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COMPARISON BETWEEN THE LAPLACIAN–ENERGY–LIKE

INVARIANT AND THE KIRCHHOFF INDEX∗

S. PIRZADA† , HILAL A. GANIE† , AND IVAN GUTMAN‡

Abstract. For a simple connected graph G of order n, having Laplacian eigenvalues µ1, µ2, . . . ,

µn−1, µn = 0, the Laplacian–energy–like invariant (LEL) and the Kirchhoff index (Kf) are defined

as LEL(G) =
∑n−1

i=1

√

µi and Kf(G) = n
∑n−1

i=1

1

µi
, respectively. In this paper, LEL and Kf are

compared, and sufficient conditions for the inequality Kf(G) < LEL(G) are established.
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1. Introduction. Let G be finite, undirected and simple graph with n vertices

and m edges having vertex set V (G) = {v1, v2, . . . , vn}. The adjacency matrix A =

(aij) of G is the (0, 1)-square matrix of order n whose (i, j)-entry is equal to one if vi is

adjacent to vj , and is equal to zero otherwise. Let D(G) = diag(d1, d2, . . . , dn) be the

diagonal matrix, where di is the degree of the vertex vi of G. Then L(G) = D(G) −
A(G) is the Laplacian matrix, and its spectrum SpL(G) =

{

µ1, µ2, . . . , µn−1, µn

}

is

the Laplacian spectrum of the graph G. For the sake of simplicity, we use µ
tj
i to

denote that the eigenvalue µi is repeated tj times in the spectrum. In what follows,

we assume that µ1 ≥ µ2 ≥ · · · ≥ µn. For other undefined notations and terminology

from spectral graph theory, the readers are referred to [6, 32]

It is well known that the Laplacian eigenvalues are non-negative real numbers and

that eigenvalue zero has multiplicity equal to the number of connected components

of the underlying graph G, for more details on Laplacian eigenvalues, see [16, 18, 19,

29, 30, 33, 34, 36, 37]. Thus, µn = 0 for all graphs, and µn−1 > 0 if and only if G

is connected. The eigenvalue µn−1 is called the algebraic connectivity of the graph G

[10, 12].

The concept of resistance distance was introduced by Klein and Randić [23]. In a

graph G, the resistance distance between vertices vi and vj , denoted by rij , is defined
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to be the effective resistance between nodes vi and vj as computed by Kirchhoff’s

laws, when all the edges of G are considered to be unit resistors.

The traditional distance between vertices vi and vj , denoted by dij , is the length

of a shortest path connecting them. The Wiener index W (G) is defined as W (G) =
∑

i<j

dij . As an analogue to the Wiener index, the sum Kf(G) =
∑

i<j

rij was considered

[23], later named the Kirchhoff index [5]. In [23], it was shown that rij ≤ dij and

Kf(G) ≤ W (G) with equality if and only if G is a tree.

The Kirchhoff index has a nice purely mathematical interpretation. Mohar and

one of the present authors [21] demonstrated that the Kirchhoff index of a connected

graph satisfies the relation

Kf = Kf(G) = n
n−1
∑

i=1

1

µi
.

Noteworthy applications in chemistry of the Kirchhoff index as a molecular struc-

ture descriptor have been found [5, 7, 11, 31, 43]. For details on the extensive math-

ematical research of the Kirchhoff index, see the recent papers [2, 3, 4, 14, 15, 24, 35,

38, 40, 42] and the references cited therein.

Another Laplacian–spectrum–based graph invariant was put forward by Liu and

Liu [27], defined as

LEL = LEL(G) =
n−1
∑

i=1

√
µi

and named this as Laplacian–energy–like invariant. The motivation for introduction

of the LEL was in its analogy to the earlier studied graph energy [25] and Laplacian

energy [22, 25]; for more details see the survey [26] and the references cited therein.

Recently, several mathematical investigations of the LEL were communicated [8, 20,

28, 35, 38, 39, 41, 44, 45].

