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ON THE INVERTIBILITY OF LENGTH TWO
ELEMENTARY OPERATORS*

NADIA BOUDI' AND JANKO BRACICH

Abstract. Let 2 be a complex Banach space and £(Z") be the algebra of all bounded linear
operators on 2 . For a given elementary operator ® of length 2 on £(.2"), necessary and sufficient
conditions for the existence of a solution of the equation X® = 0 in the algebra of all elementary
operators on L£(2) are determined. The proposed approach allows the characterization of some
invertible elementary operators of length 2 whose inverses are elementary operators.
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1. Introduction. Let 2 be a complex Banach space, let £(2Z") be the algebra
of all bounded linear operators on 2, and let I be the identity operator. For A, B €
L(Z), let Ma g : T — ATB be the multiplication operator on £(2") induced by
A and B. In particular, Ly = Ma,; and Rp = Mj p are left, respectively right,
multiplication operators.

An elementary operator A on £(Z) is a finite sum of multiplication operators.
The length ¢(A) of A is the minimum number of multiplication operators needed in
the representation of A. Let &¢(L(Z2")) stand for the set of all elementary operators
on L£(2°). It is obvious that &/(L(2)) is a subalgebra of L(L(Z")).

Our general purpose is to find an approach that enables us to characterize the
relationship between non-invertibility (respectively, invertibility) of an elementary
operator and the properties of the defining coefficients. It is clear that an operator
(OIS E(C(% )) is non-invertible if it is a right zero divisor or a left zero divisor.
Our first question is, which properties of the defining coefficients of a non-invertible
elementary operator ® of length 2 make it possible or impossible for ® to have a left
or a right zero divisor in &¢(L(Z"))? Roughly speaking, when is the non-invertibility
of a length 2 elementary operator caused by an elementary operator? In particular,
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we show that if a length 2 elementary operator ® is annihilated by an elementary
operator, then either there exists a multiplication operator M such that M® = 0 (or
®M = 0), or for every elementary operator ¥ having the same defining spaces, ¥ is
non-invertible and its non-invertibility is caused by an elementary operator. In the
latter case, the defining spaces of ® are equivalent to some maximal linear spaces of
constant rank matrices. Our study is based on the description of two-dimensional
complex matrix spaces of bounded rank. An interesting characterization is that of
Atkinson and Stephens [1]. However, we deal with a different form (see Lemma
3.5). Indeed, we believe that the study of equations of the form X® = 0 for general
elementary operators may shed new light on some aspects of matrix spaces with
bounded rank.

An important example of length 2 elementary operators are given by Y4 p =
I+ My, p. We show that if T 4 p is invertible and TZ}B is an elementary operator of
length n, then either A or B is algebraic and min{deg(A), deg(B)} = n. As we shall
see, in the case of matrix algebras M,,, every length 2 invertible elementary operator
is a sum of two invertible multiplication operators. Hence, all invertible elementary
operators are of the form M¢c pY 4,5, where A, B,C, D € M,, and C, D are invertible.
However, in the infinite-dimensional case, there are examples of length 2 invertible
elementary operators, such that all elementary operators having the same defining
spaces are invertible and the inverse is of length 2.

Our proofs are elementary in the sense that we use only basic facts from linear
algebra and operator theory and basic properties of tensor products.

The paper is organized as follows. In the next section, various known preliminary
results are assembled. In Section 3, we characterize elementary operators of length
at most 2 which are annihilated by elementary operators. In Section 4, we mainly
deal with invertible elementary operators of length 2 whose inverses are elementary
operators. In particular, we obtain a complete characterization of invertible length 2
elementary operators with inverse of length 2.

2. Preliminaries. Let 2" and ¢ be complex Banach spaces. We denote by
L(Z,%) the space of all bounded linear operators from £ to #. A linear subspace
V C L(Z,%) is said to be of bounded rank r if rk(T") < r, for all T € V, and it is
said to be of constant rank r if rk(7") = r, for all nonzero T' € V. We will denote by
rk(V) the maximum of the ranks of elements in V. Suppose that 2" and % are finite
dimensional and that B and B’ are bases of 2 and %/, respectively. For T € V, let
M(T, B, B") denote the matrix representation of T' with respect to B and B’. Then
V is said to be equivalent to the space of matrices {M (T, B,B’) : T € V}.

