THE NUMERICAL RADIUS OF A WEIGHTED SHIFT OPERATOR*

BATZORIG UNDRAKH ${ }^{\dagger}$, HIROSHI NAKAZATO ${ }^{\ddagger}$, ADIYASUREN VANDANJAV ${ }^{\S}$, AND MAO-TING CHIEN ${ }^{〔}$

Abstract

In this paper, the point spectrum of the real Hermitian part of a weighted shift operator with weight sequence $a_{1}, a_{2}, \ldots, a_{n}, 1,1, \ldots$ is investigated and the numerical radius of the weighted shift operator in terms of the weighted shift matrix with weights $a_{1}, a_{2}, \ldots, a_{n}$ is formulated explicitly.

Key words. Numerical radius, Weighted shift operator, Weighted shift matrix.

AMS subject classifications. 47A12, 15A60.

1. Introduction. Let A be an operator on a separable Hilbert space H. The numerical range of A is defined to be the set

$$
W(A)=\{\langle A x, x\rangle:\|x\|=1, x \in H\} .
$$

The numerical radius $w(A)$ is the supremum of the modulus of $W(A)$. It is a classical result due to Toeplitz and Hausdorff that the numerical range is a convex set. For references on the theory of numerical range, see, for instance, [1, 10, 11, 12. We consider a weighted shift operator A with weights $\left(a_{1}, a_{2}, \ldots\right)$ on the Hilbert space

[^0]$\ell^{2}(\mathbf{N})$ defined by
\[

A=A\left(a_{1}, a_{2}, ···\right)=\left($$
\begin{array}{ccccc}
0 & 0 & 0 & \ldots & \ldots \\
a_{1} & 0 & 0 & \ddots & \ddots \\
0 & a_{2} & 0 & \ddots & \ddots \\
0 & 0 & a_{3} & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots
\end{array}
$$\right)
\]

where $\left\{a_{n}\right\}$ is a bounded sequence. From the operator-theoretic view point, the class of weighted shift operators contains a typical non-unitary isometry $A(1,1, \ldots)$ (cf. [2]). The real part Hermitian operator $\Re(A)=\left(A+A^{*}\right) / 2$ of a weighted operator A is interpreted as the adjacency matrix of weighted A_{∞}-graph (cf. [8]). In addition, weighted shift operators are closely related to numerical analysis and information theory (cf. [4).

Shields [16] proved that the numerical range $W(A)$ of a weighted shift operator A is a circular disk centered at the origin. In this case, the radius of the disk equals its numerical radius $w(A)$ which is the maximal spectrum of the self-adjoint operator $\Re(A)$. Ridge [15] computed the radius for a weighted shift operator with periodic weights. Computations of the radii of weighted shift operators with typical weights such as $(r, 1,1, \ldots),(1, s, 1,1, \ldots),(r, s, 1,1, \ldots)$ and $\left(r, r^{2}, r^{3}, \ldots\right)$ were carried out in [2, 5, 6, 18, 19].

Stout [17] provided a method to obtain the numerical radius of a weighted shift operator $A\left(a_{1}, a_{2}, \ldots\right)$ with square summable weights by introducing the analytic function

$$
F_{A}(z)=\operatorname{det}\left(I-z \Re\left(A\left(a_{1}, a_{2}, \ldots\right)\right)\right) .
$$

It is shown in [17] that the analytic function is given by

$$
F_{A}(z)=1+\sum_{k=1}^{\infty}\left(-\frac{1}{4}\right)^{k} c_{k} z^{2 k}
$$

where

$$
c_{k}=\sum a_{i_{1}}^{2} a_{i_{2}}^{2} \cdots a_{i_{k}}^{2}
$$

the sum being taken over

$$
1 \leq i_{1}<i_{2}<\cdots<i_{k}<\infty, \quad i_{2}-i_{1} \geq 2, \quad i_{3}-i_{2} \geq 2, \ldots, \quad i_{k}-i_{k-1} \geq 2
$$

and the radius $w\left(A\left(a_{1}, a_{2}, \ldots\right)\right)=1 / \lambda$, where λ is the minimal positive root of $F_{A}(z)=0$.

In the finite-dimensional case, an $n \times n$ weighted shift matrix with weights $\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$ is defined by

$$
A\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)=\left(\begin{array}{ccccc}
0 & 0 & 0 & \ldots & 0 \\
a_{1} & 0 & 0 & \ddots & \vdots \\
0 & a_{2} & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & & 0 & a_{n-1} & 0
\end{array}\right) .
$$

It is easy to see that a weighted shift matrix or operator A is unitarily equivalent to its entry-wise modulus operator $|A|$. Hence we may assume that the weights are nonnegative for the discussion of the numerical range of a weight shift matrix or operator. There have been a number of interesting papers on the properties of the numerical ranges of weighted shift matrices ([3, 6, 7, 9, 16, 17, 20]). The numerical range of a weighted matrix A is a closed disk centered at the origin. Various radii of the disk were studied, e.g., [6, 13, 19]. In particular, $w(A(1,1, \ldots, 1))=\cos (\pi /(n+1))$ for the $n \times n$ shift matrix $A(1,1, \ldots, 1)$ (cf. [13]). The numerical radii of the modified shift matrices $A(1, \ldots, 1, r, 1, \ldots, 1)$ and $A(1, \ldots, 1, r, r, 1, \ldots, 1)$ were computed respectively in [6] and [19].

In this paper, we consider weighted shift operators $A\left(a_{1}, a_{2}, \ldots, a_{n}, 1,1, \ldots\right)$ which perturb the canonical shift operator $A(1,1, \ldots)$, and investigate the point spectrum of the Hermitian operator $\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n}, 1,1, \ldots\right)\right)$ which gives the numerical radius of the operator $A\left(a_{1}, a_{2}, \ldots, a_{n}, 1,1, \ldots\right)$. Furthermore, we explicitly formulate the radius $w\left(A\left(a_{1}, a_{2}, \ldots, a_{n}, 1,1, \ldots\right)\right)$ in terms of the weighted shift matrix $A\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.
2. Weighted shift matrices. Let $A\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$ be an $n \times n$ weighted shift matrix with nonnegative weights. The spectral analysis of a real symmetric tridiagonal matrix $\Re(A)$ is related to numerical analysis (cf. [4). The Hermitian matrix $2 I_{n}-2 \Re(A(1, \ldots, 1))$ is also discussed as the discrete Laplacian in applied mechanics (14).

The characteristic polynomial

$$
p_{n}(t)=\operatorname{det}\left(t I_{n}-\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)\right)\right)
$$

has the recurrence

$$
p_{n}(t)=t p_{n-1}(t)-\frac{1}{4} a_{n-1}^{2} p_{n-2}(t) .
$$

By the formula [17, Lemma 1],

$$
\begin{equation*}
p_{n}(t)=t^{n}+\sum_{1 \leq k \leq n / 2}\left(-\frac{1}{4}\right)^{k} S_{k}\left(a_{1}, \ldots, a_{n-1}\right) t^{n-2 k} \tag{2.1}
\end{equation*}
$$

where the circularly symmetric functions

$$
S_{k}\left(a_{1}, \ldots, a_{n-1}\right)=\sum_{1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq n-1} a_{j_{1}}^{2} a_{j_{2}}^{2} \cdots a_{j_{k}}^{2}
$$

over all $1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq n-1$ satisfying $j_{2}-j_{1} \geq 2, j_{3}-j_{2} \geq 2, \ldots$, $j_{k}-j_{k-1} \geq 2$. The circularly symmetric function $S_{k}\left(a_{1}, \ldots, a_{n-1}\right)$ is abbreviated to $S_{k}^{(n-1)}$ if there is no confusion. We will use Chebyshev polynomials of the second kind to find $\alpha=w\left(A\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)\right)$. If the weights a_{1}, \ldots, a_{n-1} are positive and relatively small, e.g., less than 1 , we have $0<\alpha<1$. Then $0<\theta_{0}=\arccos (\alpha)<\pi$ is the minimal zero of the trigonometric polynomial

$$
\begin{equation*}
2^{n} \sin \theta \operatorname{det}\left(\cos \theta I_{n}-\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)\right)\right) \tag{2.2}
\end{equation*}
$$

On the other hand, if the weights a_{1}, \ldots, a_{n-1} are relatively large, say, greater than $\sec (\pi /(n+1))$, then $\alpha>1$ and $\theta_{0}=\operatorname{arccosh}(\alpha)$ is the minimal zero of the trigonometric polynomial

$$
2^{n} \sinh \theta \operatorname{det}\left(\cosh \theta I_{n}-\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)\right)\right)
$$

Let $\ell C_{k}, 0 \leq k \leq \ell$, denote the binomial coefficients with boundary values $\ell C_{0}=$ ${ }_{\ell} C_{\ell}=1$. For $1 \leq k \leq \ell-1,{ }_{\ell} C_{k}=\ell!/(k!(\ell-k)!)$. The following lemma is essential to expand the trigonometric polynomial (2.2).

