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Abstract. A Lagrange series around adjustable expansion points to compute the eigenvalues of

graphs, whose characteristic polynomial is analytically known, is presented. The computations for the

kite graph PnKm, whose largest eigenvalue was studied by Stevanović and Hansen [D. Stevanović

and P. Hansen. The minimum spectral radius of graphs with a given clique number. Electronic

Journal of Linear Algebra, 17:110–117, 2008.], are illustrated. It is found that the first term in the

Lagrange series already leads to a better approximation than previously published bounds.
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1. Introduction. Let AG denote the N × N adjacency matrix of the graph

G on N nodes. If we denote the inverse function λ = c−1
AG

(w) of the character-

istic polynomial w = cAG
(λ) = det (AG − λI), then an eigenvalue of AG satifies

λk = c−1
AG

(0), where the eigenvalues are ordered as λ1 ≥ λ2 ≥ · · · ≥ λN . The

Lagrange series of cAG
(λ) returns the series expansion of c−1

AG
(w) around an expan-

sion point w0 = cAG
(λ0). The coefficients of the Lagrange series of a function are

more complicated to compute analytically than the coefficients of its Taylor series.

However, we have shown, by introducing our characteristic coefficients [8] (briefly

summarized in Section 3 below) that all coefficients of the Lagrange series around w0

can be computed from the Taylor series coefficients around an expansion point λ0.

The knowledge of a good expansion point w0 = cAG
(λ0) is crucial for the converge of

a Lagrange series [12], but is, in general, not easy to determine, unless a good grasp

of the zero (here the eigenvalue λk) is known. The main contribution is the presenta-

tion of a Lagrange series method for the characteristic polynomial cAG
(λ) to find the

eigenvalues, in combination with the Interlacing theorem (see e.g. [10, p. 246]), that

provides excellent expansion points for the Lagrange series. Here, we merely focus on

the largest eigenvalue λ1 of AG, which is coined the spectral radius of the adjacency

matrix AG. Earlier in [9] and [11], we have deduced lower bounds for the spectral

radius of a graph using Lagrange series.
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We demonstrate the Langrage series method on the kite graph PnKm, that con-

sists of a complete graph Km and a path graph Pn attached to one of the nodes

of Km. We build on results of Stevanović and Hansen [7], but use a slightly differ-

ent notation for the kite, PnKm instead of their PKn,m, to more clearly associate

the index n with the length of the path or number of nodes in Pn and the index

m with the size of the clique Km. We denote the spectral radius of the adjacency

matrix of the kite PnKm by λ1 (PnKm). Stevanović and Hansen [7] observe that

λ1 (P0Km) = λ1 (Km) = m− 1, but the analytic evaluation of λ1 (PnKm) for n > 0

is not so easy. For any m ≥ 0, they mention that PnKm is a proper subgraph of

PnKm+1 and, by the fact that the spectral radius is always larger than that of any of

its subgraphs [10, art. 43], the sequence {λ1 (PnKm)}m≥0 is strictly increasing in m.

Further, since λ1 (PnKm) ≤ dmax and dmax = m, we find the bounds

m− 1 ≤ λ1 (PnKm) ≤ m.

Stevanović and Hansen [7] present sharper bounds

m− 1 +
1

m2
+

1

m3
≤ λ1 (PnKm) ≤ m− 1 +

1

4m
+

1

m2 − 2m
. (1.1)

In his recent book [6], Stevanović focuses in detail on the spectral radius of the

infinitely long kite graph (n → ∞), which is analytically computable [7],

lim
n→∞

λ1 (PnKm) =
m− 3 +

√

(m+ 1)2 + 4
m−2

2
.

Cioabă and Gregory [2], whose notation PnKm we have adopted, but not their name

“lollipop” for the kite graph, prove the bounds

m− 1 +
1

m (m− 1)
≤ λ1 (PnKm) ≤ m− 1 +

1

(m− 1)
2 . (1.2)

Apart from introducing the name “lollipop” for PnKm, Brightwell and Winkler [1]

have proved that the maximum expected time for a random walk between two nodes

is attained in a kite graph PnKm of size N = n + m − 1 with m = ⌈(2N − 2)/3⌉.
Here, we derive the approximation (3.3) below, which lies – in most computed cases

– between the above bounds in (1.1) and the sharper ones in (1.2).

2. The characteristic polynomial of the kite graph. The characteristic

polynomial of the complete graph Km on m nodes is

cAKm
(λ) = (−1)n(λ+ 1)n−1(λ+ 1− n)

and that of the path Pn on n nodes is

cAPn
(λ) = (−1)n

sin
(

(n+ 1) arccos λ
2

)

sin
(

arccos λ
2

) .

