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RIGHT GUT-MAJORIZATION ON MN,M
∗

ASMA ILKHANIZADEH MANESH†

Abstract. Let Mn,m be the set of all n-by-m matrices with entries from R, and suppose

that Rn is the set of all 1-by-n real row vectors. A matrix R is called generalized row stochastic

(g-row stochastic) if the sum of entries on every row of R is 1. For X, Y ∈ Mn,m, it is said that X

is rgut-majorized by Y (denoted by X ≺rgut Y ) if there exists an m-by-m upper triangular g-row

stochastic matrix R such that X = Y R. In this paper, the concept right upper triangular generalized

row stochastic majorization, or rgut- majorization, is investigated and then the linear preservers and

strong linear preservers of this concept are characterized on Rn and Mn,m.
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1. Introduction. Majorization is a pre-ordering on vectors by sorting all com-

ponents in non-increasing order, i.e., for each x, y ∈ R
n the vector x is said to be

majorized by y and it is denoted by x ≺ y, if
∑k

i=1
x↓
i ≤

∑k

i=1
y↓i for all 1 ≤ k ≤ n

with eaquality for k = n, where x↓ = (x↓
1, . . . , x

↓
n) the non-increasing rearrangement

of a vector x = (x1, . . . , xn) ∈ R
n. The history of investigating majorization dates

back to Schur [16] and Hardy et al. [9]. The reader can find that majorization has

been connected with combinatorics, analytic inequalities, numerical analysis, matrix

theory, probability and statistics in a book written by Marshall, Olkin, and Arnold

[15]. In 1989, Ando in a vital paper [1] that was about majorization, characterized

the structure of linear preservers of majorization. Dahl (1991) generalized the ma-

jorization concept to matrices. In 1994, Ando [2] gave a detailed survey of research

done in the theory of majorization. In 2005, Chiang and Li [8] introduced generalized

doubly stochastic matrices. In 2006, Salemi and Armandnejad used the generalized

stochastic matrices and they introduced the notion of generalized majorization for

matrices (see [6]). By introducing this notion many questions were raised, and some

of them have been answered. We refer the interested reader to [4], [5], and [12]-[14].

A (not necessarily nonnegative) matrix R is called g-row stochastic if the sum

of entries of every row of R is 1. Some of our notations and symbols are explained

as the following.The set of all n-by-m real matrices is denoted by Mn,m. The set
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of all n-by-1 real column vectors is denoted by R
n. The set of all 1-by-n real row

vectors is denoted by Rn. The collection of all n-by-n upper triangular g-row stochas-

tic matrices is denoted by Rgut
n . The n-by-n matrix with all of the entries of the

last column equal to one and the other entries equal to zero is denoted by E. The

standard basis of Rn is denoted by {e1, . . . , en}. The standard basis of Rn is de-

noted by {ε1, . . . , εn}. The n-by-n matrix whose (i, j) entry is one and all other

entries are zero is denoted by Eij . The submatrix of A obtained from A by delet-

ing rows n1, . . . , nl and columns m1, . . . ,mk is denoted by A(n1, . . . , nl|m1, . . . ,mk).

The abbreviation of A(n1, . . . , nl|n1, . . . , nl) is denoted by A(n1, . . . , nl). The n-by-m

matrix with columns x1, . . . , xm ∈ R
n is denoted by [x1 | · · · | xm]. The m-by-

n matrix with rows x1, . . . , xm ∈ Rn is denoted by [x1/ · · · /xm]. The summation

of all components of a vector x in Rn is denoted by tr(x). The set of all n-by-n

permutation matrices is denoted by Pn. The set {1, . . . , k} ⊂ N is denoted by Nk.

The transpose of a given matrix A is denoted by At. The matrix representation of

a linear function T : Rn → Rm with respect to the standard basis is denoted by

[T ]. The summation of all entries of ith row of [T ] is denoted by ri. The ith col-

umn of the matrix representation of a linear function T is denoted by [T ]i. The set

{
∑m

i=1
λiai | m ∈ N,

∑m

i=1
λi = 1, ai ∈ A, λi ∈ R, ∀i ∈ Nm}, where A ⊆ Rn, is de-

noted by aff(A). A linear function T : Mn,m → Mn,m preserves an order relation ≺

in Mn,m, if TX ≺ TY whenever X ≺ Y . Also, T is said to strongly preserve if for all

X, Y ∈ Mn,m

X ≺ Y ⇔ TX ≺ TY.