Lemma 2.1.

$$
\begin{align*}
2^{n} \sin \theta \cos ^{n} \theta & =\sum_{k=0}^{n-1}{ }_{n-1} C_{k} \sin ((n+1-2 k) \theta) \tag{2.3}\\
& =\sum_{0 \leq k \leq n / 2}\left({ }_{n-1} C_{k}-{ }_{n-1} C_{k-2}\right) \sin ((n+1-2 k) \theta),
\end{align*}
$$

and

$$
\begin{align*}
2^{n} \sinh \theta \cosh ^{n} \theta & =\sum_{k=0}^{n-1}{ }_{n-1} C_{k} \sinh ((n+1-2 k) \theta) \tag{2.4}\\
& =\sum_{0 \leq k \leq n / 2}\left({ }_{n-1} C_{k}-{ }_{n-1} C_{k-2}\right) \sinh ((n+1-2 k) \theta)
\end{align*}
$$

Proof. We compute

$$
\begin{aligned}
\sum_{k=0}^{n-1}{ }_{n-1} C_{k} \sin ((n+1-2 k) \theta) & =\Im\left(\sum_{k=0}^{n-1}{ }_{n-1} C_{k} e^{i(n+1-2 k) \theta}\right) \\
& =\Im\left(e^{i(n+1) \theta} \sum_{k=0}^{n-1}{ }_{n-1} C_{k} e^{-2 i k \theta}\right) \\
& =\Im\left(e^{i(n+1) \theta}\left(1+e^{-2 i \theta}\right)^{n-1}\right) \\
& =\Im\left(e^{2 i \theta}\left(e^{i \theta}+e^{-i \theta}\right)^{n-1}\right) \\
& =2^{n-1} \cos ^{n-1} \theta \Im\left(e^{2 i \theta}\right) \\
& =2^{n} \sin \theta \cos ^{n} \theta
\end{aligned}
$$

where $\Im(z)$ denotes the imaginary part of a complex number. This proves the first equality of (2.3). Next, we prove the second equality of (2.3).

Assume $n=2 m+1$ is odd. Then

$$
\begin{array}{rl}
\sum_{0 \leq k \leq 2 m} & 2 m C_{k} \sin ((2 m+2-2 k) \theta) \tag{2.5}\\
= & { }_{2 m} C_{0} \sin ((2 m+2) \theta)+{ }_{2 m} C_{1} \sin (2 m \theta) \\
& +\sum_{2 \leq k \leq m} 2 m C_{k} \sin ((2 m+2-2 k) \theta) \\
& +\sum_{m+2 \leq k \leq 2 m} 2 m C_{k} \sin ((2 m+2-2 k) \theta)
\end{array}
$$

Observe that

$$
\sin ((2 m+2-2 k) \theta)=-\sin ((2 m+2-2(2 m+2-k)) \theta)=-\sin ((2 m+2-2 j) \theta),
$$

where $j=2 m+2-k$. Since $m+2 \leq k \leq 2 m$, we have $2 \leq j \leq m$. Hence,

$$
\begin{aligned}
\underset{m+2 \leq k \leq 2 m}{(2.6)} \sum_{2 m} C_{k} \sin ((2 m+2-2 k) \theta) & =\sum_{m+2 \leq k \leq 2 m} 2 m C_{2 m-k} \sin ((2 m+2-2 k) \theta) \\
& =-\sum_{2 \leq j \leq m} 2 m C_{j-2} \sin ((2 m+2-2 j) \theta) .
\end{aligned}
$$

Taking together (2.5) and (2.6), we have

$$
\sum_{0 \leq k \leq 2 m} 2 m C_{k} \sin ((2 m+2-2 k) \theta)=\sum_{0 \leq k \leq m}\left(2 m C_{k}-{ }_{2 m} C_{k-2}\right) \sin ((2 m+2-2 k) \theta),
$$

where ${ }_{2 m} C_{-2}={ }_{2 m} C_{-1}=0$.

Assume $n=2 m$ is even. Similar computations yield that

$$
\begin{aligned}
& \quad \sum_{0 \leq k \leq 2 m-1} 2 m-1 C_{k} \sin ((2 m+1-2 k) \theta) \\
& ={ }_{2 m-1} C_{0} \sin (2 m+1) \theta+{ }_{2 m-1} C_{1} \sin ((2 m-1) \theta) \\
& \quad+\sum_{2 \leq k \leq m} 2 m-1 C_{k} \sin ((2 m+1-2 k) \theta) \\
& \quad+\sum_{m+1 \leq k \leq 2 m-1} 2 m-1 C_{k} \sin ((2 m+1-2 k) \theta) \\
& =\sum_{0 \leq k \leq m}\left(2 m-1 C_{k}-{ }_{2 m-1} C_{k-2}\right) \sin ((2 m+1-2 k) \theta),
\end{aligned}
$$

where ${ }_{2 m-1} C_{-2}={ }_{2 m-1} C_{-1}=0$.
As to the formula (2.4), we compute that

$$
\begin{aligned}
& \sum_{0 \leq k \leq n-1}{ }_{n-1} C_{k} \sinh ((n+1-2 k) \theta) \\
& =\frac{1}{2}\left(\sum_{0 \leq k \leq n-1}{ }_{n-1} C_{k}\left(e^{(n+1-2 k) \theta}-e^{(-n-1+2 k) \theta}\right)\right) \\
& =\frac{1}{2}\left(e^{2 \theta}-e^{-2 \theta}\right)\left(e^{\theta}+e^{-\theta}\right)^{n-1} \\
& =\frac{1}{2}\left(e^{\theta}-e^{-\theta}\right)\left(e^{\theta}+e^{-\theta}\right)\left(e^{\theta}+e^{-\theta}\right)^{n-1} \\
& =2^{n}\left(\frac{e^{\theta}-e^{-\theta}}{2}\right)\left(\frac{e^{\theta}+e^{-\theta}}{2}\right)^{n} \\
& =2^{n} \sinh \theta \cosh ^{n} \theta
\end{aligned}
$$

The second equality of (2.4) can be derived in a similar way.
Applying Lemma 2.1, we expand the determinant in (2.2), which generalizes results of [6, Theorem 2.1] and [19, Theorem 2.1].

