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BIDERIVATIONS AND LINEAR COMMUTING MAPS ON SIMPLE

GENERALIZED WITT ALGEBRAS OVER A FIELD∗
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Abstract. Let W be a simple generalized Witt algebras over a field of characteristic zero. In

this paper, it is proved that each anti-symmetric biderivation of W is inner. As an application

of biderivations, it is shown that a linear map ψ on W is commuting if and only if ψ is a scalar

multiplication map on W. The commuting automorphisms and derivations of W are determined.
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1. Introduction. The motivation to study commuting maps on the Kac-Moody

algebras mainly comes from a survey paper [4] due to M. Brešar, where the author

surveyed the development of the theory of commuting maps on associative algebras

or rings and their applications by discussing the following topics:

(1) Various generalization of the notation of commuting maps;

(2) Commuting additive maps;

(3) Commuting traces of multiadditive maps;

(4) Commuting derivations;

(5) Applications of results of commuting maps to different areas, in particular to Lie

theory.

Let A be an associative ring. A map ϕ : A → A is called commuting if

ϕ(x)x = xϕ(x) for all x ∈ A.(1.1)

Let us denote the commutator or the Lie product of the elements x, y ∈ A by [x, y] =

xy − yx. Accordingly the equality (1.1) will be written as [ϕ(x), x] = 0. The identity

mapping and zero mapping are two classical examples of commuting maps. The

∗Received by the editors on September 2, 2015. Accepted for publication on January 2, 2016.

Handling Editor: Tin-Yau Tam.
†School of Mathematics and Computer Science, Fujian Normal University, Fuzhou, 350007, P.R.

China (czxing@163.com). Supported by the National Natural Science Foundation of China (Grant

No. 11571360) and Fujian Provincial Key Laboratory of Mathematical Analysis and its Applications

(FJKLMAA).

1

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 1-12, January 2016

http:/repository.uwyo.edu/ela



ELA

2 Zhengxin Chen

author of [4] showed that commuting maps on an associative algebra have significant

applications to other important problems (e.g., Lie automorphisms, Lie derivations,

biderivations, linear preserves, etc.) The principal task when treating a commuting

map is to describe its form. Usually we consider commuting maps imposed with

some restrictions, such as additive commuting maps, commuting traces, commuting

automorphisms, commuting derivations, et al. (see [3, 6, 7, 9, 11, 12, 16, 17, 18, 19,

21]). We encourage the reader to read the well-written survey paper [4].

It is a natural question to define and determine the commuting maps on Lie

algebras. Let g be a Lie algebra with Lie product [−,−] over a field F . A map

ϕ : g → g is said to be commuting if

[ϕ(x), x] = 0 for all x ∈ g.(1.2)

In [23], the authors determined the biderivations of parabolic subalgebras of finite

dimensional simple Lie algebras. So their linear commuting maps are scalar multi-

plication maps. In [10], the authors determined the commuting automorphisms and

commuting derivations of certain nilpotent Lie algebras over commutative rings. In

particular, the commuting automorphisms and commuting derivations of nilradicals of

finite dimensional complex simple Lie algebras are completely determined. In [22], the

authors proved that any biderivation of the infinite dimensional Schrödinger-Virasoro

Lie algebra is inner, and so their linear commuting maps are completely determined.

This paper is dedicated to determining the linear commuting maps on simple gener-

alized Witt algebras over a field of characteristic zero, which are infinite dimensional

simple Lie algebras.