Motivated by the papers [3, 9] in which two sufficient conditions were established

for the inequality Kf(G) > LEL(G), and the relations between Kf(G) and LEL(G)

were completely solved for trees, unicyclic graphs, bicyclic graphs, tricyclic graphs,

and tetracyclic graphs, we now obtain sufficient conditions under which LEL(G) >

Kf(G) holds. Complete comparisons are only given for these graphs if they have a

sufficient number of vertices.
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2. Main results. In order to compare the Kirchhoff index and the Laplacian-

energy-like invariant of a graph G, we need the following lemmas [12, 17, 18].

Lemma 2.1. Let G be a connected graph of order n and let ∆ be its maximum

degree. Then ∆ + 1 ≤ µ1 ≤ n. Equality holds on the left if ∆ = n − 1 and on the

right if and only if G is the join of two graphs.

Lemma 2.2. Let G 6∼= Kn be a connected graph of order n and let δ be its smallest

vertex degree. Then µn−1 ≤ δ.

Lemma 2.3. If 0 = µn < µn−1 ≤ µn−2 ≤ · · · ≤ µ1 are the Laplacian eigenvalues

of the graph G, then the Laplacian eigenvalues of its complement G are 0 = µn <

n− µ1 ≤ n− µ2 ≤ · · · ≤ n− µn−1.

Our first result is as follows.

Theorem 2.4. Let G be a connected graph with algebraic connectivity µn−1 ≥ k

and let m be the number of edges and ∆ the maximum degree of G. If

2m >
k(
√
n+

√
k)

k +
√
n+

√
k

(

(n+ k)(n− 1)

k
− (n− 1)

√

k(∆ + 1)
√
n+

√
k

)

,(2.1)

then Kf(G) < LEL(G).

Proof. Let 0 = µn < µn−1 ≤ · · · ≤ µ1 be the Laplacian eigenvalues of the

connected graph G, and let µn−1 ≥ k. Then

LEL(G) =

n−1
∑

i=1

√
µi =

n−1
∑

i=1

(√
µi −

√
µn−1

)

+ (n− 1)
√
µn−1

=

n−1
∑

i=1

(

µi − µn−1√
µi +

√
µn−1

)

+ (n− 1)
√
µn−1

≥
n−1
∑

i=1

(

µi − µn−1√
µ1 +

√
µn−1

)

+ (n− 1)
√
µn−1

=
2m+ (n− 1)

√
µ1µn−1√

µ1 +
√
µn−1

≥ 2m+ (n− 1)
√

(∆ + 1)µn−1√
n+

√
µn−1

.

For k ≤ x ≤ δ, consider the function

f(x) =
2m+ (n− 1)

√

(∆ + 1)x√
n+

√
x
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for which

f ′(x) =
(n− 1)

√

n(∆ + 1)− 2m

2
√
x(
√
n+

√
x)2

.

Since ∆ + 1 ≥ 2m
n + 1 ≥ 2m

n−1 and n− 1 ≥ 2m
n , it follows that

(∆ + 1)(n− 1) ≥ 2m

n− 1

2m

n
=

1

n

(

4m2

n− 1

)

;

that is, (n− 1)
√

n(∆ + 1)− 2m ≥ 0, implying f ′(x) ≥ 0. Thus, f(x) is an increasing

function for k ≤ x ≤ δ. Therefore, f(x) ≥ f(k), giving

2m+ (n− 1)
√

(∆ + 1)x√
n+

√
x

≥ 2m+ (n− 1)
√

(∆ + 1)k
√
n+

√
k

;

that is,

LEL(G) ≥ 2m+ (n− 1)
√

k(∆ + 1)
√
n+

√
k

.(2.2)

We also have

Kf(G) = n

n−1
∑

i=1

1

µi
= n

n−1
∑

i=1

(

1

µi
− 1

µ1

)

+
n(n− 1)

µ1

= n

n−1
∑

i=1

(

µ1 − µi

µ1 µi

)

+
n(n− 1)

µ1

≤ n

n−1
∑

i=1

(

µ1 − µi

µ1 µn−1

)

+
n(n− 1)

µ1

=
n(n− 1)µ1 − 2mn

µ1µn−1
+

n(n− 1)

µ1

≤ kn(n− 1)− 2mn

kµ1
+

n(n− 1)

k
.