Denote by 2° ® % the algebraic tensor product of 2" and #. Forz =Y " | u; ®
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v € L @Y, we set
L(z) =span{uy,...,u,} and R(z)=spanf{vi,...,v,}. (2.1)

Let us recall that the rank of x is the minimum number r(x) of simple tensors needed
in the representation of x. If V' is a vector subspace of 2" ® %, then an element z € V'
is a minimal tensor of V' if, for every nonzero y € V such that r(x) = r(y) +r(z — y),
one has y = z.

Recall the following simple lemma.

LEMMA 2.1. Let x =) | u; ® v;. If x =0, then dim(L(z)) + dim(R(z)) < n.

Proof. Let {u;,,...,u; } be a maximal linearly independent subset of L(x). With
no loss of generality we may assume that ¢, = ¢, for 1 <t <r. Write u; = >\, a;;u;,
T

forr+1<j <n Thenz =) u ® (v; + Z?:TH a;jvj). Since = 0 and
{u1,...,u,} is a linearly independent set one has vy, ..., v, € span{v,41,...,v,}. O

For an algebra A, let AP denote the opposite algebra, i.e., the algebra which has
the same underlying vector space as A but the multiplication is given by x x y = yz.
The main tool which we use in our study is Theorem 5 and its Corollary in [5] (see
also [4]).

LEMMA 2.2. The mapping ¢ : L(Z") @ L(Z )P — EUL(X)), which is defined
by o(>°1, A ® B;) =Y i M, ,, is an injective homomorphism.

Let A = > | My, g, be an elementary operator. It follows from Lemma 2.2
that A has length n if and only if the corresponding tensor Y. ; A; ® B; has rank n.
Here again we set L(A) = span{Ay,..., A,} and R(A) = span{By,..., B,}.

For later convenience we state the following corollary of Lemma 2.2 (see also [2,
Lemma 1.2]).

COROLLARY 2.3. Let {A1,...,An} and {D1,...,D,} be linearly independent
subsets in L(Z") and let By,...,Bpy, C1,...,Cy € L(Z) be such that

> Ma, B, + Y M, p, =0. (2.2)
1=1 1=1

Then C; € span{Ai,..., Ay}, for 1 < i < n, and Bj € span{D1,...,D,}, for
1<j<m.

Proof. By Lemma 2.2, 7" | A;@B;+> - C;®D; = 0. Now Lemma 2.1 implies
that

dim(span{A4i,..., 4, C4,...,Cn}) + dim(span{ By, ..., By, D1,...,Dp}) < n+ m.
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However, {A1,..., A} and {Dy,...,D,} are sets of linearly independent opera-
tors. Hence, dim(span{A,...,A;,C1,...,Cn}) = m and dim(span{By,..., By,
Dy,..., Dp}) = n. We conclude that C; € span{A;,...,A,} (1 < i < n) and
Bj € span{D1,...,D,} (1 <j<m). 0O

We will also need the following simple lemma.

LEMMA 2.4. Let A be an elementary operator of length n < m. Assume
that {Ci,...,Cn} is a spanning set of L(A). Then there exists a spanning set
{D1,..., D} of R(A) such that A = Z;nzl Mg¢; b, -

Proof. Write A = > My, p,. Since span{Ci,...,Cp} = span{A4i,..., A,}

=1

m
there exist numbers a;; (1 <i <m, 1 < j < n) such that 4; = > «;;C;, for all
i=1

7 =1,...,n. Hence,
ZAJ®BJZ<ZOQ]CZ> ®B]:ZCZ® ZOL”BJ
j=1 Jj=1 \i=1 i=1 j=1

n n m
Let D; = ) a;;B;. Then one has ) A; ® B; = Y C; ® D;. By Lemma 2.2,
= , ,

=1 i=1

A=) Mg, p,. 0O

i=1

3. Non-invertibility. Recall that a nonzero element a in a ring R is a left zero
divisor if there exists a nonzero b € R such that ab = 0. The notion of a right zero
divisor is defined similarly. As usual, if S C R, then Lann(S) = {a € R : aS = 0}
is the left annihilator of S. The right annihilator Rann(S) is defined similarly. Note
that an operator T' € £(2") is a left zero divisor if and only if kerT # {0} and it is a
right zero divisor if and only if im T" # 2.

Let A € 8U(L(Z)) be an elementary operator of length at most 2. In this section,
the main question is, under which condition the equation

XA =0 (3.1)

has a solution in &¢(L(Z")). The equation AX = 0 can be treated in an analogous
way.

