice of

B′ there is a loopless odd cycle on H and the process continues. Now assume at least

one cluster Va has all its vertices with loops. Say vb and vc are the two neighbors of

va in C. We modify B′ by marking Vb and Vc blue, and setting all vertices in Va as

white. This modification does not increase the number of blue vertices, since marking

Vb and Vc blue add two blue vertices, but setting all Va white loses at least two blue

vertices by the fact ta ≥ 3. Note that Va is an independent set since C is loopless, and

all its vertices has loops. By starting with the new B′, the same process can go on

until rule (b) applies to C. At this step, va has only two white neighbors vb and vc;

this means at the stage where rule (b) was applied in G every vertex in Va can force

itself blue, since Vb and Vc are blue initially. Now by applying rule (a) only, every

cluster in {Vi}i∈α turns blue eventually, and the process continues. Since all loopless

odd cycles given by rule (b) are mutually isolated by Proposition 2.5, we can do the

modification separately, and find a ZFS-Zoc of H with cardinality less than or equal

to h. Therefore, Zoc(H) ≤ h and Ẑoc(H) = h.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 42-59, February 2016

http:/repository.uwyo.edu/ela



ELA

56 J. C.-H. Lin

Remark 4.6. In Lemma 4.5, the assumption ti ≥ 3 for all i can be relaxed to

ti ≥ 3 whenever vi has no loop in G and ti ≥ 2 otherwise.

Theorem 4.7. Let G be a loop graph on n vertices and (t1, t2, . . . , tn) a sequence

of n positive integers. Let H be the (t1, t2, . . . , tn)-blowup of G. If MF (G) = Z(G)

for some field F and ti ≥ 2 for all i, then

MF (H) = Z(H) = Ẑ(H) =
n

∑
i=1

(ti − 1) +M
F (G).

If MF (G) = Zoc(G) for some field F with charF ≠ 2 and ti ≥ 3 for all i, then

MF (H) = Ẑoc(H) =
n

∑
i=1

(ti − 1) +M
F (G).

Proof. This immediately comes from Lemma 4.3, Lemma 4.4, Lemma 4.5, and

Theorem 2.8.

Corollary 4.8. Let G be a tree, a cycle, or a complete graph, and G its loop

configuration with V (G) = {vi}
n
i=1. Let H be the (t1, t2, . . . , tn)-blowup of G with ti ≥ 3

for all i. Then MR(H) = Ẑoc(H). Moreover, MR(H) = Z(H) if G is a tree.

Proof. If G is a tree, then MR(G) = Z(G) [5]; if G is a cycle or a complete graph,

then MR(G) = Zoc(G) by Corollary 2.9. By applying Theorem 4.7, the equality

holds.

Example 3.3 together with Lemma 4.4 and Theorem 4.7 also provide a family of

simple graphs with large Ẑ(G) − Ẑoc(G).

Corollary 4.9. Let Gn =K1⋁(nK3) be the simple graph in Example 2.10 and

G0

n the loop configuration of Gn without any loop. Let Hn be the (3,3, . . . ,3)-blowup

of Gn. Then

Ẑoc(Hn) = 2 ⋅ ∣V (G0

n)∣ + 1 and Ẑ(Hn) = 2 ⋅ ∣V (G0

n)∣ + n + 1.

5. Graph complement conjecture for Ẑ(G). The graph complement conjec-

ture for the maximum nullity (GCC-M) for simple graphs [2] states that

MF (G) +MF (G) ≥ n − 2,
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where G is the complement of G. Corollary 5.1 below shows GCC-M is true for most

graph blowups.

Corollary 5.1. Let G be a loop graph and H the (t1, t2, . . . , tn)-blowup of G.

If ti ≥ 2 for all i, then GCC-M is true for H over any field F . That is,

MF (H) +MF (H) ≥ ∣V (H)∣ − 2.

Proof. Notice that H is the (t1, t2, . . . , tn)-blowup of G, where G is the comple-

ment of G as loop graphs; that is, there is an edge (or a loop) between vi and vj in

G if and only if there is no edge (or no loop) between vi and vj in G.

By Lemma 4.3, MF (H) ≥ 1

2
∣V (H)∣ since ti ≥ 2 for all i. Similarly, MF (H) ≥

1

2
∣V (H)∣. So

MF (H) +MF (H) ≥ ∣V (H)∣ > ∣V (H)∣ − 2,

and GCC-M holds for H .

If β is a graph parameter for simple graphs, the graph complement conjecture for

β (GCC-β) is stated as

β(G) + β(G) ≥ n − 2.

In [9], GCC-tw, GCC-Z+, and GCC-Z are proven to be true, where tw is the tree-

width, Z+ is the positive semidefinite zero forcing number, and Z is the zero forcing

number for simple graphs. The relation between these parameters can be found in

Fig. 1.1 of [4].