This paper is organized as follows. In Section 2, we first introduce the relation

≺rgut on Rn and we express an equivalent condition for rgut-majorization. Finally,

we obtain some results characterizing the structure of (strong) linear preservers of

this relation on Rn. One of the main results of this paper is to find the structure of

linear functions T : Rn → Rm (T : Rn → Rn) preserving (resp. strongly preserving)

rgut-majorization. The last section of this paper studies some facts of this concept

that are necessary for studying the strong linear preservers of ≺rgut on Mn,m. Also,

the strong linear preservers of ≺rgut on Mn,m are obtained.

2. Rgut-majorization on Rn and its (strong) linear preservers. When we

use the doubly stochastic matrices for majorization, since the transpose of a doubly

stochastic matrix is doubly stochastic too, we can obtain the concepts of left and right

majorization from each other by getting transpose on the equations. But when we use

the row stochastic matrices, we can not obtain the left and right majorization from

each other. So, in this case, the left and right concepts are investigated in different

manners. For example the concept of left matrix majorization and gw-majorization

were studied in [10] and [7] respectively, but the right cases were investigated in [11]
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and [3] respectively. In this paper, we study the right case of a concept which has

been investigated in [5].

In this section, we pay attention to the g-row stochastic upper triangular matrices

and we introduce a new type of majorization. We obtain an equivalent condition for

rgut-majorization onRn and some preliminaries about ≺rgut. Also, we characterize all

linear functions T : Rn → Rm (T : Rn → Rn) preserving (resp., strongly preserving)

≺rgut.

Definition 2.1. Let X,Y ∈ Mn,m. The matrix X is said to be rgut-majorized

by Y (in symbol X ≺rgut Y ) if X = Y R, for some R ∈ Rgut
m .

The following proposition gives an equivalent condition for rgut-majorization on

Rn. We state that without proof.

Proposition 2.2. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. Then x ≺rgut y

if and only if tr(x) = tr(y) and xi ∈ aff(0, y1, . . . , yi), for all i ∈ Nn−1.

The following lemmas are useful for finding the structure of (strong) linear pre-

servers of rgut-majorization. Now, we may begin with the following lemma which is

essential in the text.

Lemma 2.3. Suppose that T : Rn → Rm is a linear preserver of ≺rgut, and let

[T ] = [aij ]. Then the following assertions are true.

a) r1 = · · · = rn.

b) If ak+1i = · · · = ani = 0, for each i ∈ Nl, and S : Rn−k → Rm−l is the linear

function with [S] = [T ](1, . . . , k|1, . . . , l), then S preserves ≺rgut.

c) The first column of [T ] is
(

a11 0 · · · 0
)t
, or

(

a11 a11 · · · a11
)t
.

d) If there exists i ∈ Nm such that for all l ∈ Ni−1 [T ]l =
(

a1l a1l · · · a1l
)t
,

then [T ]i =
(

a1i a2i · · · a2i
)t
.

e) If there exists i ∈ Nm such that

[T ] =































a11 a12 a13 · · · a1i−1 ∗ · · · ∗

a11 a22 a23 · · · a2i−1 ∗ · · · ∗

a11 a22 a33 · · · a3i−1 ∗ · · · ∗
...

...
...

...

a11 a22 a33 · · · ai−2i−1 ∗ · · · ∗

a11 a22 a33 · · · ai−1i−1 ∗ · · · ∗
...

...
...

...

a11 a22 a33 · · · ai−1i−1 ∗ · · · ∗































,
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then [T ]i =
(

a1i a2i · · · ai−1i aii · · · aii
)t
.

Proof. a) Let i ∈ Nn. Since εi ≺rgut ε1, we observe that Tεi ≺rgut Tε1, and

hence, ri = r1.

b) Let x′ = (xk+1, . . . , xn), y′ = (yk+1, . . . , yn) ∈ Rn−k, and let x′ ≺rgut y′.

Proposition 2.2 ensures that x := (0, . . . , 0, xk+1, . . . , xn) ≺rgut y := (0, . . . , 0, yk+1,

. . . , yn), where x, y ∈ Rn, and hence, Tx ≺rgut Ty. This implies that Sx′ ≺rgut Sy
′.