An operator A € &Y(L(Z")) is a minimal solution of (3.1) if, for every elementary
operator A’ # 0 satisfying £(A — A’) + £(A’) = (M), one has A’A # 0 (that is, ¢~ 1(A)
is a minimal tensor satisfying o1 (A)p~1(A) = 0).

LEMMA 3.1. Every solution of (3.1) is a sum of minimal solutions.
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Proof. Let A # 0 be a solution of (3.1). We proceed by induction on the length
of A. The case ¢(A) = 1 is trivial. Assume therefore that ¢(A) > 1 and that the
desired conclusion holds for any k < ¢(A). If A is not a minimal solution of (3.1),
then there exists a nonzero elementary operator A’ such that ¢(A) = ¢(A") + (A —A)
and A’ A = 0. Hence, (A — A’) A = 0. By the induction hypothesis we have that A’
and A — A’ are sums of minimal solutions of (3.1). This yields the desired result. O

LEMMA 3.2. Let 21, Za, %1, %5 be finite-dimensional complex vector spaces and
Ae L(21,%), Be L(22,%). Ifue 21 ® 23 is a minimal tensor in the kernel of
A ® B, then it is a simple tensor.

Proof. By Lemma 2.1, either kerBNR(u) # {0} or kerANL(u) # {0}. Suppose, for
instance, that there exists y; € kerBNR(u) such that y; # 0. Write u = Y[ | 2; Qy;,
where x; € 271,y; € 25 and n = {(u). Then 21 ®y; € ker(A® B). Therefore, n = 1.0

PROPOSITION 3.3. Let A, B € L(Z") be nonzero operators. The equation
XMy p =0 (3.2)

has a nontrivial solution in U(L(Z")) if and only if A is a right zero divisor or B is
a left zero divisor. Moreover, any minimal solution of (3.2) in SU(L(Z")) has length
one.

Proof. Assume that A is a minimal solution of (3.2). Let B and A denote
the restriction of Lp to R(A) and the restriction of R4 to L(A), respectively. Set
A=3%" Mg, r. Then, by Lemma 2.2,

(A® B) <§n:Ei®Fi>o.

By Lemma 3.2, A has length one. Hence, Mg, M4 p =0, i.e., Mg, 4., = 0 which
gives, by [4, Theorem 1], that either 1A =0 or BFy =0. 0

REMARK 3.4. Let A € 80(L(Z)) be an elementary operator of arbitrary length.
Suppose that there exists a multiplication operator M4 p such that My pA = 0.
Then there exists A" € &0(L(Z)) such that L(A") + L(A — A’) = L(A), AL(A") =0
and R(A — A")B = 0.

Now we consider elementary operators of length 2. In [1], the authors provide an
interesting characterization of two-dimensional spaces of complex matrices of bounded
rank. We will need a more detailed description. It should be pointed out that [1,
Corollary 1] can be deduced from our characterization.

LEMMA 3.5. Letn,m,r € N and let S be a two-dimensional subspace in M, ,,, the
space of all complex m x n matrices. Suppose that 1 < r < min{n,m}, rk(S) =n—r,
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ker S = {0}, and SC™ = C™. Then S is equivalent to the following space of matrices

Ap (e, 8) 0 .- 0 0
0 . . .
0 o oa,peCy,
0 A, (a,5) 0
0 0 0 *
where
5 « 0 0
0o . .0
Ani (Oé,ﬁ) = ) ) S Mni—l,ni-
0 8«

Proof. Choose By € S such that tk(By) = n —r and let 0 # y; € C" be
such that Byy; = 0. Pick By € §\ CB;. We claim that there exists a subspace
#1 of C™ containing y; such that S#; C B1#4, space S|y, has constant rank, and
B#, = B1#4, for all B € §. Suppose, towards a contradiction, that there exists a
family {y1,...,y:} of elements of C™ such that

Biy1 =0, Boyy =Biyg+1 (1<k<t—-1), and Boy ¢ BiC",

with ¢ minimal (¢ can be equal to 1). Set #{ = span{y,...,y:}. Observe that for
every nonzero complex number A one has (By + AB2)#{ = B1#{ + CBay;. Let 2 be
a subspace of C™ of minimal dimension such that B;C" = By %/ @ B;.%¢. Using [3,
Lemma 2.1] we see that one can choose a nonzero A € C such that rk(By + AB2)| . >
tk(B1]|) and {(B1+AB2)ya, . .., (B1+ AB2)y:, Bay: } is linearly independent modulo
the space (By + ABg)#¢. Since