For ∆+ 1 ≤ x ≤ n, consider the function g(x) = kn(n−1)−2mn
kx , for which g′(x) =

2mn−kn(n−1)
kx2 > 0. As G is connected, so 2m > k(n − 1). Therefore, g(x) is an

increasing function of x, implying g(x) ≤ g(n), that is,

kn(n− 1)− 2mn

kx
≤ k(n− 1)− 2m

k
;

resulting in

Kf(G) ≤ (n+ k)(n− 1)− 2m

k
.(2.3)
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Suppose inequality (2.1) holds. By direct calculation, it can be transformed into

2m+ (n− 1)
√

k(∆ + 1)
√
n+

√
k

>
(n+ k)(n− 1)− 2m

k
.

Keeping in mind (2.2) and (2.3), it follows that LEL(G) > Kf(G).

In particular, if µn−1 ≥ 1, we have the result stated in Corollary 2.5. In [9], the

question was raised whether it is “possible to find a constant c (which may depend on

the number of vertices n and maximum vertex degree ∆), such that for any connected

graphG with m ≥ c edges, LEL(G) > Kf(G) holds”. Corollary 2.5 provides a partial

answer to this question.

Corollary 2.5. Let G be a connected graph G with algebraic connectivity

µn−1 ≥ 1. Let m be the number of edges and ∆ the maximum degree of G. If

2m >

√
n+ 1√
n+ 2

(

n2 − 1− (n− 1)
√
∆+ 1√

n+ 1

)

,

then Kf(G) < LEL(G).

Corollary 2.6. Let T be a tree and T its complement. If the order of T is

n ≥ 7 and ∆(T ) ≤ n− 2, then LEL(T ) > Kf(T ).

Proof. Since any T of order n has minimum degree one and n−1 edges, it follows

that ∆(T ) = n − 2 and 2m(T ) = (n − 1)(n − 2). Since ∆(T ) ≤ n − 2, we have

µ1(T ) ≤ n − 2 (as T 6= Kn−1,1) and so by Lemma 2.3, µn−1(T ) = n − µ1(T ) ≥ 2.

Therefore,

2(
√
n+

√
2)√

n+ 2 +
√
2

(

(n+ 2)(n− 1)

2
− (n− 1)

√

2(n− 1)
√
n+

√
2

)

= (n− 1)

(

(n+ 2)(
√
n+

√
2)− 2

√

2(n− 1)
√
n+ 2 +

√
2

)

< (n− 1)(n− 2) = 2m(T )

if

n− 2 >
(n+ 2)(

√
n+

√
2)− 2

√

2(n− 1)
√
n+ 2 +

√
2

,

that is, n+
√

2(n− 1) > 2
√
n+ 4.8284, which is true for n ≥ 7.

Therefore, by Theorem 2.4, LEL(G) > Kf(G), for n ≥ 7.

Corollary 2.7. Let U be a unicyclic graph and U its complement. If the order

of U is n ≥ 14 and ∆(U) ≤ n− 2, then LEL(U) > Kf(U).
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Proof. Since in a unicyclic graph it is either δ(U) = 1 or δ(U) = 2, and

∆(U) + 1 =

{

n− 1 if δ(U) = 1

n− 2 if δ(U) = 2.

In addition, 2m(U) = n(n− 3) and µn−1(U) = n− µ1(U) ≥ 1, as µ1(U) ≤ n− 1.

If ∆ + 1 = n− 1, then

√
n+ 1√
n+ 2

(

n2 − 1− (n− 1)
√
∆+ 1√

n+ 1

)

= (n− 1)

(

(n+ 1)(
√
n+ 1)−

√
n− 1√

n+ 2

)

< n(n− 3) = 2m(U),

provided n− 3 >
(

(n+1)(
√
n+1)−

√
n−1√

n+2

)

, that is, n+
√
n− 1 > 4

√
n+ 7, which is true

for n ≥ 21.

For n = 14, 15, 16, 17, 18, 19, 20, it can be checked by direct calculation that

√
n+ 1√
n+ 2

(

n2 − 1− (n− 1)
√
∆+ 1√

n+ 1

)

< n(n− 3).

Similarly, if ∆ + 1 = n− 2, then for n ≥ 14,

√
n+ 1√
n+ 2

(

n2 − 1− (n− 1)
√
n− 2√

n+ 1

)

< n(n− 3).