Recall some basic notations and results about generalized Witt algebras. Let F

be a field, I be a non-empty index set and G be an additive subgroup of Πi∈IF
+
i ,

where F+
i (i ∈ I) are copies of the additive group F . Let W = W (G, I) be the Lie

algebra over F with basis {w(a, i) | a∈ G, i ∈ I} and the multiplication

[w(a, i),w(b, j)] = ajw(a+ b, i)− biw(a+ b, j),(1.3)

where i, j ∈ I and a = (ai)i∈I , b = (bi)i∈I ∈ G. The Lie algebra W is infinite-

dimensional if G 6= 0. Generalized Witt algebras have been considered by many

authors over fields of positive characteristic (e.g., [13, 20, 24]) and over fields of char-

acteristic zero (e.g., [1, 14, 15]). If char(F ) = 0, G = ⊕i∈IZi and |I| = n is finite,

then by [15, Theorem 2], W is simple and finitely generated by

{w(±ei, j),w(±2ei, j) | i, j ∈ I},

where ei is the elementary unit vector of Zn with 1 in the ith position and 0 elsewhere,

G = Ze1 ⊕ Ze2 ⊕ · · · ⊕ Zen.
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In the remainder of this article,

W =W (G, I)

will always denote the simple generalized Witt algebra over a field F , where

char(F ) = 0, G = Z
n, I = {1, 2, . . . , n}, n ≥ 1.

Then W = ⊕a∈Zn(W)a is a Z
n-graded Lie algebra respect to an infinite dimen-

sional Cartan subalgebra H = spanF{w(0, 1),w(0, 2), . . . ,w(0, n)}, where (W)a =

spanF {w(a, 1),w(a, 2), . . . ,w(a, n)}. By [14, Proposition 4.2], W is isomorphic to

the derivation algebra of the Laurent polynomial ring F [x±1
1 , x±1

2 , . . . , x±1
n ] with com-

muting variables, and w(a, i) = xa1

1 x
a2

2 · · ·xan

n xi
∂

∂xi

for i ∈ I, a = (aj)j∈I.

In this article, we aim to determine the form of each linear commuting map on the

simple generalized Witt algebra W over a field of characteristic zero. To achieve this

aim, we need firstly to describe anti-symmetric biderivations of W. For an associative

ring R, a bilinear map ϕ : R×R → R is called a biderivation of R if it is a derivation

with respect to both components, meaning that

ϕ(xy, z) = xϕ(y, z) + ϕ(x, z)y and ϕ(x, yz) = ϕ(x, y)z + yϕ(x, z)

for any x, y, z ∈ R. If R is a noncommutative algebra then the map

ϕ(x, y) = λ[x, y], ∀x, y ∈ R,

where λ lies in the center of R, is a basic example of biderivation. Biderivations of

this form are therefore called inner biderivations. Brešar et al. in [8] proved that all

biderivations on noncommutative prime rings are inner. Zhang et al. in [25] showed

that biderivations of nest algebras are usually inner, and they showed by examples that

in some special cases non-inner biderivations do exist. D. Benkonvič in [2] extended

the results of [25] and he proved that under certain conditions a biderivation of a

triangular algebra is a sum of an extremal and an inner biderivation. In [23], the

authors transfer the concept of biderivation from associative algebras to Lie algebras

as follows. For an arbitrary Lie algebra g, we call a bilinear map ϕ : g → g a

biderivation of g if it is a derivation with respect to both components, meaning that

ϕ([x, y], z) = [x, ϕ(y, z)] + [ϕ(x, z), y], ϕ(x, [y, z]) = [ϕ(x, y), z] + [y, ϕ(x, z)](1.4)

for all x, y, z ∈ g. A biderivation ϕ : g → g is called anti-symmetric if ϕ(x, y) =

−ϕ(y, x) for any x, y ∈ g. In this article we will firstly determine all anti-symmetric

biderivations of the simple generalizedWitt algebrasW. As an application of bideriva-

tions, we describe the form of each linear commuting map ofW. Finally, we prove that

a commuting automorphism of W must be the identity mapping, and a commuting

derivation of W must be the zero mapping.
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2. The biderivations of W. Recall the definition of an inner biderivation of a

Lie algebra g in [23].

Definition 2.1. Let λ ∈ F , g a Lie algebra over a filed F . The map ϕλ : g×g →

g, sending (x, y) to λ[x, y], is a biderivation of g, called an inner biderivation of g.