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 934-943, December 2015



ELA

936 P. Van Mieghem

Both are derived in [10, Chapter 5]. The zeros of cAPn
(λ), thus the eigenvalues of

the adjacency matrix APn
of the path Pn, are

(λPn
)k = 2 cos

kπ

n+ 1
(2.1)

for 1 ≤ k ≤ n. Since both Km and Pn are subgraphs of the kite PnKm, the Interlacing

theorem (see e.g. [10, p. 246]) tells us that the eigenvalues of the adjacency matrix

APKm,n
of the kite lie in between the eigenvalues of AKm

and APn
. The explicit

knowledge of the latter eigenvalues makes the presented Lagrange series approach

particularly effective, as shown below.

To proceed, we need Theorem 2.1, which appears in Cvetković et al. [3, Section

2.3] and is attributed to Heilbronner [4]:

Theorem 2.1. The characteristic polynomial cAG
(λ) of the adjacency matrix

AG of the graph G consisting of two disjoint graphs G1 and G2 connected by a link

between the nodes i ∈ G1 and j ∈ G2 is

cAG
(λ) = det (AG − λI)

= det (AG1
− λI) det (AG2

− λI)− det
(

AG1\{i} − λI
)

det
(

AG2\{j} − λI
)

. (2.2)

Theorem 2.1, applied to the kite PnKm, yields

cAPnKm
(x) =

2(x+ 1)m−2r(n,m;x)

(−1)m+n
√
4− x2

, (2.3)

where

r(n,m;x) = (m−x−2) sin
(

n arccos
(x

2

))

+(x+1)(1−m+x) sin
(

(n+ 1) arccos
(x

2

))

. (2.4)

The eigenvalues of the kite PnKm, apart from the trivial x = −1 with multiplicity

m− 2, satisfy

r(n,m;x) = 0 (2.5)

but cannot be x = ±2 (due to the omission of the denominator in (2.3)).

The explicit form (2.3) shows that, since cAPnKm
(0) = (−1)

m+n−1
(m− 1) for

even n, but cAPnKm
(0) = (−1)m+n−1 (m− 2) for odd n, the adjacency matrix APnKm

is invertible for m > 2. Another observation for x = −1 shows, with arccos
(

1
2

)

=

±π
3 + 2kπ, that (2.5) reduces to (m − 1) sin

(

πn
3

)

= 0, which is possible when n is a

multiple of 3. In conclusion, the multiplicity of the eigenvalue −1 of cAPKm,n
(x) is

m− 2 when n is not a multiple of m, otherwise the multiplicity of −1 is m− 1.
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Let θ = arccos
(

x
2

)

so that x = 2 cos θ. Obviously1, when θ = iy is imaginary,

then x = 2 cosh y ≥ 2 for any real y. We rewrite (2.5) with (2.4) as

(m− x− 2) sin (nθ)− (m− x− 1)(x+ 1) sin ((n+ 1)θ) = 0,

or

0 = (m− x− 1) sin (nθ)− sin (nθ)− (m− x− 1)(x+ 1) sin ((n+ 1)θ)

= (m− x− 1) {sin (nθ)− (x+ 1) sin ((n+ 1)θ)} − sin (nθ) .

Introducing x = 2 cos θ yields

0 = (m− 2 cos θ − 1) {sin (nθ)− (2 cos θ + 1) sin ((n+ 1)θ)} − sin (nθ)

= (m− 2 cos θ − 1) {sin (nθ)− 2 cos θ sin ((n+ 1)θ)− sin ((n+ 1)θ)} − sin (nθ)

= (m− 2 cos θ − 1) {sin (nθ)− sin (nθ)− sin ((n+ 2) θ)− sin ((n+ 1)θ)} − sin (nθ)

= −(m− 2 cos θ − 1) {sin ((n+ 2) θ) + sin ((n+ 1)θ)} − sin (nθ) ,

which suggests us to find the zeros of the function

f (θ) = −(m− 2 cos θ − 1) {sin ((n+ 2) θ) + sin ((n+ 1)θ)} − sin (nθ) . (2.6)

For large m, we observe that (m− 1− 2 cos θ) → 0 or x → m− 1.

3. The Lagrange series for the zero ζ (θ0) of f (θ) close to θ0. Consider

the entire function f (θ) in θ in (2.6), whose largest real zero we aim to derive by

Lagrange series [10, p. 304–305] using our characteristic coefficients [8]. The analysis

of Stevanović and Hansen [7] shows that λ1 (PnKm) is close to m − 1, suggesting to

expand f (θ) in a Taylor series around θ0 = arccos
(

m−1
2

)

, which is explicitly given in

Appendix A.