Theorem 2.2. Let $n \geq 2$. Then

$$
2^{n} \sin \theta \operatorname{det}\left(\cos \theta I_{n}-\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)\right)\right)=\sum_{0 \leq k \leq[n / 2]} h_{k}^{(n-1)} \sin ((n+1-2 k) \theta)
$$

and

$$
2^{n} \sinh \theta \operatorname{det}\left(\cosh \theta I_{n}-\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)\right)\right)=\sum_{0 \leq k \leq[n / 2]} h_{k}^{(n-1)} \sinh ((n+1-2 k) \theta),
$$

where

$$
\begin{aligned}
h_{k}^{(n-1)}= & \left({ }_{n-1} C_{k}-{ }_{n-1} C_{k-2}\right) \\
& +\left(\sum_{\ell=1}^{k-1}(-1)^{\ell}\left({ }_{n-1-2 \ell} C_{k-\ell}-{ }_{n-1-2 \ell} C_{k-\ell-2}\right) S_{\ell}^{(n-1)}\right)+(-1)^{k} S_{k}^{(n-1)}
\end{aligned}
$$

$0 \leq k \leq[n / 2]$, and $h_{0}^{(n-1)}=1, h_{1}^{(n-1)}={ }_{n-1} C_{1}-S_{1}^{(n-1)}$.
Proof. We compute that

$$
\begin{aligned}
& 2^{n} \sin \theta \operatorname{det}\left({\left.\cos \theta I_{n}-\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)\right)\right)}_{=} 2^{n} \sin \theta\left(\cos ^{n} \theta+\sum_{1 \leq k \leq[n / 2]}\left(-\frac{1}{4}\right)^{k} S_{k}^{(n-1)} \cos ^{n-2 k} \theta\right) \quad(\text { by (2.1) })\right. \\
&= 2^{n} \sin \theta \cos ^{n} \theta+\sum_{1 \leq k \leq[n / 2]}(-1)^{k} 2^{n-2 k} \sin \theta \cos ^{n-2 k} \theta S_{k}^{(n-1)} \\
&= \sum_{0 \leq \ell \leq[n / 2]}\left({ }_{n-1} C_{\ell}-{ }_{n-1} C_{\ell-2}\right) \sin ((n+1-2 \ell) \theta) \\
&+\sum_{1 \leq k \leq[n / 2]}(-1)^{k} S_{k}^{(n-1)} \times \\
&\left.\quad \sum_{0 \leq \ell \leq[(n-2 k) / 2]}\left(n-2 k-1 C_{\ell}-{ }_{n-2 k-1} C_{\ell-2}\right) \sin ((n-2 k+1-2 \ell) \theta)\right) \\
&(b y \operatorname{Lemma} 2.1) \\
&= \sin ((n+1) \theta)+{ }_{n-1} C_{1} \sin ((n-1) \theta)+\left(n-1 C_{2}-{ }_{n-1} C_{0}\right) \sin ((n-3) \theta)+\cdots \\
& \quad S_{1}^{(n-1)}\left(\sin ((n-1) \theta)+{ }_{n-3} C_{1} \sin ((n-3) \theta)\right. \\
&+S_{2}^{(n-1)}\left({ }_{n-3} \sin ^{n}((n-3) \theta)+{ }_{n-5} C_{1} \sin ((n-5) \theta)\right. \\
&\left.\quad+\left({ }_{n-5} C_{2}-{ }_{n-5} C_{0}\right) \sin ((n-5) \theta)+\cdots\right) \\
&= \sum_{0 \leq k \leq[n / 2]}\left(\left({ }_{n-1} C_{k}-{ }_{n-1} C_{k-2}\right)-S_{1}^{(n-1)}\left({ }_{n-3} C_{k-1}-{ }_{n-3} C_{k-3}\right)\right. \\
&\left.\left.+S_{2}^{(n-1)}\left({ }_{n-5} C_{k-2}-{ }_{n-5} C_{k-4}\right)-\cdots\right)+\cdots\right) \\
&= \sum_{0 \leq k \leq[n / 2]} h_{k}^{(n-1)} \sin ((n+1-2 k) \theta)
\end{aligned}
$$

The second assertion can be proved in a similar way.
3. Weighted shift operators. The numerical radius of a weighted shift operator has attracted much attention because of its importance and complexity. Research papers on this subject include the Hilbert-Schmidt class of of weighted shift operators, i.e., with square summable weights (cf. 17), and the modified canonical shift operator such as $(\alpha, 1,1, \ldots),(1, \alpha, 1,1, \ldots)$ and $(\alpha, \beta, 1,1, \ldots)$ (cf. [2, 6, [19]).

In this section, we consider weighted shift operators $A\left(a_{1}, a_{2}, \ldots\right)$ acting on a complex Hilbert space $\ell^{2}(\mathbf{N})$ identified with the Hardy space H^{2} satisfying

$$
\lim _{\ell \rightarrow \infty} a_{\ell}=1, \quad \sum_{\ell=1}^{\infty}\left|a_{\ell}-1\right|<\infty \quad \text { and } \quad \prod_{j=1}^{\ell} a_{j} \rightarrow \beta \text { as } \ell \rightarrow \infty
$$

for some $0<\beta<\infty$. A typical weighted shift operator of this class is $A\left(a_{1}, a_{2}, \ldots, a_{n}\right.$, $1,1, \ldots)$ that perturbs the canonical shift operator $A=A(1,1, \ldots)$.

ThEOREM 3.1. Let $A\left(a_{1}, a_{2}, \ldots, a_{n}, 1,1, \ldots\right)$ be a weighted shift operator with positive weights. Then $w\left(A\left(a_{1}, \ldots, a_{n}, 1,1, \ldots\right)\right)>1$ if and only if $\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n}\right.\right.$, $1,1, \ldots)$) has an eigenvalue greater than 1 .

Proof. Since $W\left(A\left(a_{1}, \ldots, a_{n}, 1,1, \ldots\right)\right)$ is a circular disk centered at the origin, it follows that $w\left(A\left(a_{1}, \ldots, a_{n}, 1,1, \ldots\right)\right)=w\left(\Re\left(A\left(a_{1}, \ldots, a_{n}, 1,1, \ldots\right)\right)\right)$. The sufficiency is trivial. Assume $w\left(A\left(a_{1}, \ldots, a_{n}, 1,1, \ldots\right)\right)>1$. For the Hermitian operator $\Re\left(A\left(a_{1}, \ldots, a_{n}, 1,1, \ldots\right)\right)$,

$$
\left\|\Re\left(A\left(a_{1}, \ldots, a_{n}, 1,1, \ldots\right)\right)\right\|=w\left(\Re\left(A\left(a_{1}, \ldots, a_{n}, 1,1, \ldots\right)\right)\right) .
$$

Then, by 19, Lemma 3.1], $w\left(\Re\left(A\left(a_{1}, \ldots, a_{n}, 1,1, \ldots\right)\right)\right)$ and thus $w\left(A\left(a_{1}, \ldots, a_{n}\right.\right.$, $1,1, \ldots))$ is an eigenvalue of $\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n}, 1,1, \ldots\right)\right)$.

The following result characterizes the existence of an eigenvalue $\alpha \geq 0$ of the Hermitian operator $\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n}, 1,1, \ldots\right)\right)$, and it turns out the eigenvalue must be greater than 1 .

Theorem 3.2. Let $n \geq 1$ and $A\left(a_{1}, a_{2}, \ldots, a_{n}, 1,1, \ldots\right)$ be a weighted shift operator with positive weights. A value $\alpha \geq 0$ is an eigenvalue of $\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n}, 1\right.\right.$, $1, \ldots)$) if and only if there is a nonzero formal power series

$$
f(z)=f(0)+f^{\prime}(0) z+\frac{f^{\prime \prime}(0)}{2!} z^{2}+\cdots+\frac{f^{(n)}(0)}{n!} z^{n}+\frac{f^{(n+1)}(0)}{(n+1)!} z^{n+1}+\cdots
$$

with $f(0) \neq 0$ belonging to the Hardy space H^{2} which satisfies the following recurrence relations

$$
\begin{equation*}
f^{\prime}(0)=\frac{2 \alpha}{a_{1}} f(0), \frac{f^{(k)}(0)}{k!}=\frac{2 \alpha}{a_{k}} \frac{f^{(k-1)}(0)}{(k-1)!}-\frac{a_{k-1}}{a_{k}} \frac{f^{(k-2)}(0)}{(k-2)!} \tag{3.1}
\end{equation*}
$$

for $k=2, \ldots, n$, and

$$
\begin{align*}
& \frac{f^{(n+1)}(0)}{(n+1)!}=2 \alpha \frac{f^{(n)}(0)}{n!}-a_{n} \frac{f^{(n-1)}(0)}{(n-1)!} \tag{3.2}\\
& \frac{f^{(m)}(0)}{m!}=2 \alpha \frac{f^{(m-1)}(0)}{(m-1)!}-\frac{f^{(m-2)}(0)}{(m-2)!} \tag{3.3}
\end{align*}
$$

for $m=n+2, n+3, \ldots$ In this case, the eigenvalue $\alpha>1$ and

$$
\begin{equation*}
\frac{f^{(n+1)}(0)}{(n+1)!}-\left(\alpha-\sqrt{\alpha^{2}-1}\right) \frac{f^{(n)}(0)}{n!}=0 \tag{3.4}
\end{equation*}
$$

Proof. Assume that $\alpha \geq 0$. Clearly, α is an eigenvalue of the Hermitian operator $\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n}, 1,1, \ldots\right)\right)$ if and only if there is a corresponding nonzero eigenfunction

$$
f(z)=f(0)+f^{\prime}(0) z+\frac{f^{(2)}(0)}{2} z^{2}+\frac{f^{(3)}(0)}{3!} z^{3}+\cdots \in H^{2}
$$

satisfying $\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n}, 1,1, \ldots\right)\right) f=\alpha f$ which is equivalent to the recurrence relations (3.1), (3.2) and (3.3).