Remark 2.2. It is easy to see that any inner biderivation ϕλ is an anti-symmetric

biderivation.

Lemma 2.3. Let g be a Lie algebra over a field F with characteristic char(F ) 6= 2,

ϕ an anti-symmetric biderivation on g. Then

[ϕ(x, y), [u, v]] = [[x, y], ϕ(u, v)](2.1)

for all x, y, u, v ∈ g. In particular,

[ϕ(x, y), [x, y]] = 0.(2.2)

Proof. At first we compute ϕ([x, u], [y, v]) in two different ways. On one hand,

since ϕ is a derivation in the first argument, we have that

ϕ([x, u], [y, v]) = [ϕ(x, [y, v]), u] + [x, ϕ(u, [y, v])].

Using the fact that ϕ is a derivation in the second argument, we further have that

ϕ([x, u], [y, v]) = [[ϕ(x, y), v], u]+[[y, ϕ(x, v)], u]+[x, [ϕ(u, y), v]]+[x, [y, ϕ(u, v)]].(2.3)

On the other hand, computing ϕ([x, u], [y, v]) in a different way we have that

ϕ([x, u], [y, v]) = [[x, ϕ(u, y)], v]+[[ϕ(x, y), u], v]+[y, [ϕ(x, v), u]]+[y, [x, ϕ(u, v)]].(2.4)

By comparing the two equalities (2.3), (2.4) we have that

[[x, y], ϕ(u, v)]− [ϕ(x, y), [u, v]] = [[x, v], ϕ(u, y)]− [ϕ(x, v), [u, y]].(2.5)

We set

ξ(x, y;u, v) = [[x, y], ϕ(u, v)] − [ϕ(x, y), [u, v]], x, y, u, v ∈ g.

So the equality (2.5) implies that ξ(x, y;u, v) = ξ(x, v;u, y) for any x, y, u, v ∈ g.

Since ϕ is anti-symmetric, ξ(x, y;u, v) = −ξ(x, y; v, u) for any x, y, u, v ∈ g. On one

hand,

ξ(x, y;u, v) = −ξ(x, y; v, u) = −ξ(x, u; v, y) = ξ(x, u; y, v).(2.6)
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On the other hand,

ξ(x, y;u, v) = ξ(x, v;u, y) = −ξ(x, v; y, u) = −ξ(x, u; y, v).(2.7)

By the equalities (2.6), (2.7), we have ξ(x, y;u, v) = −ξ(x, y;u, v). Since char(F ) 6=

2, then ξ(x, y;u, v) = 0. So [ϕ(x, y), [u, v]] = [[x, y], ϕ(u, v)] for all x, y, u, v ∈ g.

Considering the particular case when u = x, v = y we have that

[ϕ(x, y), [x, y]] = [[x, y], ϕ(x, y)] = −[ϕ(x, y), [x, y]],

which shows that [ϕ(x, y), [x, y]] = 0.

Remark 2.4. We should point out that two similar propositions, which are [22,

Lemma 2.1] and [23, Lemma 2.2], hold only if the biderivations are anti-symmetric,

and so the results about biderivations in [22] and [23] hold only for anti-symmetric

biderivations. However, since the biderivations related to linear commuting maps in

[22] and [23] are anti-symmetric, then the main results about linear commuting maps

in [22] and [23] are absolutely true.

Lemma 2.5. Assume that ϕ is an anti-symmetric biderivation on W. If [x, y] = 0

for x, y ∈ W, then ϕ(x, y) = 0.

Proof. By Lemma 2.3,

[ϕ(x, y), [u, v]] = [[x, y], ϕ(u, v)] = 0(2.8)

for any u, v ∈ W. Since W is a simple Lie algebra, then the derived subalgebra [W,W]

coincides with W. Then the equality (2.8) shows that ϕ(x, y) is in the center Z(W).

Also since W is simple, then Z(W) = 0. Thus, ϕ(x, y) = 0.