Therefore, S preserves ≺rgut, as desired.

c) First, we prove a21 = · · · = an1. If there exist some j and k (2 ≤ j < k ≤ n)

such that aj1 6= ak1, then by defining x := εj − εk and y := ε1 + (−1−
aj1−a11

ak1−aj1
)εj +

(
aj1−a11

ak1−aj1
)εk, we see that x ≺rgut y, but Tx 6≺rgut Ty, which is a contradiction. So

a21 = · · · = an1. If a21 = 0, then [T ]1 =
(

a11 0 · · · 0
)t
. If a21 6= 0; since T

preserves ≺rgut if and only if αT preserves ≺rgut, for all α ∈ R \ {0}, there is no loss

of generality in assuming a21 = 1. By choosing x = (1 − a11)ε2 and y = ε1 − a11ε2,

we obtain x ≺rgut y, but Tx 6≺rgut Ty, in contradiction to the hypothesis that T

preserves ≺rgut. Therefore, [T ]1 =
(

a11 a11 · · · a11
)t
.

d) The proof is quite similar to (c). Suppose that there exist j and k (2 ≤ j < k ≤

n) such that aji 6= aki. Put x := εj − εk and y := ε1+(−1−
aji−a1i

aki−aji
)εj +(

aji−a1i

aki−aji
)εk.

It easy to see that x ≺rgut y and Tx 6≺rgut Ty, which would be a contradiction.

Therefore, a2i = · · · = ani.

e) If there exist some j and k (i ≤ j < k ≤ n) such that aji 6= aki, then

x := εj − εk ≺rgut y := εi−1 + (−1 −
aji−ai−1i

aki−aji
)εj + (

aji−ai−1i

aki−aji
)εk, but Tx 6≺rgut Ty.

This contradiction implies that aii = ai+1i = · · · = ani.

Define

(2.1) Aj :=



























∗ ∗ · · · ∗
...

...
...

∗ ∗ · · · ∗

αj
1 αj

2 · · · αj
tj

0 0 · · · 0
...

...
...

0 0 · · · 0



























∈ Mn,tj ,

where j ≥ 1, αj
1 6= 0, and

(

αj
1 αj

2 · · · αj
tj

)

is the jth row of Aj .
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Next, note that kj is the number of columns of Bj . Also, define

(2.2) B1 :=







αj
1 αj

2 · · · αj
k1

...
...

...

αj
1 αj

2 · · · αj
k1






∈ Mn,k1

,

where αj
1 6= 0, and

(2.3) Bj :=





























∗ ∗ · · · ∗
...

...
...

∗ ∗ · · · ∗

βj
1 βj

2 · · · βj
kj

αj
1 αj

2 · · · αj
kj

...
...

...

αj
1 αj

2 · · · αj
kj





























∈ Mn,kj
,

where j ≥ 2,
(

βj
1 βj

2 · · · βj
kj

)

is the j − 1th row of Bj , and αj
i 6= βj

i , for each

i ∈ Nkj
.

Lemma 2.4. Let T : Rn → Rm be a linear function such that r1 = · · · = rn.

Suppose that one of the following conditions holds:

a) [T ] =
(

B1 · · · Bl [T ]m
)

,

b) [T ] =
(

B1 · · · Bn−1 ∗ [T ]m
)

,

where B1 and Bj (j ≥ 2) are the same as in (2.2) and (2.3), respectively, and
∑l

j=1
kj = m− 1. Then T preserves ≺rgut.

Proof. Let us suppose that [T ] =
(

B1 · · · Bl ∗ [T ]m
)

. We know that Bj ∈

Mn,kj
, for each j ∈ Nl. We prove that if l = n − 1 or

∑l

j=1
kj = m − 1 (that is,

[T ] =
(

B1 · · · Bl [T ]m
)

), then T preserves ≺rgut . First, suppose that k1 = · · · =

kl = 1. Then

[T ] =

















a11 a12 a13 · · · a1m
a11 a22 a23 · · · a2m
a11 a22 a33 · · · a3m
...

...
...

...

a11 a22 a33 · · · anm

















,
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and a11 6= 0, a12 6= a22, a23 6= a33, and so on. Let x, y ∈ Rn, and let x ≺rgut y. Then

Tx =

(

a11tr(x), a12x1 + a22

(

n
∑

i=2

xi

)

, . . . ,

l−1
∑

i=1

ailxi + all

(

n
∑

i=l

xi

)

, . . . ,

n
∑

i=1

aimxi

)

,

and

Ty =

(

a11tr(y), a12y1 + a22

(

n
∑

i=2

yi

)

, . . . ,

l−1
∑

i=1

ailyi + all

(

n
∑

i=l

yi

)

, . . . ,

n
∑

i=1

aimyi

)

.