From the recurrence relation (3.3), the coefficients of the eigenfunction satisfy the recurrence

$$
\begin{equation*}
\frac{f^{(k)}(0)}{k!}=2 \alpha \frac{f^{(k-1)}(0)}{(k-1)!}-\frac{f^{(k-2)}(0)}{(k-2)!} \tag{3.5}
\end{equation*}
$$

for $k=n+2, n+3, \ldots$ If $\alpha=0$, the recurrence relation (3.5) implies that

$$
\frac{f^{(n+2 p)}(0)}{(n+2 p)!}=(-1)^{p} \frac{f^{(n)}(0)}{n!} \text { and } \frac{f^{(n+1+2 p)}(0)}{(n+1+2 p)!}=(-1)^{p} \frac{f^{(n+1)}(0)}{(n+1)!}
$$

$p=1,2, \ldots$ Since $f \in H^{2}$, it follows that

$$
\frac{f^{(n+1)}(0)}{(n+1)!}=\frac{f^{(n)}(0)}{n!}=0
$$

and this derives the function $f=0$ from (3.1).
If $0<\alpha<1$ and is expressed as $\alpha=\cos \theta$ for some $0<\theta<\pi / 2$, then the difference equation (3.5) implies that

$$
\frac{f^{(n+p)}(0)}{(n+p)!}=\gamma e^{i p \theta}+\delta e^{-i p \theta}
$$

$p=0,1,2, \ldots$, for some constants γ and δ. Again, for $f \in H^{2}$, we have $\gamma=0$ and $\delta=0$ as well.

If $\alpha=1$, then by (3.5),

$$
\frac{f^{(n+p+2)}(0)}{(n+p+2)!}-\frac{f^{(n+p+1)}(0)}{(n+p+1)!}=\frac{f^{(n+p+1)}(0)}{(n+p+1)!}-\frac{f^{(n+p)}(0)}{(n+p)!}
$$

$p=0,1,2, \ldots$, and hence

$$
\frac{f^{(n+p)}(0)}{(n+p)!}=\frac{f^{(n)}(0)}{n!}+p \eta
$$

$p=0,1,2, \ldots$, for some constant η. By the same fact that $f \in H^{2}$, we have $\eta=0$ and

$$
\frac{f^{(n+1)}(0)}{(n+1)!}=\frac{f^{(n)}(0)}{n!}=0
$$

and thus $f=0$. This proves the eigenvalue $\alpha>1$.
The characteristic equation of the difference equation (3.5) is

$$
r^{2}-2 \alpha r+1=0
$$

The general solution of the difference equation becomes

$$
\frac{f^{(n+p)}(0)}{(n+p)!}=\mu_{1}\left(\alpha+\sqrt{\alpha^{2}-1}\right)^{p}+\mu_{2}\left(\alpha-\sqrt{\alpha^{2}-1}\right)^{p}
$$

$p=0,1,2, \ldots$, for some constants μ_{1} and μ_{2}. Notice that $\alpha+\sqrt{\alpha^{2}-1}>1$. Hence, $\mu_{1}=0$, and the initial condition implies that $\mu_{2}=\frac{f^{(n)}(0)}{n!}$, and this concludes (3.4).

In the following, we explicitly formulate a characteristic equation for the point spectrum of the operator $\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n}, 1,1, \ldots\right)\right)$ in terms of the weighted shift $\operatorname{matrix} A\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Theorem 3.3. Let $n \geq 1$ and $A\left(a_{1}, a_{2}, \ldots, a_{n}, 1,1, \ldots\right)$ be a weighted shift operator with positive weights, and let $f(z)$ be a nonzero formal power series:

$$
f(z)=f(0)+f^{\prime}(0) z+\frac{f^{\prime \prime}(0)}{2!} z^{2}+\cdots+\frac{f^{(n)}(0)}{n!} z^{n}+\frac{f^{(n+1)}(0)}{(n+1)!} z^{n+1}+\cdots
$$

Assume $\alpha>1$. Then α is an eigenvalue of $\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n}, 1,1, \ldots\right)\right)$ with eigenfunction $f(z) \in H^{2}$ if and only if the coefficients of $f(z)$ satisfy condition (3.1), and the value $z=\alpha-\sqrt{\alpha^{2}-1}$ is a zero of the polynomial

$$
F_{n}(z)=Q_{n-1}(z)-a_{n}^{2} z^{2} Q_{n-2}(z)
$$

where

$$
Q_{\ell}(z)=\operatorname{det}\left(\left(z^{2}+1\right) I_{\ell+1}-2 z \Re\left(A\left(a_{1}, \ldots, a_{\ell}\right)\right)\right)
$$

$\ell=1,2, \ldots$ and $Q_{0}(z)=z^{2}+1, Q_{-1}(z)=1$.

Proof. Assume that α is an eigenvalue of the Hermitian operator $\Re\left(A\left(a_{1}, a_{2}, \ldots\right.\right.$, $\left.a_{n}, 1,1, \ldots\right)$), and its corresponding nonzero eigenfunction is given by

$$
f(z)=f(0)+f^{\prime}(0) z+\frac{f^{(2)}(0)}{2} z^{2}+\frac{f^{(3)}(0)}{3!} z^{3}+\cdots \in H^{2}
$$

The equation $\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n}, 1,1, \ldots\right)\right) f=\alpha f$ leads to the relation

$$
\begin{aligned}
& \left(z^{2}-2 \alpha z+1\right) f(z) \\
& \quad=f(0)-\left(a_{1}-1\right) z^{2} f(0)-\left(\sum_{k=1}^{n-1}\left(\left(a_{k+1}-1\right) z^{k+2}+\left(a_{k}-1\right) z^{k}\right) \frac{f^{(k)}(0)}{k!}\right) \\
& \quad-\left(a_{n}-1\right) \frac{f^{(n)}(0)}{n!} z^{n} .
\end{aligned}
$$

We define the above polynomial by

$$
\begin{align*}
H_{n}(z)=f & (0)-\left(a_{1}-1\right) z^{2} f(0) \tag{3.6}\\
& -\left(\sum_{k=1}^{n-1}\left(\left(a_{k+1}-1\right) z^{k+2}+\left(a_{k}-1\right) z^{k}\right) \frac{f^{(k)}(0)}{k!}\right) \\
& -\left(a_{n}-1\right) \frac{f^{(n)}(0)}{n!} z^{n},
\end{align*}
$$

and

$$
F_{n}(z)=\frac{a_{1} a_{2} \cdots a_{n}}{f(0)} H_{n}(z)
$$

Since $z=\alpha-\sqrt{\alpha^{2}-1}$ is a root of $z^{2}-2 \alpha z+1=0$, it follows that $F_{n}\left(\alpha-\sqrt{\alpha^{2}-1}\right)=$ $H_{n}\left(\alpha-\sqrt{\alpha^{2}-1}\right)=0$. By the relation of the sequence $f^{(k)}(0) / k$! in (3.1), we have that

$$
\begin{align*}
a_{1} a_{2} \cdots a_{k} \frac{f^{(k)}(0)}{k!} z^{k} & =f(0) z^{k}\left((2 \alpha)^{k}-(2 \alpha)^{k-2} S_{1}^{(k-1)}+(2 \alpha)^{k-4} S_{2}^{(k-1)}+\cdots\right) \\
& =f(0) z^{k}\left((2 \alpha)^{k}+\sum_{1 \leq \ell \leq k / 2}(-1)^{\ell}(2 \alpha)^{k-2 \ell} S_{\ell}^{(k-1)}\right) \tag{3.7}\\
& =f(0)\left(\left(z^{2}+1\right)^{k}+\sum_{1 \leq \ell \leq k / 2}(-1)^{\ell} z^{2 \ell}\left(z^{2}+1\right)^{k-2 \ell} S_{\ell}^{(k-1)}\right) .
\end{align*}
$$