Lemma 2.6. Assume that ϕ is an anti-symmetric biderivation on W. For any

i ∈ I, there is an element λi ∈ F such that

ϕ(w(0, i),w(tei, i)) = λi[w(0, i),w(tei, i)](2.9)

for any nonzero t ∈ F , where λi is independent of the choice of t.

Proof. Without loss of generality, we choose a fixed i ∈ I and a fixed nonzero

t ∈ F . For any k
′

6= i, [w(0, k
′

),w(tei, i)] = 0, then ϕ(w(0, k
′

), w(tei, i)) = 0

by Lemma 2.5. So [w(0, k
′

), ϕ(w(0, i),w(tei, i))] = ϕ([w(0, k
′

),w(0, i)], w(tei, i)) −

[ϕ(w(0, k
′

),w(tei, i)), w(0, i)] = ϕ(0,w(tei, i))− [0,w(0, i)] = 0. Set

ϕ(w(0, i),w(tei, i)) =
∑

a∈Zn,k∈I

c(a, k)w(a, k), where c(a, k) ∈ F.

Then

[w(0, k
′

),
∑

a∈Zn,k∈I

c(a, k)w(a, k)] = −
∑

a∈Zn,k∈I

ak′ c(a, k)w(a, k) = 0.(2.10)
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Comparing the coefficients of w(a, k) on the both sides of the equality (2.10), we have

ak′ c(a, k) = 0 for any k ∈ I and a ∈ Z
n. For any a 6∈ Fei, there is some k

′

∈ I such

that k
′

6= i and ak′ 6= 0, which implies that c(a, k) = 0 for any k ∈ I. Thus, we can

assume that

ϕ(w(0, i),w(tei, i)) =
∑

m∈F,k∈I

c(mei, k)w(mei, k).(2.11)

By the equality (1.3), [w(0, i),w(tei, i)] = −tw(tei, i). By Lemma 2.3, [[w(0, i),w(tei,

i)], ϕ(w(0, i), w(tei, i))] = 0, which implies that

[w(tei, i), ϕ(w(0, i),w(tei, i))] = 0.

By the equality (2.11), we have

[w(tei, i), ϕ(w(0, i),w(tei, i))] =(2.12)

−
∑

m∈F,k 6=i,k∈I

mc(mei, k)w((t +m)ei, k) +
∑

m∈F

(t−m)c(mei, i)w((t+m)ei, i).

By the above equality (2.12), for any k 6= i and m 6= 0, c(mei, k) = 0, and for any

m 6= t, c(mei, i) = 0. By the equality (2.11), we have

ϕ(w(0, i),w(tei, i)) = c(tei, i)w(tei, i) +
∑

k 6=i,k∈I

c(0, k)w(0, k).(2.13)

Fix a k
′

∈ I such that k
′

6= i. We have [w(ek′ , k
′

),w(0, i)] = [w(ek′ , k
′

),w(tei, i)] = 0,

and so [w(ek′ , k
′

), ϕ(w(0, i), w(tei, i))] = ϕ([w(ek′ , k
′

),w(0, i)],w(tei, i))− [ϕ(w(ek′ ,

k
′

), w(tei, i)),w(0, i)] = ϕ(0,w(tei, i))− [0,w(0, i)] = 0. That is, [w(ek′ , k
′

), c(tei, i)

w(tei, i) +
∑

k 6=i,k∈I

c(0, k)w(0, k)] = c(0, k
′

)w(ek′ , k
′

) = 0, which implies that c(0,

k
′

) = 0. Hence, c(0, k
′

) = 0 for any k
′

6= i, k
′

∈ I. Therefore, by the equality (2.13),

ϕ(w(0, i),w(tei, i)) = c(tei, i)w(tei, i) = −
c(tei, i)

t
[w(0, i),w(tei, i)].

For any nonzero t
′

∈ F , t
′

6= t, we can similarly obtain that

ϕ(w(0, i),w(t
′

ei, i)) = −
c
′

(t
′

ei, i)

t
′

[w(0, i),w(t
′

ei, i)], where c
′

(t
′

ei, i) ∈ F.