(By + AB2)#, = span{B1ys, - . ., Biys, Bay: },

the rank of By + ABs is greater than the rank of By, which is a contradiction. Now
suppose that we have constructed ys,...,y: € C™ such that

Bgyk = Blyk-i-l and Bgyt (S span{Bgyl, ey Bgyt_l} (1 <k<t-— 1)

Set #1 = span{y1,...,yt}. Then S#1 C B1#i. A straightforward computation
shows that there exists a basis {z1,...,2:} of #; such that

Blzl = Bgzt =0 and Bgzk = Blzk+1 for 1 S k S t—1.
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(Indeed, write Bay; = Zf;% «;Bsy;, where aq,...,a;—1 € C, and put z; = y; and
T yk—25;37k+1 QiYi—tyk, for 2 < k <t). Observe that for every nonzero B € S we
have B1#1 = B#1. Then, with respect to the bases {z1,...,2:} and {Biz92,..., B12:}
the matrix Bs|y, has the form

(L1 0),

where I;_; is the identity matrix of order ¢ — 1. Therefore, for any complex numbers
a, B, the matrix (aBy + B2)|#; has form A¢(a, §). The claim is proved.

Next, using the above procedure, we construct a subspace # = @®;_,#; of C",
such that BY; = B1#;, for every B € S, dim %, = t;, and S|y, has constant rank
t; — 1. Indeed, suppose that we have constructed [ subspaces #1, ..., #; of C" such
that dim(%;) = t;, and #; = span{z}, ..., 2] } with

Blzi = Bgza_ =0 and BQZ]i = Blz;iﬂ for 1<k<t;—1.

Suppose that #4,...,#; are chosen such that (¢1,...,¢;) is minimal (with respect to
the lexicographical order). Set #' = #1 @ --- @ #;. Then, for every nonzero B € S,
one has B1#' = B#’. Suppose that r > [ + 1. Pick 2 € kerB; \ #’. Choose
zbh, ...,z € C™ such that

Bz, = Bz, (1<k<s—1) and Bz, € span{Bszy,...,Baz,_ i} + BW'".

For w = Zagzi e W', set w_p = Za{zg_h, where zf_h = 0if h > 4. Write
Byzl = Zf;ll a;Bsz] + Baw, where ai,...,as_; € C and w € #’. Observe that
we can suppose that w € 22:1 span{z{,...,zfj_l}. Put 2™ = 2f, 2t = 2 —
Zf;;ﬁkﬂ QiZ{_ i — Wogstk, for 2. <k < s, 8 =t and Hjyy = span{zi“,
,zil':ll} Then

Blzi+1 = Bgzéltll =0 and Bgzlljl = Blz,lfill for 1 <k <t —1.

Using this process, we construct #'. Observe again that, for every nonzero B €
S, B1# = BW. Moreover, for every 1 < i < r, the space S|y, is equivalent to

{Ati(a)ﬂ) : aaﬂ € (C}

Now let 47 be a subspace of C™ of minimal dimension such that B1C"™ & By 5 =
SC"™. Write C" = W & # @& %'. Clearly, we can assume that B;. 2’ C B;C".
Observe that By|z- is injective. Let S : B1.Z” — 2 be linear such that SBy|z = I.
Let 7 : SC" — B1Z” be the natural projection. Choose a basis {z1,...,2.} of 2’
such that the matrix representation of STBa|g/ is upper triangular. There exists
A € C such that 7B2zf = ABiz}. Hence, Byzi = ABi1z{ + Biv] + Bypi, where
vy € # and py € A. Choose v; € # such that Byv] = (AB; — Bg)v; and put
21 = 2} +v1. Then Bazy = ABy21 + Bipi. Suppose we have constructed zs,. .., 2k
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such that z; = 2z} + v;, v; € # and Baz; € By (A ®span{z,...,z;}), for 2 <i < k.
Write TBQZ;H_l = Zk+11 «;B1z,. Then there exists ’U;c-‘,-l EW, jig+1 € H such that

1=

k k
BQZ;H_l = ZaiBlzi —+ OékJrlBl,Z]/H_l + By <”U;€+1 — ZO@%) -+ Blluzk;Jrl.