Substituting (3.7) into (3.6), we obtain that

$$
\begin{aligned}
F_{n}(z)= & a_{1} a_{2} \cdots a_{n}+\left(a_{1} a_{2} \cdots a_{n}-a_{1}^{2} a_{2} a_{3} \cdots a_{n}\right) z^{2} \\
& +\sum_{k=1}^{n-1}\left(a_{k+1} a_{k+2} \cdots a_{n}-a_{k+1}^{2} a_{k+2} \cdots a_{n}\right) z^{2} \\
& \quad \times\left(\left(z^{2}+1\right)^{k}+\sum_{1 \leq \ell \leq k / 2}(-1)^{\ell} z^{2 \ell}\left(z^{2}+1\right)^{k-2 \ell} S_{\ell}^{(k-1)}\right) \\
+ & \sum_{k=1}^{n-1}\left(a_{k+1} a_{k+2} \cdots a_{n}-a_{k} a_{k+1} \cdots a_{n}\right) \\
& \times\left(\left(z^{2}+1\right)^{k}+\sum_{1 \leq \ell \leq k / 2}(-1)^{\ell} z^{2 \ell}\left(z^{2}+1\right)^{k-2 \ell} S_{\ell}^{(k-1)}\right) \\
& +\left(1-a_{n}\right)\left(\left(z^{2}+1\right)^{n}+\sum_{1 \leq \ell \leq n / 2}(-1)^{\ell} z^{2 \ell}\left(z^{2}+1\right)^{n-2 \ell} S_{\ell}^{(n-1)}\right)
\end{aligned}
$$

The polynomial $F_{n}(z)$ with corresponding coefficients $c_{k}^{(n)}$ is written as

$$
\begin{equation*}
F_{n}(z)=c_{0}^{(n)}+c_{1}^{(n)} z^{2}+c_{2}^{(n)} z^{4}+c_{3}^{(n)} z^{6}+\cdots+c_{n}^{(n)} z^{2 n} \tag{3.8}
\end{equation*}
$$

We compute the coefficients $c_{k}^{(n)}$. For $k=0$,

$$
\begin{aligned}
c_{0}^{(n)}= & a_{1} a_{2} \cdots a_{n}+\sum_{k=1}^{n-1}\left(a_{k+1} a_{k+2} \cdots a_{n}-a_{k} a_{k+1} \cdots a_{n}\right)+\left(1-a_{n}\right) \\
= & 1-a_{n}+\left(a_{n}-a_{n-1} a_{n}\right)+\left(a_{n-1} a_{n}-a_{n-2} a_{n-1} a_{n}\right)+\cdots \\
& \quad+\left(a_{2} a_{3} \cdots a_{n}-a_{1} a_{2} \cdots a_{n}\right)+a_{1} a_{2} \cdots a_{n} \\
= & 1
\end{aligned}
$$

For $k=n$, and $n=1$, by using $a_{1} z f^{\prime}(0)=\left(z^{2}+1\right) f(0)$, we obtain that

$$
H_{1}(z)=f(0)-\left(a_{1}-1\right) z^{2} f(0)-\left(a_{1}-1\right) z f^{\prime}(0), \quad F_{1}(z)=1+\left(1-a_{1}^{2}\right) z^{2}
$$

and hence $c_{1}^{(1)}=1-a_{1}^{2}$. For $n \geq 2$,

$$
\begin{aligned}
& \frac{a_{1} a_{2} \ldots a_{n}}{f(0)}\left(1-a_{n}\right)\left(z^{n} \frac{f^{(n)}(0)}{n!}+z^{n+1} \frac{f^{(n-1)}(0)}{(n-1)!}\right) \\
& \quad=\left(1-a_{n}\right)\left(z^{2 n}+a_{n} z^{2} z^{2 n-2}+\gamma z^{2 n-2}+\cdots\right) \\
& \quad=\left(1-a_{n}^{2}\right) z^{2 n}+\left(1-a_{n}\right) \gamma z^{2 n-2}+\cdots
\end{aligned}
$$

Hence, $c_{n}^{(n)}=1-a_{n}^{2}$.

For $1 \leq k \leq n-1$, we deduce from the definition of $H_{n}(z)$ in (3.6) that

$$
H_{n}(z)=H_{n-1}(z)-\left(a_{n}-1\right)\left(z^{n+1} \frac{f^{(n-1)}(0)}{(n-1)!}+z^{n} \frac{f^{(n)}(0)}{n!}\right)
$$

Then
(3.9) $\quad F_{n}(z)=\frac{a_{1} a_{2} \cdots a_{n}}{f(0)}\left(H_{n-1}(z)-\left(a_{n}-1\right)\left(z^{n+1} \frac{f^{(n-1)}(0)}{(n-1)!}+z^{n} \frac{f^{(n)}(0)}{n!}\right)\right)$

$$
\begin{aligned}
& =a_{n} F_{n-1}(z)+\left(a_{n}-a_{n}^{2}\right)\left(z^{2}\left(z^{2}+1\right)^{n-1}\right. \\
& \left.\quad+\sum_{1 \leq \ell \leq(n-1) / 2}(-1)^{\ell} z^{2+2 \ell}\left(z^{2}+1\right)^{n-1-2 \ell} S_{\ell}^{(n-2)}\right) \\
& \quad \\
& \quad+\left(1-a_{n}\right)\left(\left(z^{2}+1\right)^{n}+\sum_{1 \leq \ell \leq n / 2}(-1)^{\ell} z^{2 \ell}\left(z^{2}+1\right)^{n-2 \ell} S_{\ell}^{(n-1)}\right)
\end{aligned}
$$

Comparing the coefficients of (3.8) and (3.9), we have the following recurrence relation for $c_{k}^{(n)}, 1 \leq k \leq n-1$:

$$
\begin{aligned}
0=- & c_{k}^{(n)}+a_{n} c_{k}^{(n-1)}+\left(a_{n}-a_{n}^{2}\right)_{n-1} C_{k-1}+\left(1-a_{n}\right)_{n} C_{k} \\
& +\left(a_{n}-a_{n}^{2}\right) \sum_{1 \leq \ell \leq k-1,2 \ell \leq n-1}(-1)^{\ell}{ }_{n-1-2 \ell} C_{k-1-\ell} S_{\ell}^{(n-2)} \\
& +\left(1-a_{n}\right) \sum_{1 \leq \ell \leq k, 2 \ell \leq n}(-1)^{\ell}{ }_{n-2 \ell} C_{k-\ell} S_{\ell}^{(n-1)} \\
=- & c_{k}^{(n)}+B_{k}^{(n)}-a_{n}\left(-c_{k}^{(n-1)}+A_{k}^{(n-1)}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
A_{k}^{(n)}= & { }_{n} C_{k}-{ }_{n-1} C_{k-1} a_{n}^{2}-{ }_{n-2} C_{k-1} \sum_{j=1}^{n-1} a_{j}^{2} \\
& +\sum_{\ell=2}^{k-1}(-1)^{\ell}\left[{ }_{n-2 \ell+1} C_{k-\ell} S_{\ell-1}^{(n-2)} a_{n}^{2}+{ }_{n-2 \ell} C_{k-\ell} S_{\ell}^{(n-1)}\right]+(-1)^{k} S_{k}^{(n)}
\end{aligned}
$$

and

$$
\begin{aligned}
B_{k}^{(n)}= & { }_{n} C_{k}-{ }_{n-1} C_{k-1} a_{n}^{2}-a_{n}^{2} \sum_{1 \leq \ell \leq k-1,2 \ell \leq n-2}(-1)^{\ell}{ }_{n-1-2 \ell} C_{k-1-\ell} S_{\ell}^{(n-2)} \\
& +\sum_{1 \leq \ell \leq k, 2 \ell \leq n}(-1)^{\ell}{ }_{n-2 \ell} C_{k-\ell} S_{\ell}^{(n-1)}
\end{aligned}
$$

Direct computations show that $A_{k}^{(n)}=B_{k}^{(n)}$ and also $c_{k}^{(n-1)}=A_{k}^{(n-1)}$. Therefore, $c_{k}^{(n)}=A_{k}^{(n)}=B_{k}^{(n)}$ for every $n=1,2, \ldots$ and $1 \leq k \leq n$.