The equality

[[w(0, i),w(tei, i)], ϕ(w(0, i),w(t
′

ei, i)] = [ϕ(w(0, i),w(tei, i)), [w(0, i),w(t
′

ei, i)]]

implies that
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[[w(0, i),w(tei, i)],−
c
′

(t
′

ei,i)
t
′ [w(0, i),w(t

′

ei, i)]] =

[

− c(tei,i)
t

[w(0, i),w(tei, i)], [w(0, i),w(t
′

ei, i)]
]

.

Note that [[w(0, i),w(tei, i)], [w(0, i),w(t
′

ei, i)]] = [−tw(tei, i),−t
′

w(t
′

ei, i)] = tt
′

(t−

t
′

)w((t+ t
′

)ei, i) 6= 0. Then − c(tei,i)
t

= − c
′

(t
′

ei,i)
t
′ . So we can set

λi = −
c(tei, i)

t
.

Thus, λi is independent of the choice of t, ϕ(w(0, i),w(tei, i)) = λi[w(0, i),w(tei, i)]

for any nonzero t ∈ F .

Lemma 2.7. Assume that ϕ is an anti-symmetric biderivation on W. There is

an element λ ∈ F such that

ϕ(w(0, j),w(tej, i)) = λ[w(0, j),w(tej, i)]

for any i, j ∈ I and any nonzero t ∈ F , where λ is independent of the choice of i, j

and t.

Proof. If |I| = n = 1, then the lemma holds by Lemma 2.6. Next assume

that |I| = n ≥ 2. By Lemma 2.6, for any i ∈ I, there is some λi ∈ F such that

ϕ(w(0, i),w(tei, i)) = λi[w(0, i),w(tei, i)] for any nonzero t ∈ F . We will prove that

λi = λj for any i 6= j, i, j ∈ I, and λ = λi satisfies the above condition.

Without loss of generality, we choose two fixed i, j ∈ I and a fixed nonzero

t ∈ F . By the equality (1.3), [w(0, j),w(tej, i)] = −tw(tej, i). By Lemma 2.3,

[[w(0, j),w(tej, i)], ϕ(w(0, j),w(tej, i))] = 0. So we have an equality

[w(tej, i), ϕ(w(0, j),w(tej, i))] = 0.(2.14)

Set

ϕ(w(0, j),w(tej, i)) =
∑

a∈Zn,k∈I

c(a, k)w(a, k), where c(a, k) ∈ F.

By computation, [w(tej, i), ϕ(w(0, j),w(tej, i))] =
∑

a∈Zn,k 6=j,k∈I

−aic(a, k)w(a+tej, k)

+
∑

a∈Zn

c(a, j)(tw(a+ tej, i)−aiw(a+ tej, j)) = −
∑

a∈Zn,k 6=i,k∈I

aic(a, k)w(a+ tej, k)+
∑

a∈Zn

(c(a, j)t−aic(a, i))w(a+ tej, i). By the above equality, if ai 6= 0, then c(a, k) = 0

for any k 6= i, k ∈ I. In particular, c(a, j) = 0, which implies that c(a, i) = t
ai

c(a, j) =

0 by the above equality. So if ai 6= 0, we have that c(a, k) = 0 for k ∈ I. Thus,

ϕ(w(0, j),w(tej, i)) =
∑

a∈Zn,ai=0,k∈I

c(a, k)w(a, k).(2.15)
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For any k
′

∈ I with k
′

6= j, [w(0, k
′

),w(tej, i)] = 0, and so ϕ(w(0, k
′

), w(tej, i)) = 0

by Lemma 2.5. Thus, [w(0, k
′

), ϕ(w(0, j),w(tej, i))] = ϕ([w(0, k
′

),w(0, j)], w(tej, i))