The zero ζ (θ0) of f (θ) obeys f (ζ (θ0)) = 0 and can be computed to any level

of accuracy by Lagrange series expansion [12]. By using our characteristic coeffi-

cients and their underlying recursion (see [8] and [9]), the Lagrange series around θ0
can be elegantly executed (symbolically) to any desired accuracy only assuming the

knowledge of the Taylor coefficients fk (θ0) around θ0 of

f (θ) =

∞
∑

k=0

fk (θ0) (θ − θ0)
k
.

1We refer to Rivlin [5] for properties of the Chebyshev polynomials Tn (x) = cosn arccos x =

coshnarccoshx.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 934-943, December 2015



ELA

938 P. Van Mieghem

Explicitly up to order five, the zero ζ (θ0) around θ0 is presented as a Lagrange series

in z = f0(θ0)
f1(θ0)

in [8], [10, p. 304–305] as

ζ(θ0) ≈ θ0 − z − f2(θ0)

f1(θ0)
z2 +

[

−2

(

f2(θ0)

f1(θ0)

)2

+
f3(θ0)

f1(θ0)

]

z3

+

[

−5

(

f2(θ0)

f1(θ0)

)3

+ 5
f3(θ0)

f1(θ0)

f2(θ0)

f1(θ0)
− f4(θ0)

f1(θ0)

]

z4

+

[

−14

(

f2(θ0)

f1(θ0)

)4

+ 21
f3(θ0)

f1(θ0)

(

f2(θ0)

f1(θ0)

)2

− 3

(

f3(θ0)

f1(θ0)

)2

− 6
f4(θ0)

f1(θ0)

f2(θ0)

f1(θ0)
+

f5(θ0)

f1(θ0)

]

z5. (3.1)

Since f0(θ0) = f(θ0) and f1(θ0) = f ′(θ0) =
df(θ)
dθ

∣

∣

∣

θ=θ0
, the Lagrange series up to first

order in z = f(θ0)
f ′(θ0)

, thus ζ(θ0) = θ0 − f(θ0)
f ′(θ0)

+O
(

z2
)

is equal to the Newton-Raphson

approximation at θ = θ0. From Appendix A, the first order term z in the Lagrange
series for the zero ζ (θ0) of f (θ) is

z =
f0 (θ0)

f1 (θ0)

=
RG0 + sin (nθ0)

cos (nθ0)n+ 2 sin (θ0)G0 −R {cos ((n+ 2) θ0) (n+ 2) + cos ((n+ 1) θ0) (n+ 1)}
(3.2)

with R = m− 1− 2 cos θ0 and G0 = sin ((n+ 2) θ0) + sin ((n+ 1)θ0).

If we are able to formally compute all Taylor coefficients of f (θ) (as here in

Appendix A) in terms of an arbitrary expansion point θ0, then all zeros of f (θ) can

be presented by (3.1) up to order 5 and higher orders [9, 8], that converges towards

the zero ζ(θ0) of f (θ) closest to θ0. All eigenvalues of the adjaceny matrix of the

kite, except for the second largest, then follow as λk (PnKm) = 2 cos ζ (θ0;k), where

the expansion point θ0;k for the k-th largest eigenvalue λk (PnKm) can be deduced

from the Interlacing theorem (see e.g. [10, p. 246]), that provides bounds for the

eigenvalues, which are usually excellent estimates for the expansion point θ0. The

Interlacing theorem tells us that the second largest eigenvalue λ2 (PnKm) is smaller

than 2. However, θ0 = arccos
(

2
2

)

= π and f (π) = 0, because in (2.5), that led to

f (θ), the denominator
√
4− x2 in (2.3) has been ignored. Hence, the characteristic

polynomial (2.3) indicates that x = 2 and x = −2 cannot be eigenvalues of the

adjacency matrix of the kite PnKm. The situation can be remediated, precisely as in

[8], which we omit here; the other choice is to deduce an appropriate expansion point

θ0;2 < π.

When z = f0(θ0)
f1(θ0)

is small, implying that the expansion point θ0 is close to the
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zero ζ(θ0), the first order term in (3.1) is accurate and

λk (PnKm) ≈ 2 cos ((θ0;k)− z) = 2 cos (θ0;k) cos z + 2 sin (θ0;k) sin z

≈ 2 cos (θ0;k)

(

1− z2

2

)

+ 2z sin (θ0;k) +O
(

z3
)

.