We decompose the coefficient $c_{k}^{(n)}=B_{k}^{(n)}$ for $k \geq 2$ into two parts. By letting

$$
\tilde{c}_{k}^{(n)}={ }_{n} C_{k}+\sum_{1 \leq \ell \leq k, \ell \leq n / 2}(-1)^{\ell}{ }_{n-2 \ell} C_{k-\ell} S_{\ell}^{(n)}, \quad k=0,1, \ldots, n
$$

and

$$
d_{k}^{(n)}={ }_{n-2} C_{k-2}+\sum_{1 \leq \ell \leq k-2, \ell \leq(n-2) / 2}(-1)^{\ell}{ }_{n-2-2 \ell} C_{k-2-\ell} S_{\ell}^{(n-2)}, \quad k=2,3, \ldots, n
$$

We compute that

$$
\begin{aligned}
\tilde{c}_{k}^{(n)}-B_{k}^{(n)}= & { }_{n} C_{k}+\sum_{\ell=1}^{k}(-1)^{\ell}{ }_{n-2 \ell} C_{k-\ell} S_{\ell}^{(n)}-{ }_{n} C_{k}-\sum_{\ell=1}^{k}{ }_{n-2 \ell} C_{k-\ell} S_{\ell}^{(n-1)} \\
& +{ }_{n-1} C_{k-1} a_{n}^{2}+a_{n}^{2} \sum_{\ell=1}^{k-1}(-1)^{\ell}{ }_{n-1-2 \ell} C_{k-1-\ell} S_{\ell}^{(n-2)} \\
= & a_{n}^{2} \sum_{\ell=1}^{k}(-1)^{\ell}{ }_{n-2 \ell} C_{k-\ell} S_{\ell-1}^{(n-2)}+{ }_{n-1} C_{k-1} a_{n}^{2} \\
& +a_{n}^{2} \sum_{\ell=1}^{k-1}(-1)^{\ell}{ }_{n-1-2 \ell} C_{k-1-\ell} S_{\ell}^{(n-2)} \\
= & a_{n}^{2} d_{k}^{(n)}
\end{aligned}
$$

This shows that

$$
c_{k}^{(n)}=\tilde{c}_{k}^{(n)}-a_{n}^{2} d_{k}^{(n)}
$$

and thus

$$
c_{k}^{(n)} z^{2 k}=\tilde{c}_{k}^{(n)} z^{2 k}-a_{n}^{2} z^{4} d_{k} z^{2 k-4}
$$

with $c_{0}^{(n)}=1, \quad c_{1}^{(n)}=-S_{1}^{(n)}+n$. Therefore,

$$
F_{n}(z)=G_{n}(z)-a_{n}^{2} z^{4} L_{n}(z)
$$

where

$$
G_{n}(z)=\tilde{c}_{0}^{(n)}+\tilde{c}_{1}^{(n)} z^{2}+\tilde{c}_{2}^{(n)} z^{4}+\tilde{c}_{3}^{(n)} z^{6}+\cdots+\tilde{c}_{n}^{(n)} z^{2 n}
$$

and

$$
L_{n}(z)=d_{2}^{(n)}+d_{3}^{(n)} z^{2}+\cdots+d_{n}^{(n)} z^{2 n-4}
$$

Rearranging the terms of $G_{n}(z)$, we have that

$$
\begin{aligned}
G_{n}(z)= & \left(1+{ }_{n} C_{1} z^{2}+{ }_{n} C_{2} z^{4}+\cdots+{ }_{n} C_{n} z^{2 n}\right) \\
& \quad-S_{1}^{(n)} z^{2}\left({ }_{n-2} C_{0}+{ }_{n-2} C_{1} z^{2}+\cdots+{ }_{n-2} C_{n-2} z^{2 n-2}\right)+\cdots \\
= & \sum_{k=0}^{n}{ }_{n} C_{k} z^{2 k}+\sum_{1 \leq \ell \leq[(n+1) / 2]}(-1)^{\ell} S_{\ell}^{(n)} z^{2 \ell} \sum_{j=0}^{n-2 \ell}{ }_{n-2 \ell} C_{j} z^{2 j} \\
= & \left(z^{2}+1\right)^{n}+\sum_{1 \leq \ell \leq[(n+1) / 2]}(-1)^{\ell} S_{\ell}^{(n)} z^{2 \ell}\left(z^{2}+1\right)^{n-2 \ell} .
\end{aligned}
$$

By equation (2.1), the characteristic polynomial of $\left.2 \Re\left(A\left(a_{1}, \ldots, a_{n}\right)\right)\right)$ is formulated as

$$
\operatorname{det}\left(x I_{n+1}-2 y \Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)\right)=\sum_{0 \leq \ell \leq(n+1) / 2}(-1)^{\ell} S_{\ell}^{(n)} x^{n+1-2 \ell} y^{2 \ell}
$$

Then, we obtain that

$$
\begin{equation*}
\left(z^{2}+1\right) G_{n}(z)=\operatorname{det}\left(\left(z^{2}+1\right) I_{n+1}-2 z \Re\left(A\left(a_{1}, \ldots, a_{n}\right)\right)\right)=Q_{n}(z) \tag{3.10}
\end{equation*}
$$

Applying the Laplace expansion on the $(n+1)$-th row of the determinant (3.10), we expand

$$
\begin{aligned}
& \operatorname{det}\left(\left(z^{2}+1\right) I_{n+1}-2 z \Re\left(A\left(a_{1}, \ldots, a_{n}\right)\right)\right) \\
& \qquad=\left(z^{2}+1\right) \operatorname{det}\left(\left(z^{2}+1\right) I_{n}-2 z \Re\left(A\left(a_{1}, \ldots, a_{n-1}\right)\right)\right) \\
& \quad-a_{n}^{2} z^{2} \operatorname{det}\left(\left(z^{2}+1\right) I_{n-1}-2 z \Re\left(A\left(a_{1}, \ldots, a_{n-2}\right)\right)\right) .
\end{aligned}
$$

Similarly, we can prove that

$$
\left(z^{2}+1\right) L_{n}(z)=\operatorname{det}\left(\left(z^{2}+1\right) I_{n-1}-2 z \Re\left(A\left(a_{1}, \ldots, a_{n-2}\right)\right)\right) .
$$

Then, we have that

$$
\begin{aligned}
\left(z^{2}+1\right) F_{n}(z)= & \left(z^{2}+1\right) G_{n}(z)-a_{n}^{2} z^{4}\left(z^{2}+1\right) L_{n}(z) \\
= & \left(z^{2}+1\right) \operatorname{det}\left(\left(z^{2}+1\right) I_{n}-2 z \Re\left(A\left(a_{1}, \ldots, a_{n-1}\right)\right)\right) \\
& -a_{n}^{2} z^{2}\left(z^{2}+1\right) \operatorname{det}\left(\left(z^{2}+1\right) I_{n-1}-2 z \Re\left(A\left(a_{1}, \ldots, a_{n-2}\right)\right)\right) .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
F_{n}(z)= & \operatorname{det}\left(\left(z^{2}+1\right) I_{n}-2 z \Re\left(A\left(a_{1}, \ldots, a_{n-1}\right)\right)\right) \\
& -a_{n}^{2} z^{2} \operatorname{det}\left(\left(z^{2}+1\right) I_{n-1}-2 z \Re\left(A\left(a_{1}, \ldots, a_{n-2}\right)\right)\right) \\
= & Q_{n-1}(z)-a_{n}^{2} z^{2} Q_{n-2}(z) .
\end{aligned}
$$