Therefore, by Corollary 2.5 it follows that LEL(U) > Kf(U).

Corollary 2.8. Let B be a bicyclic graph and B be its complement. If the order

of B is n ≥ 15 and ∆(B) ≤ n− 2, then LEL(B) > Kf(B).

Proof. Since in a bicyclic graph, either δ(B) = 1 or δ(B) = 2, it follows that

∆(B) + 1 =

{

n− 1 if δ(B) = 1

n− 2 if δ(B) = 2.

In addition, 2m(B) = n(n− 3)− 2 = n2 − 3n− 2 and µn−1(B) = n− µ1(B) ≥ 1, as

µ1(B) ≤ n− 1. Consider the function

f(n) = n2 − 3n− 2− (n2 − 1)(
√
n+ 1)− (n− 1)

√
n− 2√

n+ 2

for which

f ′(n) = 2n− 3− 1

(
√
n+ 2)2

(

2n2 +
13

2
n3/2 − 1

2
√
n
− 3n− 5√

n− 2
− n2 − n− 1
√

n(n− 2)
− 1

)

.
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It can be seen that f ′(n) > 0, for all n ≥ 4, that is f(n) is an increasing function on

[4,∞). So we have f(n) > f(15) = 0.73565404 > 0, that is, f(n) > 0 for n ≥ 15,

which implies that

n2 − 3n− 2 >

(

(n2 − 1)(
√
n+ 1)− (n− 1)

√
n− 2√

n+ 2

)

.

The result follows from Corollary 2.5.

Corollary 2.9. Let TC be a tricyclic graph and TC be its complement. If the

order of TC is n ≥ 16 and ∆(TC) ≤ n− 2, then LEL(TC) > Kf(TC).

Proof. Since in a tricyclic graph, either δ(TC) = 1 or δ(TC) = 2 or δ(TC) = 3,

it follows that

∆(TC) + 1 =







n− 1 if δ(TC) = 1

n− 2 if δ(TC) = 2

n− 3 if δ(TC) = 3.

In addition, 2m(TC) = n(n− 3)− 4 = n2 − 3n− 4 and µn−1(TC) = n−µ1(TC) ≥ 1,

as µ1(TC) ≤ n− 1. Proceeding in an analogous manner as in the proof of Corollary

2.8, it can be shown that for n ≥ 16,

n2 − 3n− 4 >
(n2 − 1)(

√
n+ 1)− (n− 1)

√
n− 3√

n+ 2
.

The result follows from Corollary 2.5.

In a fully analogous manner, we also obtain the following.

Corollary 2.10. Let QC be a tetracyclic graph and QC be its complement. If

the order of QC is n ≥ 17 and ∆(QC) ≤ n− 2, then LEL(QC) > Kf(QC).

The line graph of the graph G is denoted by £(G). We need the following result

by Anderson and Morley [1]:

Lemma 2.11. Let 0 = µn < µn−1 ≤ µn−2 ≤ · · · ≤ µ1 be the Laplacian eigenvalues

of the graph G and let t1 ≥ t2 ≥ · · · ≥ tn be the degree sequence of its line graph £(G).

Then µ1 ≤ t1+2, with equality if and only if G is a regular or a semiregular bipartite

graph.

Theorem 2.12. If G is a graph for which µ1 < n − n2/3, then LEL(G) >

Kf(G).

Proof. By applying Lemma 2.3, we have

LEL(G)−Kf(G) =

n−1
∑

i=1

√
n− µi −

n−1
∑

i=1

n

n− µi
=

n−1
∑

i=1

(n− µi)
3/2 − n

n− µi
.
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For µn−1 ≤ x ≤ µ1, consider the function f(x) = [(n − x)3/2 − n]/(n − x), for

which

f ′(x) = − [ 12 (n− x)3/2 + n]

(n− x)2
< 0,

for all µn−1 ≤ x ≤ µ1. Thus, f(x) is decreasing for µn−1 ≤ x ≤ µ1, implying

f(x) ≥ f(µ1) =
(n− µ1)

3/2 − n

n− µ1
,

that is,

LEL(G)−Kf(G) ≥ (n− 1)((n− µ1)
3/2 − n)

n− µ1
> 0,

if (n− µ1)
3/2 − n > 0, i.e., µ1 < n− n2/3.