We see that tr(Tx) = tr(Ty). If tr(y) 6= 0, then Tx ≺rgut Ty. Otherwise, tr(y) = 0,

and consequently, (Tx)2 = (a12 − a22)x1 and (Ty)2 = (a12 − a22)y1. If (Ty)2 6= 0,

then Tx ≺rgut Ty. If (Ty)2 = 0; this means that y1 = 0, and so (Tx)2 = 0, and hence,

(Tx)3 = (a23−a33)x2 and (Ty)3 = (a23−a33)y2. By continuing this, we immediately

observe that if one of y2, . . . , yl 6= 0, then Tx ≺rgut Ty. If not; so y2 = · · · = yl = 0,

and then (Tx)i = (Ty)i = 0, for each i ∈ Nl. Thus, if [T ] =
(

B1 · · · Bl [T ]m
)

,

then Tx ≺rgut Ty. If l = n− 1, then [T ] =
(

B1 · · · Bn−1 ∗ [T ]m
)

, and clearly,

Tx ≺rgut Ty.

Next, assume that there exists kj for some j ∈ Nl such that kj > 1. In a similar

fashion the same as above, we can complete the proof.

Lemma 2.5. Let T : Rn → Rm be a linear function such that one of the following

conditions holds.

a) [T ] =
(

A1 · · · An ∗ [T ]m
)

, where Aj (j ∈ Nn) is the same as in (2.1).

b) [T ] =

(

A′
1 · · · A′

k ∗

0 · · · 0 B

)

, where A′
j ∈ Mk,tj (j ∈ Nk) is the same as in

(2.1), and B ∈ Mn−k,m−
∑

k
j=1

tj
can be the zero matrix, or one of the forms

(a) or (b) of Lemma 2.4.

If r1 = · · · = rn, then T preserves ≺rgut .

Proof. Let x, y ∈ Rn, and let x ≺rgut y. In all cases it easy to check that tr(Tx) =

tr(Ty). First, suppose that [T ] =
(

A1 · · · An ∗ [T ]m
)

. As we explained in the

proof of Lemma 2.4, we can suppose that t1 = · · · = tn = 1. So we have

[T ] =

















a11 a12 ∗ · · · a1m
0 a22 ∗ · · · a2m
0 0 a33 · · · a3m
...

...
...

...

0 0 · · · 0 anm

















,
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where a11 6= 0, a22 6= 0, and so on. Then

Tx =

(

a11x11, a12x1 + a22x2, . . . ,

n
∑

i=1

ainxi, ∗

)

,

and

Ty =

(

a11y11, a12y1 + a22y2, . . . ,

n
∑

i=1

ainyi, ∗

)

.

If y1 6= 0, then Tx ≺rgut Ty. Otherwise, let y1 = 0, and then (Tx)2 = a22x2 and

(Ty)2 = a22y2. If y2 6= 0, then there is nothing to prove. If y2 = 0; so (Tx)2 =

(Ty)2 = 0, (Tx)3 = a33x3, and (Ty)3 = a33y3. By continuing this, we see that if one

of y3, . . . , yn 6= 0, then Tx ≺rgut Ty. If not; then y = 0, and so Tx ≺rgut Ty.

Next, assume that (b) holds. Without loss of generality we can suppose that

t1 = · · · = tk = 1. Then

Tx =

(

a11x11, a12x1 + a22x2, . . . ,

k
∑

i=1

aikxi, ∗

)

,

and

Ty =

(

a11y11, a12y1 + a22y2, . . . ,

k
∑

i=1

aikyi, ∗

)

.

In a similar fashion as in the proof of (a), if one of y1, . . . , yk 6= 0, then Tx ≺rgut Ty.

Otherwise, (Tx)i = (Ty)i = 0, for each i ∈ Nk, and Lemma 2.4 ensures then that

Tx ≺rgut Ty.

We are now ready to prove one of the main theorems of this section.

Theorem 2.6. Let T : Rn → Rm be a linear function. Then T preserves ≺rgut

if and only if r1 = · · · = rn and there exists a permutation matrix P ∈ Pm such that

one of the following conditions occurs.

a) [T ] = 0,

b) [T ] =
(

B1 · · · Bn−1 ∗ [T ]m
)

P,

c) [T ] =
(

B1 · · · Bl [T ]m
)

P,

d) [T ] =
(

A1 · · · An ∗ [T ]m
)

P,

where B1, Bj (j ≥ 2), and Aj (j ∈ Nn) are the same as in (2.2), (2.3), (2.1),

respectively, in (b)
∑n−1

j=1
kj ≤ m− 1 and in (c)

∑l

j=1
kj = m− 1.
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e) [T ] =

(

A′
1 · · · A′

k ∗

0 · · · 0 B

)

P, where A′
j ∈ Mk,tj (j ∈ Nk) is the same as in

(2.1), and B ∈ Mn−k,m−
∑

k
j=1

tj
can be the zero matrix, or one of the forms (a) or (b)

of Lemma 2.4.