To prove the converse part, we first compute that

$$
\begin{aligned}
F_{n}(z)= & Q_{n-1}(z)-a_{n}^{2} z^{2} Q_{n-2}(z) \\
= & \left(\left(z^{2}+1\right) Q_{n-1}(z)-a_{n}^{2} z^{2} Q_{n-2}(z)\right)-z^{2} Q_{n-1}(z) \\
= & Q_{n}(z)-z^{2} Q_{n-1}(z) \\
= & \left(\left(z^{2}+1\right)^{n+1}+\sum_{1 \leq \ell \leq[(n+1) / 2]}(-1)^{\ell} z^{2 \ell}\left(z^{2}+1\right)^{n+1-2 \ell} S_{\ell}^{(n)}\right) \\
& -z^{2}\left(\left(z^{2}+1\right)^{n}+\sum_{1 \leq \ell \leq[n / 2]}(-1)^{\ell} z^{2 \ell}\left(z^{2}+1\right)^{n-2 \ell} S_{\ell}^{(n-1)}\right) \quad(\text { by (3.10) }) \\
= & z^{n+1}\left((2 \alpha)^{n+1}+\sum_{1 \leq \ell \leq[(n+1) / 2]}(-1)^{\ell}(2 \alpha)^{n+1-2 \ell} S_{\ell}^{(n)}\right. \\
& \left.-z^{n+2}\left((2 \alpha)^{n}+\sum_{1 \leq \ell \leq[n / 2]}(-1)^{\ell}(2 \alpha)^{n-2 \ell} S_{\ell}^{(n-1)}\right)\right) \\
= & \left(\prod_{j=1}^{n} a_{j}\right) \frac{z^{n+1}}{f(0)}\left(\frac{f^{(n+1)}(0)}{(n+1)!}-z \frac{f^{(n)}(0)}{n!}\right) .
\end{aligned}
$$

Hence, if $F_{n}\left(\alpha-\sqrt{\alpha^{2}-1}\right)=0$, we have

$$
\frac{f^{(n+1)}(0)}{(n+1)!}-\left(\alpha-\sqrt{\alpha^{2}-1}\right) \frac{f^{(n)}(0)}{n!}=0
$$

This equation guarantees that the coefficients of the eigenfunction determined by the difference equation (3.10) satisfy the relation

$$
\frac{f^{(n+p)}(0)}{(n+p)!}=\mu_{1}\left(\alpha+\sqrt{\alpha^{2}-1}\right)^{p}+\mu_{2}\left(\alpha-\sqrt{\alpha^{2}-1}\right)^{p}
$$

$p=0,1,2, \ldots$, for some constants μ_{1} and μ_{2}, and the constant μ_{1} necessarily vanishes. This asserts that the function $f(z)$ belongs to the Hardy space H^{2}.

We consider a special weighted shift operator $A\left(a_{1}, 1,1, \ldots\right)$. If a_{1} is large enough, e.g., $a_{1}>\sqrt{2}$, then $\alpha=\left\|\Re\left(A\left(a_{1}, 1,1, \ldots\right)\right)\right\|>1$ is an eigenvalue of $\Re\left(A\left(a_{1}, 1,1, \ldots\right)\right)$. By Theorem 3.3, $F_{1}(z)=z^{2}+1-a_{1}^{2} z^{2}$. The positive root of $F_{1}(z)=0$ is $z=$ $1 / \sqrt{a_{1}^{2}-1}$, and thus,

$$
w\left(A\left(a_{1}, 1,1, \ldots\right)\right)=\alpha=\frac{1}{2}\left(z+\frac{1}{z}\right)=\frac{1}{2}\left(\sqrt{a_{1}^{2}-1}+\frac{1}{\sqrt{a_{1}^{2}-1}}\right)
$$

This formula is also obtained in [2, 20]. Similarly, for the weighted shift operator $A\left(1, a_{2}, 1,1, \ldots\right)$, we have

$$
F_{2}(z)=Q_{1}(z)-a_{2}^{2} z^{2} Q_{0}(z)=\left(z^{2}+1\right)^{2}-z^{2}-a_{2}^{2} z^{2}\left(z^{2}+1\right)
$$

The zeros of $F_{2}(z)=0$ determine the numerical radius $w\left(A\left(1, a_{2}, 1, \ldots\right)\right)$ (cf. [6, 20]).
The polynomial $F_{n}(z)$ associated with the weighted shift operator $A\left(a_{1}, a_{2}, \ldots\right.$, $\left.a_{n}, 1,1, \ldots\right)$ in Theorem 3.3 is also denoted by $F_{n}\left(z ; a_{1}, \ldots, a_{n}\right)$ if it is necessary to emphasize the first n weights. In consequence of Theorem 3.3, we have the following corollaries.

Corollary 3.4. Let $1 \leq m<n$, and $F_{n}(z)$ be the polynomial defined in Theorem 3.3. Then

$$
F_{n}\left(z ; a_{1}, \ldots, a_{m}, 1, \ldots, 1\right)=F_{m}\left(z ; a_{1}, \ldots, a_{m}\right)
$$

Proof. By mathematical induction on $n-m$, it is sufficient to prove the case $n=m+1$. We have that

$$
\begin{aligned}
F_{n}\left(z ; a_{1}, \ldots, a_{m}, 1\right) & =Q_{m}(z)-z^{2} Q_{m-1}(z) \\
& =\left(z^{2}+1\right) Q_{m-1}(z)-a_{m}^{2} z^{2} Q_{m-2}(z)-z^{2} Q_{m-1}(z) \\
& =Q_{m-1}(z)-a_{m}^{2} Q_{m-2}(z) \\
& =F_{m}\left(z ; a_{1}, \ldots, a_{m}\right) .
\end{aligned}
$$

Corollary 3.5. Let $F_{n}(z)$ be the polynomial defined in Theorem 3.3. Then, the recurrence equation

$$
\begin{aligned}
& \left(a_{n+2}^{2}-1\right)\left(a_{n+1}^{2}-1\right) F_{n+3}(z) \\
& \quad=\left(\left(a_{n+2}^{2}-1\right)\left(a_{n+1}^{2}-1\right)+\left(a_{n+3}^{2}-1\right)\left(a_{n+1}^{2}-1\right)\left(z^{2}+1\right)\right) F_{n+2}(z) \\
& \quad-\left(\left(a_{n+3}^{2}-1\right)\left(a_{n+1}^{2}-1\right)\left(z^{2}+1\right)+\left(a_{n+3}^{2}-1\right)\left(a_{n+2}^{2}-1\right) a_{n+1}^{2} z^{2}\right) F_{n+1}(z) \\
& \quad+\left(\left(a_{n+3}^{2}-1\right)\left(a_{n+2}^{2}-1\right) a_{n+1}^{2} z^{2}\right) F_{n}(z)
\end{aligned}
$$

holds for $n \geq 0$ with $F_{0}(z)=1$.
Proof. Firstly, we prove the equation

$$
\begin{equation*}
F_{n+1}(z)-F_{n}(z)=\left(1-a_{n+1}^{2}\right) z^{2} Q_{n-1}(z) \tag{3.11}
\end{equation*}
$$

$n=0,1,2, \ldots$ Equation (3.11) holds clearly for $n=0$ with $Q_{-1}(z)=1$. We assume that equation (3.11) is true for indices less than n. Then

$$
\begin{aligned}
F_{n+1}(z) & =Q_{n}(z)-a_{n+1}^{2} z^{2} Q_{n-1}(z) \\
& =\left(z^{2}+1\right) Q_{n-1}(z)-a_{n}^{2} z^{2} Q_{n-2}(z)-a_{n+1}^{2} z^{2} Q_{n-1}(z) \\
& =\left(z^{2}-a_{n+1}^{2} z^{2}+1\right) Q_{n-1}(z)-a_{n}^{2} z^{2} Q_{n-2}(z) \\
& =\left(1-a_{n+1}^{2}\right) z^{2} Q_{n-1}(z)+F_{n}(z) .
\end{aligned}
$$

Applying equation (3.11), we compute that

$$
\begin{aligned}
(1- & \left.a_{n+2}^{2}\right)\left(1-a_{n+1}^{2}\right)\left(F_{n+3}(z)-F_{n+2}(z)\right) \\
= & \left(1-a_{n+2}^{2}\right)\left(1-a_{n+1}^{2}\right)\left(1-a_{n+3}^{2}\right) z^{2} Q_{n+1}(z) \\
= & \left(1-a_{n+2}^{2}\right)\left(1-a_{n+1}^{2}\right)\left(1-a_{n+3}^{2}\right) z^{2}\left(\left(z^{2}+1\right) Q_{n}(z)-a_{n+1}^{2} z^{2} Q_{n-1}(z)\right) \\
= & \left(1-a_{n+3}^{2}\right)\left(1-a_{n+1}^{2}\right)\left(z^{2}+1\right)\left(F_{n+2}(z)-F_{n+1}(z)\right) \\
& \quad-\left(1-a_{n+3}^{2}\right)\left(1-a_{n+2}^{2}\right) a_{n+1}^{2} z^{2}\left(F_{n+1}(z)-F_{n}(z)\right),
\end{aligned}
$$

which implies the desired recurrence equation.
The coefficients $c_{k}^{(n)}$ of the polynomial $F_{n}(z)$ in Theorem 3.3 and the coefficients $h_{k}^{(n-1)}$ in Theorem 2.2 are closely related. Comparing the coefficients $c_{k}^{(n)}$ and $h_{k}^{(n)}$, we derive the following relation.