=1 i=1

Let vi+1 € # be such that Bl(vfﬁ_l — Zle ;v;) = (apy1B1 — Ba)vgy1. Put zp g =
21 T Vktr1. Then Bozpyy = Zf:ll a;B1z; + Bipg+1. We have thereby shown that
there exists a subspace & of C™ such that C" = # @ ® % and Bo ¥ C B1(Z ®7).
Now the desired conclusion follows easily. O

PROPOSITION 3.6. Let 271, Z2,%1,%; be finite-dimensional complex vector spa-
ces and let A € L(Z1, ) @ L(Z2,%) be a tensor of rank 2. Suppose that u €
kerA is a minimal tensor of rank n > 2. Then there exist simple tensors My, My €
L(Z21,%) @ L(Z2,%:) and simple tensors ui,...,u, € 21 @ Z3 such that A =
M+ Mgz, u=1uy + -+ Up,

Mauy = Myu, =0 and Myup +Maugi1 =0 (1 <k <n-—1).

Proof. Let A = Zle A; @ B; and u =Y | x; ® y;. Then Z?Zl Zle Aiz; ®
B;y; = 0. Hence, by Lemma 2.1,

dim(span{A4;z; : i =1,2;1 < j <n}) +dim(span{B;y; : ¢ = 1,2;1 < j < n}) < 2n.

Therefore, either dim(L(A)L(u)) < n or dim(R(A)R(u)) < n. Suppose, for instance,
that dim(R(A)R(u)) < n. For each B € R(A), let B : R(u) — R(A)R(u) denote
the restriction of B to R(u) and set S = {B : B € R(A)}. Since u is a minimal
element of kerA, then ker § = {0}, (otherwise, set u =Y. | #; ® y;, where Sy; = 0;
then A(z1 ® y1) = 0, a contradiction). Choose By € R(A) with the property that
rk(B) = rk(S). We distinguish two cases.

Case 1. Suppose first that rk(S) = n. Then dim(R(A)R(u)) = n and B is
bijective. Pick a nonzero element By € R(A) which is not injective. Write A =
Z?Zl My, p, for suitable Aj, Ay € L(A). Choose a Jordan basis {y1,...,yn} for

~

Bleg and suppose that {y1, ...,y } is associated to the first block, with Blegyl =
0. Then

Boy1 =0, Boypy1 = By for 1 <k <y —1,
and

By ' Ba(span{yi, 11, - -, yn}) € span{yi, 11, -, Un}-
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Write u = Z?:l x; @ y; for suitable x1,...,z, € L(u). We have

71—1
Z (Agzpq1 + Arar) @ Biyr + A1y, @ Brys, + Z Ajx ® Bjyr = 0.

k=1 i+1<k<n
1<5<2

Since Bayy € span{B1Yi,+1,...,Biyn} for all k > iy + 1 and §1 is injective, we have

i1—1
D (Aswpsr + Arzy) ® Buy + Avwy, @ By, = Y Ajep ® By =0,

k=1 i+1<k<n
1<j<2

But v is a minimal tensor in ker A, which gives i1 = n. Moreover, we have

Avxp, = Boyr =0, Boyr = Biyp—1 and Aoz = —Ajzp—1 (2<k<n).

Case 2. Suppose that rk(S) < n—1. Set rk(S) = n—r, where 1 <r <n—1. Pick
Bs € R(A) \ CB;. By Lemma 3.5, there exist subspaces #4, ..., #;, % of R(u) such
that BoW; = BiWi, SZ NS(Wh + -+ #,) = {0} and S#; N S¥W; = {0}, for i # j.
Since u is a minimal element of kerA it has to be 2 = {0}. The same argument
implies that R(u) = #4;. We have thereby shown that R(u) = span{yi, ..., ¥y, }, where

Biy1 = Boyn =0 and  Bayr = Biyk1r (1 <k <n-—1).