Proof. Let us first prove the sufficiency condition. Clearly, if [T ] = 0, then T

preserves ≺rgut . If (b) or (c) holds from Lemma 2.4, and if (d) or (e) holds by Lemma

2.5, then T preserves ≺rgut.

To prove the necessity of the conditions, assume that T preserves ≺rgut and

(a) does not hold. Suppose that the first nonzero column of [T ] is the ith col-

umn. Lemma 2.3 ensures that there are two possibilities, the first of which is [T ]i =

(a1i a1i . . . a1i)
t
. In this event, Lemma 2.3 ensures that

[T ]i+1 =
(

a1i+1 a1i+1 . . . a1i+1

)t
or [T ]i+1 =

(

a1i+1 a2i+1 . . . a2i+1

)t
.

By continuing this process and from Lemma 2.3 (e), we obtain

[T ] =
(

B1 · · · Bn−1 ∗ [T ]m
)

P, or [T ] =
(

B1 · · · Bl [T ]m
)

P,

for some P ∈ Pm, where B1 and Bj (j ≥ 2) are the same as in (2.2) and (2.3), respec-

tively, and
∑l

j=1
kj = m − 1. The second possibility is [T ]i =

(

a1i 0 · · · 0
)t
.

In this event, Lemma 2.3 ensures that [T ]i+1 =
(

a1i+1 a2i+1 · · · a2i+1

)t
or

[T ]i+1 =
(

a1i+1 a2i+1 0 · · · 0
)t
. If [T ]i+1 =

(

a1i+1 a2i+1 · · · a2i+1

)t
, then

[T ] =

(

A′
1 ∗

0 ∗

)

P, for some P ∈ Pm, where A′
1 ∈ M1. Here let S : Rn−1 → Rm−1

be the linear function with [S] = [T ](1|1). Lemma 2.3 ensures then that S preserves

≺rgut. So [S] can be the zero matrix or one of forms (a) or (b) of Lemma 2.4. Other-

wise, [T ]i+1 =
(

a1i+1 a2i+1 0 · · · 0
)t
. By continuing this, we observe that there

exists some k ∈ Nn such that [T ] =
(

A1 · · · Ak ∗ [T ]m
)

P, for some P ∈ Pm,

where Aj (j ∈ Nk) is the same as in (2.1). If k = n, then we have (d). If not,

then k < n. Consider Aj =

(

A′
j

0

)

, where A′
j ∈ Mk,tj (j ∈ Nk) and consequently

[T ] =

(

A′
1 · · · A′

k ∗

0 · · · 0 ∗

)

P . Let S : Rn−k → Rm−
∑

k
j=1

tj
be the linear function

with [S] = [T ](1, . . . , k|1, . . . ,
∑k

j=1
tj). Lemma 2.3 ensures then that S preserves

≺rgut, and so [S] can be the zero matrix or one of forms (a) or (b) of Lemma 2.4.
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For better understanding of the preceding theorem we bring the following exam-

ples.

Example 2.7. Let [T ] =









1 0 2 7 1 −1 5 14

1 1 2 8 −2 4 0 15

1 1 2 8 3 9 2 3

1 1 2 8 3 6 8 0









. Theorem 2.6 (b)

ensures that T preserves ≺rgut .

Example 2.8. Let [T ] =















3 0 2 1

3 1 2 0

3 1 2 0

3 1 2 0

3 1 2 0















. Then by Theorem 2.6 (c), T preserves

≺rgut.

Example 2.9. Let [T ] =









1 2 0 0

0 1 0 2

0 0 1 2

0 0 1 2









. Theorem 2.6 (e) then ensures that T

preserves ≺rgut .

Example 2.10. Let [T ] =















1 0 1 0 8

1 2 3 1 3

1 2 3 2 2

1 2 3 4 0

1 2 3 0 0















. We see that x = (0, 0, 1,−1, 0)

≺rgut y = (0, 1,− 3

2
, 1

2
, 0), but Tx 6≺rgut Ty. Then T does not preserve ≺rgut . Notice

that this case is from the form [T ] =
(

B1 · · · Bl ∗ [T ]m
)

P, where l 6= n − 1.

We see that
∑l

j=1
kj < m− 1. By Theorem 2.6, T does not preserve ≺rgut.