We claim that GCC-Z+ implies GCC-Ẑoc, so GCC-Ẑoc is also true. We need

an intermediate parameter. The loop zero forcing number Zℓ(G) for simple graphs

G is defined as Z(G), where G is the loop configuration of G such that isolated

vertices have no loop while the others have a loop [4]. Since rule (b) can never

apply on G, Z(G) = Zoc(G) and Zℓ(G) = Zoc(G) ≤ Ẑoc(G). Also, it is known that

Z+(G) ≤ Zℓ(G) [4]. Therefore, Z+(G) ≤ Ẑoc(G) for every simple graph G, which

means GCC-Z+ implies GCC-Ẑoc.

6. Examples with Ẑoc(G) −MR(G) large. A 5-sun, H5, is a simple graph

obtained from C5 by appending a leaf to each vertex. It is known that MR(G) = 2 =

Ẑ(G) but Z(G) = 3 [1, 4]. Thus, Ẑoc(G) = 2, by Theorem 2.8. To get a discrepancy

between Ẑoc(G) and MR(G), we insert one more leaf to each of the leaves of H5 and

call it a long 5-sun, denoted as LH5. A long 5-sun sequence of length n is the simple

graph shown in Figure 6.1, which concatenates n copies of LH5. Proposition 6.1 shows
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· · ·

v1,1

v1,2

v1,3 v1,4

v2,2

v2,1

v2,3 v2,4

v3,2 vn,2

vn,1

vn,3 vn,4

vn,5

Fig. 6.1. A sequence of long 5-sun.

that for this family of graphs and hence in general for simple graphs, Ẑoc(G)−MR(G)

can be arbitrarily large.

Proposition 6.1. Let Ln be the long 5-sun sequence of length n described above.

Then MR(Ln) = n + 1 and Ẑoc(Ln) = Ẑ(Ln) = Z(Ln) = 2n + 1.

Proof. The cut-vertex reduction formula [6] states that

MR(G1 ⊕v G2) =max{MR(G1) +MR(G2) − 1,MR(G1 − v) +MR(G2 − v) − 1},

whereG1⊕vG2 is obtained fromG1 andG2 by identifying the vertex v on each of them.

Suppose x is a leaf on a graph G and y is the only neighbor of x. Then by applying

the formula on y, one immediate observation is MR(G) ≥ MR(G − x); additionally,
if y is of degree 2, then MR(G) = MR(G − x). Therefore, MR(L1) = MR(H5) = 2.

Now write Ln as Ln−1 ⊕v L1, where v is the vertex vn−1,5 in Ln−1 and a leaf in

L1. Since v is a leaf on Ln−1 and on L1, the observation reduces the formula to be

MR(Ln) =M
R(Ln−1) +MR(L1) − 1 =MR(Ln−1) + 1. Inductively, MR(Ln) = n + 1.

For zero forcing numbers, the set {v1,1, v1,2, v1,3}⋃{vi,1, vi,3}ni=2 labeled in Figure

6.1 forms a zero forcing set on the simple graph Ln. So Z(Ln) ≤ 2n + 1.

On the other hand, we show Zoc(L
ℓ
n) = 2n+1, where L

ℓ
n is the loop configuration

of Ln so that each vertex has a loop. First we make some observations. By Proposition

2.5, the maximal chains on Lℓ
n can only be directed 1-cycles or directed paths, and

the number of directed paths is the cardinality of the ZFS-Zoc. Even more, there are

no edges between any two distinct directed 1-cycles. Let x ∈ V (Lℓ
n) be a pendent

vertex, which means x has only one neighbor y other than itself. Let πx and πy be

the maximal chain containing x and y respectively, where πx = πy is possible. By

the structure of Lℓ
n, if πx is a directed path, then x is an endpoint of πx; if πx is

a directed 1-cycle, then πy must be a directed path and y is an endpoint of πy. In

either case, {x, y} must contain an endpoint for some maximal chain. Now we claim

Zoc(L
ℓ
n) ≥ 2n+1 by induction on n. For n = 1, there are 5 pendent vertices in Lℓ

1. Each
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directed path has only 2 endpoints, so ⌈5
2
⌉ = 3 directed paths are needed. Assume

Zoc(L
ℓ
n−1) ≥ 2n − 1. Note that Lℓ

n is obtained from Lℓ
n−1 by attaching the last copy

of Lℓ
1, where V (Lℓ

n−1)⋂V (Lℓ
1) = {vn,2}. There are still 4 pendent vertices on V (Lℓ

1).

Only one of the 4 vertices can combine with a directed path from Lℓ
n−1. So at least

2n − 1 + ⌈4−1
2
⌉ = 2n + 1 directed paths are needed for Lℓ

n. This means

2n + 1 ≤ Zoc(L
ℓ
n) ≤ Ẑoc(Ln) ≤ Ẑ(Ln) ≤ Z(Ln) ≤ 2n + 1.

Hence, every inequality is an equality.
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