−[ϕ(w(0, k
′

), w(tej, i)), w(0, j)] = ϕ(0,w(tej, i)) − [0,w(0, j)] = 0. By the equality

(2.15), we have
[

w(0, k
′

),
∑

a∈Zn,ai=0,k∈I

c(a, k)w(a, k)
]

= −
∑

a∈Zn,ai=0,k∈I

ak′ c(a, k)w(a, k) = 0,

which implies that ak′ c(a, k) = 0 for any k ∈ I and a ∈ Z
n with ai = 0. If a6∈ Fej

and ai = 0, then there is some k
′

∈ I such that k
′

6= i or j, ak′ 6= 0, which implies

that c(a, k) = 0 for any k ∈ I. Thus, by the equality (2.15), we have that

ϕ(w(0, j),w(tej, i)) =
∑

m∈F,k∈I

c(mej, k)w(mej, k).(2.16)

For any k
′

6= i or j, [w(ek′ , k
′

),w(mej, i)] = [w(ek′ , k
′

),w(0, j)] = 0, which im-

plies that [w(ek′ , k
′

), ϕ(w(0, j),w(mej, i))] = ϕ([w(ek′ , k
′

), w(0, j)],w(mej, i)) −

[ϕ(w(ek′ , k
′

), w(mej, i)), w(0, j)] = ϕ(0,w(mej, i)) − [0,w(0, j)] = 0. By the equal-

ity (2.16), [w(ek′ , k
′

), ϕ(w(0, j),w(tej, i))] =
∑

m∈F,k∈I

c(mej, k)[w(ek′ , k
′

), w(mej, k)]

=
∑

m∈F

c(mej, k
′

) w(ek′ + mej, k
′

) = 0, which implies that c(mej, k
′

) = 0 for any

m ∈ F . Thus, c(mej, k) = 0 for any m ∈ F and k 6= i or j in the equality (2.16).

Then we have

ϕ(w(0, j),w(tej, i)) =
∑

m∈F

(c(mej, i)w(mej, i) + c(mej, j)w(mej, j)).(2.17)

By Lemma 2.3,

[[w(0, j),w(ej, j)], ϕ(w(0, j),w(tej, i))] = [ϕ(w(0, j),w(ej, j)), [w(0, j),w(tej, i)]].

By Lemma 2.6, ϕ(w(0, j),w(tej, j)) = λj [w(0, j),w(tej, j)]. So [[w(0, j), w(ej, j)],

ϕ(w(0, j),w(tej, i))] = [−w(ej, j),
∑

m∈F

(c(mej, i)w(mej, i) + c(mej, j) w(m ej, j))] =
∑

m∈F

(mc(mej, i)w((m+1)ej, i)+(m−1)c(mej, j)w((m+1)ej, j)), and [ϕ(w(0, j),w(ej,

j)), [w(0, j),w(tej, i)]] = [λj [w(0, j),w(ej, j)], [w(0, j), w(tej, i)]] = [−λjw(ej, j),−t

w(tej, i)] = −λjt
2w((t + 1)ej, i). So we have an equality

∑

m∈F

(mc(mej, i)w((m+ 1)ej, i) + (m− 1)c(mej, j)w((m+ 1)ej, j))(2.18)

= −λjt
2w((t+ 1)ej, i).

Comparing the coefficients of w((t+ 1)ej, i) (resp., w((t+ 1)ej, j)) on the both sides

of the equality (2.18), we have tc(tej, i) = −λjt
2 (resp., (t− 1)c(tej, j) = 0). Then

c(tej, i) = −λjt, c(tej, j) = 0 for any t 6= 1.
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Similarly, for m 6= t, comparing the coefficients of w((m + 1)ej, i) (resp., w((m +

1)ej, j)) on the both sides of the equality (2.18), we have mc(mej, i) = 0 (resp.,

(m− 1)c(mej, j) = 0). Then, in the above equality (2.18),

c(mej, i) = 0 for m 6= t or 0, c(mej, j) = 0 for m 6= t or 1.