Example 2.11. Let [T ] =















1 0 1 0 8

1 5 3 1 3

1 5 3 2 2

1 5 3 4 0

1 5 3 4 0















. We see that x = (0, 0, 1,−1, 0)

≺rgut y = (0, 1,−2, 1, 0), but Tx 6≺rgut Ty. Then T does not preserve ≺rgut . Notice

that [T ] =
(

B1 B2 B4 [T ]m
)

. We observe that some of the middle B
′

js could not

be void. By Theorem 2.6, T does not preserve ≺rgut.

Remark 2.12. Let T : Rn → Rn be a linear preserver of ≺rgut, and let [T ] =

[aij ]. If there exists k ∈ Nn−1 such that the first column of [T ](1, . . . , k − 1) has the

form (α, . . . , α)t, then T is not invertible.
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Now, we focus on finding strong linear preservers of ≺rgut on Rn. We need the

following lemma to prove the next theorem.

Lemma 2.13. Let T : Rn → Rn be a linear function. If T strongly preserves

≺rgut, then T is invertible.

Proof. Let x ∈ Rn, and let Tx = 0. Since Tx = T 0 and T strongly preserves

≺rgut, this implies that x ≺rgut 0. So x = 0, and thus, T is invertible.

In the following theorem, the structure of linear functions T : Rn → Rn strongly

preserving rgut-majorization will be characterized.

Theorem 2.14. Let T : Rn → Rn be a linear function. Then T strongly

preserves ≺rgut if and only if [T ] = αA, for some α ∈ R \ {0} and an invertible

matrix A ∈ Rgut
n .

Proof. Assume first T strongly preserves≺rgut. So T is invertible and T preserves

≺rgut, and hence, by Remark 2.12, there exist α ∈ R \ {0} and an invertible matrix

A ∈ Rgut
n such that [T ] = αA.

Conversely, suppose that [T ] = αA, for some α ∈ R \ {0} and an invertible

matrix A ∈ Rgut
n . From Theorem 2.6, it is enough to show that if Tx ≺rgut Ty,

for each x, y ∈ Rn, then x ≺rgut y. Without loss of generality assume that α = 1.

Let [T ] = [aij ]. Clearly, tr(x) = tr(y). Fix i ∈ Nn−1. If there exists some j ∈ Ni

such that yj 6= 0, then xi ∈ aff(0, y1, . . . , yi). Otherwise, as y1 = · · · = yi = 0,

(Ty)1 = · · · = (Ty)i = 0. This means that (Tx)1 = · · · = (Tx)i = 0, and then

x1 = · · · = xi = 0. Therefore, T strongly preserves ≺rgut.

As a result of preceding theorems we can express the following corollary. It will

be needed in the next section.

Corollary 2.15. Suppose that T : Rn → Rn preserves ≺rgut. Then T strongly

preserves ≺rgut if and only if T is invertible.

3. Strong linear preservers of rgut-majorization on Mn,m. In this section,

we characterize linear functions that strongly preserves rgut-majorization on Mn,m.

Lemma 3.1. Let A ∈ Mn. Then the following conditions are equivalent.

a) For all D ∈ Rgut
n , AD = DA.

b) For some α, β ∈ R, A = αI + βE.

c) For all D ∈ Rgut
n and for all x, y ∈ Rn, (xD + yDA) ≺rgut (x+ yA).

Proof. (a ⇒ b) Consider the matrices D := E − Ein + Eij , where i, j ∈ Nn and

i ≤ j.
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(b ⇒ c) Let D ∈ Rgut
n . Then ED = E = DE, and so (xD+yDA) ≺rgut (x+yA).

(c ⇒ a) Fix i ∈ Nn. Set x = −εiA and y = εi. So by the hypothesis, (−εiAD +

εiDA) ≺rgut (−εiA + εiA), for all D ∈ Rgut
n . Hence, (−DA + AD)εi = 0, for all

D ∈ Rgut
n . It implies that AD = DA, for all D ∈ Rgut

n .

For each i, j ∈ Nn, consider the embedding Ej : Rm → Mn,m and the pro-

jection Ei : Mn,m → Rm, where Ej(x) = ejx and Ei(A) = εiA. It is easy to

show that for every linear function T : Mn,m → Mn,m, TX = T [x1/ · · · /xn] =

[
∑n

j=1
T j
1xj/ · · · /

∑n

j=1
T j
nxj ], where T j

i = EiTE
j.

It is easy to see that if T : Mn,m → Mn,m is a linear preserver of ≺rgut, then T j
i

preserves ≺rgut on Rm, for all i, j ∈ Nn.