ThEOREM 3.6. Let $c_{k}^{(n)}$ be the coefficients of the polynomial $F_{n}(z)$ in (3.8) .
(I) Suppose $n+1=2 m \geq 4$ is an even integer. Then

$$
\begin{aligned}
& 2^{n+1} \sin \theta \operatorname{det}\left(\cos \theta I_{n+1}-\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)\right) \\
& =\sin ((n+2) \theta)+c_{1}^{(n)} \sin (n \theta)+\left(c_{2}^{(n)}-c_{n}^{(n)}\right) \sin ((n-2) \theta) \\
& \quad+\left(c_{3}^{(n)}-c_{n-1}^{(n)}\right) \sin ((n-4) \theta)+\cdots+\left(c_{m}^{(n)}-c_{m+1}^{(n)}\right) \sin \theta
\end{aligned}
$$

(II) Suppose $n+1=2 m+1 \geq 3$ is an odd integer. Then

$$
\begin{aligned}
& 2^{n+1} \sin \theta \operatorname{det}\left(\cos \theta I_{n+1}-\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)\right) \\
& =\sin ((n+2) \theta)+c_{1}^{(n)} \sin (n \theta)+\left(c_{2}^{(n)}-c_{n}^{(n)}\right) \sin ((n-2) \theta) \\
& \quad+\left(c_{3}^{(n)}-c_{n-1}^{(n)}\right) \sin ((n-4) \theta)+\cdots+\left(c_{m}^{(n)}-c_{m+2}^{(n)}\right) \sin (2 \theta)
\end{aligned}
$$

In either case,

$$
2^{n+1} \sin \theta \operatorname{det}\left(\cos \theta I_{n+1}-\Re\left(A\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)\right)=\sum_{\ell=0}^{n} c_{\ell}^{(n)} \sin ((n+2-2 \ell) \theta)
$$

Example 3.7. Consider the 4×4 weighted shift matrix $A(2,1,3)$. Then, by Theorem 2.2

$$
2^{4} \sinh \theta \operatorname{det}\left(\cosh \theta I_{4}-\Re(A(2,1,3))\right)=\sinh (5 \theta)-11 \sinh (3 \theta)+24 \sinh (\theta)
$$

From Theorem 3.3,

$$
F_{3}(z)=1-11 z^{2}+16 z^{4}-8 z^{6}
$$

which yields

$$
h_{1}^{(3)}=c_{1}^{(3)}=-11, \quad h_{2}^{(3)}=c_{2}^{(3)}-c_{3}^{(3)}=24
$$

The eigenvalues spectra, greater than 1 , of the Hermitian operator $\Re(A(2,1,3,1$, $1, \ldots)$) lie in the set

$$
\left\{\frac{1}{2}\left(z+z^{-1}\right): 0<z<1,1-11 z^{2}+16 z^{4}-8 z^{6}=0\right\} .
$$

The numerical value of this set is $\{1.69504\}$ for $z=0.3264004$.

REFERENCES

[1] N. Bebiano, J. da Providência, and A. Nata. The numerical range of banded biperiodic Toeplitz operators. Journal of Mathematical Analysis and Applications, 398:189-197, 2013.
[2] C.A. Berger and J.G. Stampfli. Mapping theorems for the numerical range. American Journal of Mathematics, 89:1047-1055, 1967.
[3] C.T. Chang and K.Z. Wang. Maximizing numerical radii of weighted shifts under weight permutation. Journal of Mathematical Analysis and Applications, 394:592-602, 2012.
[4] X.J. Chen and T. Yamamoto. Numerical Analysis. Corona Publishing, Tokyo, 2002.
[5] M.T. Chien and H. Nakazato. The numerical radius of a weighted shift operator with geometric weights. Electronic Journal of Linear Algebra, 18:58-63, 2009.
[6] M.T. Chien and H.A. Sheu. The numerical radii of weighted shift matrices and operators. Operators and Matrices, 7:197-204, 2013.
[7] M.T. Chien and B.S. Tam. Circularity of the numerical range. Linear Algebra and its Applications, 201:113-133, 1994.
[8] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrics and its application to graph theory. Czechoslovak Mathematical Journal, 25:619-633, 1975.
[9] H.-L. Gau, M.-C. Tsai, and H.-C. Wang. Weighted shift matrices: unitary equivalence, reducibility and numerical ranges. Linear Algebra and its Applications, 438:498-513, 2013.
[10] K. Gustafson and D.K. Rao. Numerical Range. Springer-Verlag, New York, 1997.
[11] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.
[12] C.K. Li, L. Rodman, and I.M. Spitkovsky. On numerical ranges and roots. Journal of Mathematical Analysis and Applications, 282:329-340, 2003.
[13] M. Marcus and B.N. Shure. The numerical range of certain 0, 1-matrices. Linear and Multilinear Algebra, 7:111-120, 1979.
[14] A. Nagai, Y. Kametaka, H. Yamagishi, K. Takemura, and K. Watanabe. Discrete Bernoulli polynomials and the best constant of the discete Sobolev inequality. Funkcialaj Ekvacioj, 51:307-327, 2008.
[15] W. Ridge. Numerical range of a weighted shift with periodic weights. Proceedings of the American Mathematical Society, 55:107-110, 1976.
[16] A.L. Shields. Weighted shift operators and analytic function theory. Topics in Operator Theory, Mathematical Surveys and Monographs, Vol. 13, American Mathematical Society, Providence, 49-128, 1974.
[17] Q.T. Stout. The numerical range of a weighted shift. Proceedings of the American Mathematical Society, 88:495-502, 1983.
[18] A. Vandanjav and B. Undrakh. On the numerical range of the weighted shift operators with geometric and harmonic weights. Electronic Journal of Linear Algebra, 23:578-585, 2012.
[19] A. Vandanjav and B. Undrakh. On the numerical range of some weighted shift matrices and operators. Linear Algebra and its Applications, 449:76-88, 2014.
[20] K.-Z. Wang and P.Y. Wu. Numerical ranges of weighted shifts. Journal of Mathematical Analysis and Applications, 381:897-909, 2011.

[^0]: *Received by the editors on December 7, 2014. Accepted for publication on November 28, 2015. Handling Editor: Michael Tsatsomeros.
 ${ }^{\dagger}$ Institute of Mathematics, National University of Mongolia, Ulaanbaatar, Mongolia. Current address: School of Mathematics and Statistics, Newcastle University, Newcastle upon and Tyne, NE1 7RU, United Kingdom (batzorig_u@yahoo.com).
 ${ }^{\ddagger}$ Department of Mathematical Sciences, Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan (nakahr@cc.hirosaki-u.ac.jp).
 ${ }^{\S}$ Department of Mathematics, National University of Mongolia, Ulaanbaatar, Mongolia, and Department of Mathematics, New Mongol Institute of Technology, Mongolia (v_adiyasuren@yahoo.com).
 ${ }^{\text {§ D D }}$ Department of Mathematics, Soochow University, Taipei 11102, Taiwan (mtchien@scu.edu.tw). Partially supported by Taiwan Ministry of Science and Technology under NSC 102-2115-M-031-001, and the J.T. Tai \& Co Foundation Visiting Research Program.