Remark 2.13. By Lemma 2.11, µ1 ≤ t1 + 2, where t1 is the maximum vertex

degree of the line graph £(G). From Theorem 2.12, it follows that f(x) ≥ f(t1+2) =
(n−t1−2)3/2−n

n−t1−2 , which gives LEL(G) > Kf(G) if t1 < n− n2/3 − 2.

The kite Kin,ω is the graph of order n, obtained by attaching a pendent path on

n− ω vertices to a vertex of the complete graph of order ω. Let Γn,k be the class of

graphs of order n obtained by attaching a pendent path on n− k vertices to a vertex

of a connected graph of order k. In particular, Kin,k ∈ Γn,k. The following result can

be found in [18, 19].

Lemma 2.14. Let G′ = G+ e be the graph obtained from G by inserting into it a

new edge e. Then the Laplacian eigenvalues of G interlace the Laplacian eigenvalues

of G′, that is,

µ1(G
′) ≥ µ1(G) ≤ µ2(G

′) ≥ µ2(G) ≥ · · · ≥ µn(G
′) ≥ µn(G) = 0.

Corollary 2.15. Let G ∈ Γn,k with k ≥ 4 and n − k ≥ n2/3 + 2. Then

LEL(G) > Kf(G).

Proof. Since G ∈ Γn,k, G is an edge-deleted subgraph of Kin,k. By Lemma

2.14, for j = 1, 2, . . . , n, we have µj(G) ≤ µj(Kin,k). There exists an edge e in

E(Kin,k) such that Kin,k − e = Kk ∪ Pn−k. Since k ≥ 4, by Lemma 2.14, and in

view of
n
∑

i=1

(µi(G+ e)− µi(G)) = 2, it follows that k + 1 ≤ µ1(Kin,k) ≤ k + 2. So
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µ1(G) ≤ µ1(Kin,k) ≤ k + 2. If µ1(G) < n − n2/3, then k + 2 < n − n2/3, that is

n− k > n2/3 + 2.

Corollary 2.16. Let G 6∼= Kn be an r-regular graph with n vertices. If r < (n−
n2/3)/2, then LEL(G) > Kf(G). If r > (n+ n2/3 − 2)/2, then LEL(G) > Kf(G).

Proof. Since G is r-regular, its line graph £(G) is t1 = (2r − 2)-regular. Assume

that r < (n−n2/3)/2. Then t1 = 2r− 2 < n−n2/3 − 2. By Remark 2.13, LEL(G) >

Kf(G).

Since G is (n − 1 − r)-regular, its line graph £(G) is t1 = (2n− 2r − 4)-regular.

Assume that r > (n + n2/3 − 2)/2. Then t1 = (2n − 2r − 4) < n − n2/3 − 2. By

Remark 2.13, LEL(G) > Kf(G).

The following result has been proven in [3].

Lemma 2.17. Let G + e be the graph obtained by adding a new edge to the

connected graph G. If Kf(G) < LEL(G), then Kf(G+ e) < LEL(G+ e).

Let KKj
n be the graph obtained from two copies of complete graphs Kn, by

joining a vertex of one copy with j, 1 ≤ j ≤ n, vertices of the other copy. The

Laplacian spectrum of KKj
n was obtained in [13] and is given by

SpL(KKj
n) =

{

n2n−j−2, (n+ 1)j−1,
(n+ j + 1)±

√

(n+ j + 1)2 − 8j

2
, 0

}

.

Therefore,

LEL(KKj
n) = (2n− j − 2)

√
n+ (j − 1)

√
n+ 1

+

√

(n+ j + 1) +
√

(n+ j + 1)2 − 8j

2

+

√

(n+ j + 1)−
√

(n+ j + 1)2 − 8j

2
(2.4)

and

Kf(KKj
n) =

2n(2n− j − 2)

n
+

2n(j − 1)

n+ 1
+

2n

(n+j+1)+
√

(n+j+1)2−8j

2

+
2n

(n+j+1)+
√

(n+j+1)2−8j

2

= 4n− 2j − 4 +
2n(j − 1)

n+ 1
+

n(n+ j + 1)

j
.(2.5)
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For j ≥ n
4 and n ≥ 22, it is easy to see that

(2n− j − 2)
√
n+ (j − 1)

√
n+ 1 > 4n− 2j − 3 +

n(n+ j + 1)

j
.