Lemma 3.2. Let T : Mn,m → Mn,m preserve ≺rgut. If for an i ∈ Nn there exists

k ∈ Nn such that T k
i is invertible, then

∑n

j=1
xjA

j
i = (

∑n

j=1
αj
ixj)A

k
i +(

∑n

j=1
βj
i xj)E,

for some αj
i , β

j
i ∈ R, where Aj

i = [T j
i ].

Proof. It can be assumed without loss of generality that i, k = 1 and j = 2.

We show that A2
1 = α2

1A
1
1 + β2

1E, for some α2
1, β

2
1 ∈ R. Let x, y ∈ Rm and D ∈

Rgut
m . Since [x/y/0/ · · ·/0]D ≺rgut [x/y/0/ · · ·/0], then T [xD/yD/0/ · · ·/0] ≺rgut

T [x/y/0/ · · ·/0], and hence, [T 1
1 xD + T 2

1 yD/ ∗ /∗] ≺rgut [T
1
1 x + T 2

1 y/ ∗ /∗]. It shows

that T 1
1 xD + T 2

1 yD ≺rgut T
1
1 x + T 2

1 y. Thus, xDA1
1 + yDA2

1 ≺rgut xA
1
1 + yA2

1. We

can see xD + yDA2
1(A

1
1)

−1 ≺rgut x + yA2
1(A

1
1)

−1, for all x, y ∈ Rm and D ∈ Rgut
m .

Lemma 3.1 ensures that A2
1 = α2

1A
1
1 + β2

1E, for some α2
1, β

2
1 ∈ R.

Lemma 3.3. Let T : Rn → Rn preserve ≺rgut, and suppose that [T ] = [aij ] is

an upper triangular matrix. If there exists some t ∈ Nn−2 such that att = 0, then

at+1t+1 = · · · = an−1n−1 = 0.

Proof. Suppose that t ∈ Nn−2 and att = 0. Consider the linear function S :

Rn−t+1 → Rn−t, where [S] = [T ](1, . . . , t − 1|1, . . . , t). Lemma 2.3 ensures that

S preserves ≺rgut on Rn−t+1. Using Lemma 2.3 again, we see that at+1t+1 = 0.

Similarly, one shows that at+2t+2 = · · · = an−1n−1 = 0.

Lemma 3.4. Let T : Mn,m → Mn,m strongly preserve ≺rgut. Then for each

i ∈ Nn there exists some j ∈ Nn such that T j
i is invertible.

Proof. Define I = {i ∈ Nn | T j
i 6∈ INm, ∀j ∈ Nn}, where the set of all m-by-m

invertible matrices is denoted by INm. We claim that I is empty. Assume, if possible,

that I is not empty. There is no loss of generality in assuming I = {1, 2, . . . , k},

where k ∈ Nn. There are two cases to consider. First, let I = {1, 2, . . . , n}. Since T j
i

preserves ≺rgut and also it is not invertible, so T j
i (εm−1−εm) = 0, for each i, j ∈ Nn.

As X = [εm−1 − εm/ · · · /εm−1 − εm] ∈ Mn,m is nonzero, and TX = 0, we obtain a

contradiction. Thus, this case can not happen.
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Next, let I = {1, 2, . . . , k}, where k < n. By Lemma 3.2, for each i (k+1 ≤ i ≤ n)

and j ∈ Nn, there exist invertible matrices Ai and αj
i , β

j
i ∈ R such that

∑n

j=1
xjA

j
i =

(
∑n

j=1
αj
ixj)Ai + (

∑n

j=1
βj
i xj)E. Then there exist γ1, . . . , γn ∈ R, not all zero, such

that γ1(α
1
k+1, . . . , α

1
n) + · · ·+ γn(α

n
k+1, . . . , α

n
n) = 0. Define xj = γj(εm−1 − εm), for

each j ∈ Nn, and choose X = [x1/ · · · /xn] ∈ Mn,m. We conclude that TX = 0, but

X 6= 0, which is a contradiction. Therefore, for each i ∈ Nn, there exists j ∈ Nn such

that T j
i is invertible.

Lemma 3.5. Let T : Mn,m → Mn,m satisfy TX = RX + SXE, for some

R,S ∈ Mn. Then T is invertible if and only if R(R+ S) is invertible.

Proof. First, assume that R(R+S) is invertible. Let X ∈ Mn,m, and let TX = 0.

Multiple this relation by E. Since R+S is invertible, we see thatXE = 0. PutXE = 0

in the relation TX = 0. Hence, RX = 0 and, as R is invertible, we conclude that

X = 0. Therefore, T is invertible.

Next, suppose that T is invertible. If R is not invertible, then there exists x ∈

R
n \ {0} such that Rx = 0. Define X = [x | −x | 0 | · · · | 0] ∈ Mn,m. Hence, TX = 0

while X 6= 0, which would be a contradiction. Thus, R is invertible.