Up to order O
(

z2
)

, we obtain a first order estimate for the k-th largest eigenvalue of

the kite,

λk (PnKm) ≈ 2 cos (θ0;k) + 2z sin (θ0;k) +O
(

z2
)

given θ0;k. Guided by the Interlacing theorem and (2.1), we propose θ0;k = kπ
n+1 for

1 < k ≤ n and cos (θ0;1) =
m−1
2 . Numerical computations, based on these expansion

points, reveal that only a few terms in the Lagrange series suffice for λ2 (PnKm),

except for small n. The accuracy is worst for n = 1 as also follows from (3.2), but

this case is analytically tractable [7].

In the remainder, we confine ourselves to the largest eigenvalue of the kite graph

λ1 (PnKm) = 2 cos ζ (θ0;1) with θ0;1 = arccos
(

m−1
2

)

. Since R = m− 1− 2 cos θ0 = 0,

the general expression (3.2) for z simplifies to

z =
f0 (θ0;1)

f1 (θ0;1)
=

sin (nθ0;1)

2 (sin ((n+ 2) θ0;1) + sin ((n+ 1) θ0;1)) sin (θ0;1) + cos (nθ0;1)n
.

Moreover, for m > 1, cos (θ0;1) = m−1
2 implies that θ0;1 is imaginary (and also z).

Hence, with cosh (θ0;1) =
m−1
2 , i sinh (θ0;1) =

√

(

m−1
2

)2 − 1 and θ0;1 = arcosh
(

m−1
2

)

,

the spectral radius of the kite PnKm is approximated up to order O
(

z2
)

by

λ1 (PnKm) ≈ (m− 1)

+
2 sinh (nθ0;1)

2 (sinh ((n+ 2) θ0;1) sinh ((n+ 1) θ0;1)) + cosh (nθ0;1)
n

√

(m−1

2
)2−1

. (3.3)

For a given n, numerical computations revealed that this first order term (3.3) is

increasingly accurate for increasing m and generally more accurate than the bound in

(1.1) as well as in (1.2). Of course, when incorporating more terms in the Lagrange

expansion a higher accuracy can be attained, but we found that the first term (3.3)

alone was already surprisingly accurate. The table below compares several approxi-

mations of λ1 (PnKm) − (m− 1) for n = 20. Only when m is small compared to n,

the Lagrange expansion leads to less accurate results.
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m low eq. (1.1) low eq. (1.2) eq. (3.3) up eq. (1.2) up eq. (1.1) exact

5 0.048 0.05 0.0841273 0.0625 0.1 0.05505046

15 0.00474074 0.0047619 0.00484309 0.00510204 0.0214286 0.00480625

25 0.001664 0.00166667 0.0016747 0.00173611 0.0116667 0.00167213

35 0.00083965 0.000840336 0.00084219 0.000865052 0.00798319 0.00084173

45 0.000504801 0.000505051 0.000505683 0.000516529 0.00606061 0.00050556

55 0.000336589 0.0003367 0.000336971 0.000342936 0.00488215 0.00033693

65 0.000240328 0.000240385 0.000240519 0.000244141 0.00408654 0.00024050

75 0.000180148 0.00018018 0.000180254 0.000182615 0.00351351 0.00018024

85 0.000140037 0.000140056 0.0001401 0.000141723 0.00308123 0.00014010

95 0.00011197 0.000111982 0.00011201 0.000113173 0.00274356 0.00011201

The method can be applied as well to the combination of the star and the path

graph and, in principle, to any graph, whose characteristic polynomial is known, pro-

vided also a good approximation of the expansion point (like θ0), e.g. by interlacing,

is available so that the Lagrange series rapidly converges.

Appendix A. Taylor expansion of f (θ) around θ0.

It is convenient in the function f (θ), defined in (2.6), to write the argument

explicitly in terms of the expansion point θ0, as

θ = θ0 + θ − θ0 = θ0 + y

with y = θ − θ0, so that

f (θ) = − (m− 2 cos (θ0 + y)− 1) [sin ((n+ 2) (θ0 + y)) + sin ((n+ 1) (θ0 + y))]

− sin (n (θ0 + y)) .

The Taylor expansion of f (θ) around θ0 is

f (θ) =

∞
∑

k=0

fk (θ0) y
k,

where the Taylor coefficients fk (θ0) now need to be computed.