So

ϕ(w(0, j),w(tej, i)) = −λjtw(tej, i) + c(0, i)w(0, i) + c(ej, j)w(ej, j).(2.19)

By a similar process, we can obtain that

ϕ(w(0, i),w(t
′

ei, j)) = −λit
′

w(t
′

ei, j) + c
′

(0, j)w(0, j) + c
′

(ei, i)w(ei, i)

for any nonzero t
′

∈ F , where c
′

(0, j), c
′

(ei, i) ∈ F . Next we will prove the following

claim.

Claim. λi = λj for any i 6= j, and c(0, i) = c(ej, j) = c
′

(0, j) = c
′

(ei, i) = 0 for

any i, j ∈ I.

Choose a t
′

∈ F with t
′

6= t. By Lemma 2.3, we have the equality [[w(0, i),w(t
′

ei,

j)], ϕ(w(0, j),w(tej, i))]− [ϕ(w(0, i),w(t
′

ei, j)), [w(0, j),w(tej, i)]] = 0. By computa-

tion, [[w(0, i),w(t
′

ei, j)], ϕ(w(0, j),w(tej, i))]− [ϕ(w(0, i),w(t
′

ei, j)), [w(0, j), w(tej,

i)]] = [−t
′

w(t
′

ei, j),−λjtw(tej, i)+ c(0, i)w(0, i) + c(ej, j)w(ej, j))]− [−λit
′

w(t
′

ei, j)

+c
′

(0, j)w(0, j) + c
′

(ei, i)w(ei, i),−tw(tej, i)] = λjtt
′

(t
′

w(t
′

ei + tej, j) − tw(t
′

ei +

tej, i))− t
′2c(0, i)w(t

′

ei, j)+ t
′

c(ej, j)w(t
′

ei+ej, j)−λitt
′

(t
′

w(t
′

ei+ tej, j)− tw(t
′

ei+

tej, i))− t
2c

′

(0, j)w(tej, i)+c
′

(ei, i)tw(ei+ tej, i) = (λj −λi)tt
′2w(t

′

ei+ tej, j)+(λi−

λj)t
2t

′

w(t
′

ei+tej, i)+t
′

c(ej, j)w(t
′

ei+ej, j)+tc
′

(ei, i)w(ei+tej, i)−t
′2c(0, i)w(t

′

ei, j)

−t2c
′

(0, j)w(tej, i). If t 6= 1, t
′

6= 1, then the coefficients on the right-hand side of the

above equality are zero, which implies that the claim holds. If t = 1, then t
′

6= 1, and

[[w(0, i),w(t
′

ei, j)], ϕ(w(0, j),w(tej, i))]−[ϕ(w(0, i), w(t
′

ei, j)), [w(0, j),w(tej, i)]] =

(t
′

λj − t
′

λi+ c(ej, j))t
′

w(t
′

ei+ej, j)+ (λi−λj)t
′

w(t
′

ei+ej, i)− t
′2c(0, i)w(t

′

ei, j)−

c
′

(0, j)w(ej, i) + c
′

(ei, i)w(ei + ej, i). Thus, the coefficients on the right-hand side of

this equality are zero, and so the claim holds. Similarly, for the case t
′

= 1, the claim

also holds.

Finally, we set

λ = λ1 = λ2 = · · · = λn,

then λ is independent of the choice of i, j and t. By the equality (2.19), ϕ(w(0, j),

w(tej, i)) = −λtw(tej, i) = λ[w(0, j), w(tej, i)].

Theorem 2.8. Every anti-symmetric biderivation ϕ of W is inner.