Now, assume that R+ S is not invertible. So there exists y ∈ R
n \ {0} such that

(R + S)y = 0. Define Y = [0 | 0 | · · · | y] ∈ Mn,m. It follows that TY = 0 , but

Y 6= 0, which is a contradiction. Therefore, R+ S is invertible.

The last theorem of this paper, which is our main result in this section, charac-

terizes the strong linear preservers of ≺rgut on Mn,m.

Theorem 3.6. Let T : Mn,m → Mn,m be a linear function. Then T strongly

preserves ≺rgut if and only if TX = RXA + SXE, for some R,S ∈ Mn and an

invertible matrix A ∈ Rgut
m such that R(R+ S) is invertible.

Proof. First, we prove the sufficiency of the conditions. First, let X,Y ∈ Mn,m

such that X ≺rgut Y . So there exists D ∈ Rgut
m such that X = Y D. Hence,

TX = RXA+SXE = R(Y D)A+S(Y D)E = (RY A)(A−1DA)+(SY E)(A−1DA) =

(RY A + SY E)(A−1DA) = TY (A−1DA), and then TX ≺rgut TY . Now, let X,Y ∈

Mn,m, and let TX ≺rgut TY . Then TX = (TY )D, for some matrix D ∈ Rgut
m . It

means that RXA+SXE = RY AD+SY ED, and so RX+SXEA−1 = RY ADA−1+

SY EDA−1. Multiply this relation by E and, as R+S is invertible, we conclude that

XE = Y E. Substitute XE = Y E in the relation RXA+ SXE = RY AD + SY ED,

and then RXA = RY AD. So X = Y (ADA−1), and this implies that X ≺rgut Y .

Therefore, T strongly preserves ≺rgut.

Next, assume that T strongly preserves ≺rgut. If n = 1, then the result is proved

by Theorem 2.14. So we may suppose that n > 1. Lemma 3.4 ensures that for each
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i ∈ Nn there exists some j ∈ Nn such that T j
i is invertible. By Lemma 3.2, there exist

invertible matrices A1, . . . , An ∈ Mm, vectors a1, . . . , an ∈ Rn, and a matrix S′ ∈ Mn

such that TX = [a1XA1/ · · · /anXAn] + S′XE.

We claim that dim(span{a1, . . . , an}) ≥ 2. If not; so {a1, . . . , an} ⊆ span{a}, for

some a ∈ Rn. Since n > 1, we can choose 0 6= b ∈ (span{a})⊥. Define X = [b |

−b | 0 | · · · | 0] ∈ Mn,m. Then XE = 0, and also aiX = 0, for all i ∈ Nn. It is seen

that TX = 0, while X 6= 0, a contradiction. Thus, rank{a1, . . . , an} ≥ 2. Without

loss of generality, assume that {a1, a2} is a linearly independent set. Let X ∈ Mn,m

and D ∈ Rgut
m . So XD ≺rgut X , and hence, TXD ≺rgut TX . This follows that

a1XDA1 + a2XDA2 ≺rgut a1XA1 + a2XA2, and then

(3.1) a1XD+ a2XDA2A
−1

1 ≺rgut a1X + a2XA2A
−1

1 ,

for all X ∈ Mn,m, for all D ∈ Rgut
m . Since {a1, a2} is linearly independent, for every

x, y ∈ Rm there exists Bx,y ∈ Mn,m such that a1Bx,y = x and a2Bx,y = y. By

substituting X = Bx,y in (3.1), we obtain xD+ yDA2A
−1
1 ≺rgut x+ yA2A

−1
1 , for all

D ∈ Rgut
m and x, y ∈ Rm. Lemma 3.1 ensures then that A2 = αA1 + βE, for some

α, β ∈ R. For every i ≥ 3, if ai = 0, then we can choose Ai = A1. If ai 6= 0, then

{a1, ai} or {a2, ai} is linearly independent. Then by a similar procedure, we deduce

the same result. That is, Ai = γiA1 + δiE, for some γi, δi ∈ R, or Ai = λiA2 + ηiE,

for some λi, ηi ∈ R. Define A = A1. Then for every i ≥ 2, Ai = αiA+ βiE, for some

αi, βi ∈ R, and hence, TX = [a1XA/ · · · /anXA] + S′XE = RXA + SXE, where

R = [a1/r2a2/ · · · /rnan], for some r2, . . . , rn ∈ R and S = S′ + [0/β2a2/ · · · /βnan].
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