With the elementary identity cos (θ0 + y) = cos (θ0) cos (y) − sin (θ0) sin (y), we

have that

(m− 2 cos θ − 1) = m− 1− 2 cos (θ0) cos (y) + 2 sin (θ0) sin (y)

= m− 1−
∞
∑

k=0

(−1)
k 2 cos (θ0) y

2k

(2k)!
+

∞
∑

k=0

(−1)
k 2 sin (θ0) y

2k+1

(2k + 1)!
.

In order to ease the Cauchy product below, we write the right-hand side as one Taylor

series in yk,

(m− 2 cos θ − 1) =

∞
∑

k=0

ik

k!
bky

k
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with b0 = m− 1− 2 cos θ0 and, for k > 0,

bk =

{

−2 cos (θ0) , k is even,
1
i
(2 sin (θ0)) , k is odd.

Similarly, using sin (q (θ0 + y)) = sin (qθ0) cos (qy) + cos (qθ0) sin (qy),

G = sin ((n+ 2) θ) + sin ((n+ 1)θ)

= sin ((n+ 2) θ0) cos ((n+ 2) y) + cos ((n+ 2) θ0) sin ((n+ 2) y)

+ sin ((n+ 1) θ0) cos ((n+ 1) y) + cos ((n+ 1) θ0) sin ((n+ 1) y)

= sin ((n+ 2) θ0)

∞
∑

k=0

(−1)
k (n+ 2)

2k
y2k

(2k)!

+ cos ((n+ 2) θ0)
∞
∑

k=0

(−1)k
(n+ 2)2k+1 y2k+1

(2k + 1)!

+ sin ((n+ 1) θ0)

∞
∑

k=0

(−1)
k (n+ 1)

2k
y2k

(2k)!

+ cos ((n+ 1) θ0)

∞
∑

k=0

(−1)
k (n+ 1)

2k+1
y2k+1

(2k + 1)!

and

G = sin ((n+ 2) θ) + sin ((n+ 1)θ)

=

∞
∑

k=0

(−1)
k

(2k)!

{

sin ((n+ 2) θ0) (n+ 2)
2k

+ sin ((n+ 1) θ0) (n+ 1)
2k
}

y2k

+

∞
∑

k=0

(−1)
k

(2k + 1)!

{

cos ((n+ 2) θ0) (n+ 2)
2k+1

+ cos ((n+ 1) θ0) (n+ 1)
2k+1

}

y2k+1,

which we write as one Taylor series in yk

sin ((n+ 2) θ) + sin ((n+ 1)θ) =

∞
∑

k=0

ik

k!
aky

k,

where

ak =

{

sin ((n+ 2) θ0) (n+ 2)
k
+ sin ((n+ 1) θ0) (n+ 1)

k
, k is even,

1
i

(

cos ((n+ 2) θ0) (n+ 2)
k
+ cos ((n+ 1) θ0) (n+ 1)

k
)

, k is odd.

Let us denote the first term in f (θ) in (2.6) by

h (θ) = (m− 2 cos (θ)− 1) {sin ((n+ 2) θ) + sin ((n+ 1)θ)} .
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Then the Cauchy product is

h (θ) =
∞
∑

k=0

ik

k!
bky

k

∞
∑

k=0

ik

k!
aky

k =
∞
∑

k=0

k
∑

s=0

is

s!
as

ik−s

(k − s)!
bk−sy

k

=

∞
∑

k=0

{

ik

k!

k
∑

s=0

(

k

s

)

asbk−s

}

yk.

Finally, we arrive at the Taylor series of f (θ) around θ0,

f (θ) = −
∞
∑

k=0

{

ik

k!

(

k
∑

s=0

(

k

s

)

asbk−s + ck

)}

yk,

where the coefficient ck is of similar type as ak,

ck =

{

sin (nθ0)n
k, k is even,

1
i

(

cos (nθ0)n
k
)

, k is odd,

from which we find the Taylor coefficients of f (θ) around θ0 as

fk (θ0) = − ik

k!

(

k
∑

s=0

(

k

s

)

asbk−s + ck

)

.

The first two terms are

f0 (θ0) = f (θ0)

= − (m− 1− 2 cos θ0) {sin ((n+ 2) θ0) + sin ((n+ 1) θ0)} − sin (nθ0)

and

f1 (θ0) = − cos (nθ0)n− 2 sin (θ0) {sin ((n+ 2) θ0) + sin ((n+ 1) θ0)}
(m− 1− 2 cos θ0) {cos ((n+ 2) θ0) (n+ 2) + cos ((n+ 1) θ0) (n+ 1)} .
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[6] D. Stevanović. Spectral Radius of Graphs. Academic Press, London, 2015.
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