Therefore, from (2.4) and (2.5), we have LEL(KKj
n) > Kf(KKj

n). Thus, using

Lemma 2.17, we arrive at the following result.

Theorem 2.18. For j ≥ n/4, let KKj
n be a spanning subgraph of the graph G.

Then for n ≥ 22 we have LEL(G) > Kf(G).

From Theorem 2.18, we observe the following. If G is a graph of order n, (n ≡
0 (mod 8)) having two cliques of order n/2 each, such that there are at least n/8 edges

between a vertex in one of the cliques and n/8 vertices of the other clique, then for

n ≥ 44, LEL(G) > Kf(G).

It is clear from above that µ1(KKj
n) = n+ 1 < 2n− (2n)2/3, for n ≥ 7. For the

complement of the graph KKj
n, from Theorem 2.12, it follows that LEL

(

KKj
n

)

>

Kf
(

KKj
n

)

holds for all n ≥ 7 and 1 ≤ j ≤ n−1. Thus, using Lemma 2.17, we arrive

at the following result.

Theorem 2.19. If KKj
n is a spanning subgraph of a graph G with 2n vertices,

then LEL(G) > Kf(G) for n ≥ 7.

The join (complete product) G1 ∨G2 of the graphs G1 and G2 is the graph with

vertex set V (G1) ∪ V (G2) and edge set consisting of all the edges of G1 and G2

together with the edges joining each vertex of G1 with every vertex of G2. The

Laplacian spectrum of the join is given by the the following result [18, 19].

Lemma 2.20. If G1(n1,m1) and G2(n2,m2) are two graphs having Laplacian

spectra SpL(G1) =
{

µ1, µ2, . . . , µn1−1, µn1
= 0

}

and SpL(G2) =
{

σ1, σ2, . . . , σn2−1,

σn2
= 0
}

, then SpL(G1∨G2) =
{

n1+n2, n1+σ1, n1+σ2, . . . , n1+σn2−1, n2+µ1, n2+

µ2, . . . , n2 + µn1−1, 0
}

.

Theorem 2.21. For p ≥ 4, let Kp ∨Kr, 1 ≤ r ≤ p, be a spanning subgraph of a

graph G of order n = p+ r. Then LEL(G) > Kf(G).

Proof. The Laplacian spectra of Kp and Kr are
{

pp−1, 0
}

and
{

0r
}

, respectively.

Therefore, by Lemma 2.20, SpL(Kp ∨Kr) =
{

(p+ r)p, pr−1, 0
}

. This implies

Kf(Kp ∨Kr) =
np

p+ r
+

n(r − 1)

p

≤ (p+ r − 1) + (p− 1) ≤ 2(p+ r − 2)

and
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LEL(Kp ∨Kr) = p
√
p+ r + (r − 1)

√
p

≥ (p+ r − 1)
√
p ≥ 2(p+ r − 2)

resulting in LEL(Kp ∨Kr) ≥ Kf(Kp ∨Kr). Theorem 2.21 now follows from Lemma

2.17.

The Laplacian spectrum of the complete bipartite graph Kn
2
,n
2
is
{

n, (n2 )
n−2, 0

}

.

For n ≥ 5, this yields Kf(Kn
2
,n
2
) = 2n− 3 <

√
n+ (n− 2)

√

n
2 = LEL(Kn

2
,n
2
). Then

Lemma 2.17 leads to the following result.

Theorem 2.22. If Kn
2
,n
2
is a spanning subgraph of a graph G of order n, then

Kf(G) < LEL(G), for all n ≥ 5.

The sufficient condition given by Theorem 2.4, seems to be useful for graphs with

large number of edges and large number of vertices. We now state an analogous

condition pertaining to the graph complement.

Theorem 2.23. Let G be a connected graph with n vertices with largest Laplacian

eigenvalue µ1 ≤ n
2 and algebraic connectivity µn−1 ≥ k. If

2m <
(∆ + 1)(n−∆− 1)

(

n(n− 1) + (n− 1)
√

k(n− k)
)

n(
√
n− k +

√
k) + (∆ + 1)(n−∆− 1)

(2.6)

then LEL(G) > Kf(G).