Proof. By Lemma 2.7, there is an element λ ∈ F such that ϕ(w(0, j),w(tej, i)) =

λ [w(0, j), w(tej, i)] for any nonzero t ∈ F and i, j ∈ I. For any x, y ∈ W,
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[ϕ(x, y),w(tej, i)] = [ϕ(x, y),− 1
t
[w(0, j), w(tej, i)]] = − 1

t
[ϕ(x, y), [w(0, j), w(tej, i)]]

= − 1
t
[[x, y], ϕ(w(0, j),w(tej, i))] = − 1

t
[[x, y], λ[w(0, j), w(tej, i)]] = − 1

t
[[x, y],−λt

w(tej, i)]] = [λ[x, y],w(tej, i)]. So [ϕ(x, y) − λ[x, y], w(tej, i)] = 0 for any nonzero

t ∈ F and i, j ∈ I. Since the set

{w(±ej, i),w(±2ej, i) | i, j ∈ I}

generates the Lie algebra W, then ϕ(x, y) − λ[x, y] ∈ Z(W) = 0. So ϕ(x, y) = λ[x, y]

for any x, y ∈ W. In other words, ϕ = ϕλ is an inner biderivation.

3. Linear commuting maps on W. We now apply the Theorem 2.8 to describe

the linear commuting maps on the generalized Witt algebra W. Recall that a linear

commuting map ψ on W subject to [ψ(x), x] = 0 for any x ∈ W. Obviously, if ψ on

W is such a map, then [ψ(x), y] = [x, ψ(y)] for any x, y ∈ W.

Theorem 3.1. A linear map ψ on W is commuting if and only if ψ is a scalar

multiplication map on W.

Proof. The sufficient direction is obvious. We now prove the necessary direction.

Let ψ be a linear commuting map of W. We construct a map ϕ from W×W → W

by setting

ϕ(x, y) = [ψ(x), y].(3.1)

Obviously, ϕ is bilinear. By computation, for x, y, z ∈ W, ϕ(x, [y, z]) = [ψ(x), [y, z]] =

[[ψ(x), y], z]+[y, [ψ(x), z]] = [ϕ(x, y), z]+[y, ϕ(x, z)]. So ϕ is a derivation with respect

to the second component. Since [ψ(x), y] = [x, ψ(y)], it is easy to see that ϕ is also

a derivation with respect to the first component. Hence, ϕ is a biderivation on W.

Furthermore, ϕ(x, y) = [ψ(x), y] = [x, ψ(y)] = −[ψ(y), x] = −ϕ(y, x), and so ϕ is anti-

symmetric. By Theorem 2.8, ϕ is an inner biderivation, so we can find λ ∈ F such

that ϕ(x, y) = λ[x, y] for any x, y ∈ W. Thus, [ψ(x) − λx, y] = [ψ(x), y] − λ[x, y] =

ϕ(x, y)−λ[x, y] = 0, which implies that ψ(x)−λx ∈ Z(W) = 0. Therefore ψ(x) = λx

for any x ∈ W. Thus, the theorem holds.

Corollary 3.2. (1) Let ψ be a commuting automorphism of W. Then ψ is the

identity mapping.

(2) Let ψ be a commuting derivation of W. Then ψ is the zero mapping.

Proof. Let ψ is a linear commuting map of W. By Theorem 3.1, we may assume

that ψ = λ · 1W for some λ ∈ F . Obviously, ψ(0) = 0.

For any 0 6= x ∈ W, there is some y ∈ W such that [x, y] 6= 0.

(1) If ψ is a commuting automorphism of W, then

ψ([x, y]) = [ψ(x), ψ(y)],(3.2)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 1-12, January 2016

http:/repository.uwyo.edu/ela



ELA

Biderivations and Linear Commuting Maps 11

That is, λ[x, y] = [λx, λy] = λ2[x, y]. So λ2 = λ. Thus, λ = 0 or 1. By the invertibility

of ψ, λ = 1. Thus, ψ(x) = x = 1W(x), and so (1) follows.

(2) If ψ is a commuting derivation of W, then

ψ([x, y]) = [ψ(x), y] + [x, ψ(y)],(3.3)

we have λ[x, y] = [λx, y] + [x, λy] = 2λ[x, y]. So λ = 0. Thus, ψ(x) = 0, and so (2)

follows.
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[4] M. Brešar. Commuting maps: A survey. Taiwanese Journal of Mathematics, 8:361–397, 2004.
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