Proof. Using Lemma 2.3, since ∆ + 1 ≤ µ1 ≤ n
2 , we have

Kf(G) = n

n−1
∑

i=1

1

n− µi
= n

n−1
∑

i=1

(

1

n− µi
− 1

µ1

)

+
n(n− 1)

µ1

= n

n−1
∑

i=1

(

µ1 + µi − n

µ1(n− µi)

)

+
n(n− 1)

µ1

≤ n

n−1
∑

i=1

(

µ1 + µi − n

µ1(n− µ1)

)

+
n(n− 1)

µ1

=
2mn

µ1(n− µ1)
≤ 2mn

(∆ + 1)(n−∆− 1)
(2.7)

and

LEL(G) =

n−1
∑

i=1

√
n− µi =

n−1
∑

i=1

(√
n− µi −

√
µn−1

)

+ (n− 1)
√
µn−1

=

n−1
∑

i=1

(

n− µi − µn−1√
n− µi +

√
µn−1

)

+ (n− 1)
√
µn−1
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≥
n−1
∑

i=1

(

n− µi − µn−1√
n− µn−1 +

√
µn−1

)

+ (n− 1)
√
µn−1

=
n(n− 1)− 2m+ (n− 1)

√

µn−1(n− µn−1)√
n− µn−1 +

√
µn−1

.(2.8)

For k ≤ x ≤ δ, consider the function

f(x) =
n(n− 1)− 2m+ (n− 1)

√
nx− x2

√
n− x+

√
x

for which

f ′(x) =
1

(√
n− x+

√
x
)2

[

(√
n− x+

√
x
) (n− 1)(n− 2x)

2
√
nx− x2

−
(

n(n− 1)− 2m+ (n− 1)
√

nx− x2
)

(

1

2
√
x
− 1

2
√
n− x

)]

> 0,

for all k ≤ x ≤ δ. Therefore, the function f(x) is increasing for k ≤ x ≤ δ. Therefore,

f(x) ≥ f(k) =
n(n− 1)− 2m+ (n− 1)

√
nk − k2√

n− k +
√
k

from which it follows that

LEL(G) ≥ n(n− 1)− 2m+ (n− 1)
√
nk − k2√

n− k +
√
k

.

Keeping in mind the relations (2.7) and (2.8), inequality (2.6) can be transformed

into

2mn

(∆ + 1)(n−∆− 1)
<

n(n− 1)− 2m+ (n− 1)
√
nk − k2√

n− k +
√
k

,

whose direct consequence is Kf(G) < LEL(G).

The importance of the Theorem 2.23 is that it is directly applicable to the com-

plement G of the graph G and, under the conditions stated in the theorem, is an

improvement of the Theorem 2.12, for all n ≥ 9. The condition µ1(G) ≤ n
2 , in Theo-

rem 2.23, by Lemma 2.3, gives µn−1(G) ≥ n
2 . That is, this theorem is applicable to

the graphs whose complements have a higher value of algebraic connectivity. As an

instance, we have the following corollary.

Corollary 2.24. Let T be a tree on n ≥ 41 vertices with largest Laplacian

eigenvalue µ1 ≤ n
2 and algebraic connectivity µn−1 ≥ 0.1. Then LEL(T ) > Kf(T ).
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Proof. For all µ1 ≤ n
2 and n ≥ 41, by Theorem 2.23, we have

2(n− 1) <
(∆ + 1)(n−∆− 1)(n− 1)(n+

√

0.1(n− 0.1))

n(
√
n− 0.1) +

√
0.1 + (∆ + 1)(n−∆− 1)

.

which is clearly true, as for a tree T of order n has n− 1 edges and ∆ + 1 ≤ µ1 ≤ n
2

gives ∆ + 1 ≤ n
2 and n−∆− 1 ≥ n

2 .

We have partially solved the problem in [9] to find a constant c (which may

depend on the number of vertices n and maximum vertex degree ∆), such that for

any connected graph G with m ≥ c edges, LEL(G) > Kf(G). It will be of interest

in future to find more sufficient conditions for the inequality LEL(G) > Kf(G).
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