Write u = Y 2; ® y; and A = Z?Zl My, ;- Then one has Asxp = —Ajxp4q, for
1<k<n-—1.Set u; = xpt1—; @ Ynt1—i- This yields the desired result. O

THEOREM 3.7. Let U € &U(L(Z")) be an elementary operator of length 2. Sup-
pose that the equation XU = 0 has a minimal solution ® € EU(L(Z")) of lengthn > 2.
Then there exist multiplication operators I'y,..., 'y, My, Ma such that ¥ = M; 4+ My,
d=0I1+---+T,, and

FlMgiFanio, FkM1+Fk+1M2:O(1§k§TL71)

Proof. Write W = 327 | Ma, p, and ® = 32" | Mg, . It follows, by Lemma 2.2,
that
2

Zzn: E;A; ® BiF; =0,

i=1 j=1

which yields

2 n
(ZRAZ,@@L&) ZEj@Fj =0.
i=1 j=1
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Let 27 = L(®), 25 = R(®), % = L(P)L(V), and % = R(¥)R(P). Then P is a
minimal tensor in ker(Z?:l Ra, ® Lg,). Consequently, the desired conclusion follows
from Proposition 3.6. O

Let T be an operator on 2. If T is algebraic, we denote the degree of its minimal
polynomial by deg(T"). For a non-algebraic operator T' we set deg(T") = co.

COROLLARY 3.8. Let A,B € L(Z). Suppose that {(Ya ) = 2. Then the
equation

XYyp=0 (3.3)

admits a solution in U(L(Z")) if and only if there exist a nonzero complex number A
and n-dimensional subspaces % and ¥V of L(Z") such that A% C %, BY C ¥, and
Rriaalew, Lp—xilv are nilpotent of degree n. Moreover, in this case, there exists a
multiplication operator M such that MY 4 p = 0.

Proof. Let A be a minimal solution of (3.3) of length n. Observe that I €
R(Ta,p) NL(Y4 p). Hence, dim(R(YT4 5)R(A)) > n and dim(L(A)L(Ta,5)) > n.
By Lemma 2.1, dim(R(Y 4 5)R(A)) = n. It follows from the proof of Proposition
3.6 that there exist A € C and a representation of A as A = >""" | Mg, r, such that
(B—=M)F, = E,(I+XA) =0 and

(B—)\I)Fk =Fyi_ 1, EkA:—Ek_l(I-i-)\A) (QSICSTL)

Consequently, Mg, 7, T 4,5 = 0 and A # 0. Moreover, a straightforward computation

shows that the restriction of Lp_x; to span{Fi,...,F,} is nilpotent of degree n.
Similarly, the restriction of Ry4xa to span{FEs,..., E,} is nilpotent of degree n, as
well.

Conversely, suppose that there exist a nonzero A € C and subspaces %, 7 of
L(Z) of dimensions n such that A% C %, BY C ¥ and Ryixale and Lp_xi|y
are nilpotents of degree n. Choose F,, € ¥ such that the set {(B — A )F),,...,(B —
A" 1F,} is linearly independent. Set Fj_1 = (B — A )Fy for 2 < k < n. Then
(B — M)Fy, = 0. Next, choose By € % such that the set {Ey(I + AA),..., E1(I +
AA)"~ 11 is linearly independent. Since R(r4xray|oz = 0, operator Ra|s has to be
invertible. Hence, we can construct operators Es, ..., E, € % such that E,(I+\A) =
—Ep1Afor k=1,...,n—1. Since E1(I + AA)"” = 0 and R4l is invertible, we get
E,(I+XA)=0. Write Ta,p = Mrixa,r+Ma p_ar. A straightforward computation
shows that Y. | Mg, ;,Tap=0.0

THEOREM 3.9. Let ¥ € SU(L(Z")) be an elementary operator of length 2. The
equation XU = 0 has a solution in EU(L(Z")) if and only if one of the following
conditions holds.
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(1) There exists a multiplication operator M € SU(L(Z")) such that MY = 0.

(2) There exist two vector subspaces %,V of L(XZ"), each of dimension n, such
that the space {Lg|y : B € R(¥)} is equivalent to a constant rank n — 1 subspace of
M,,_1.5 and the space {Rals : A € L(V)} is equivalent to a constant rank n subspace
of Mp41,n. Moreover, Rann(R(¥)) = {0} and Ra is injective for all A € L(V) \ {0}.

(3) There exist two vector subspaces %,V of L(Z") of dimension n such that
the space {Lg|y : B € R(V)} is equivalent to a constant rank n subspace of My+1.,

and the space {Ral|z : A € L(¥)} is equivalent to a constant rank n — 1 subspace of
M,,—1,5. Moreover, Lann(L(¥)) = {0} and Lp is injective for all B € R(¥) \ {0}.

Proof. Suppose that there exists an elementary operator A of length n such that
AP = 0. Using once again Lemma 2.1, we see that either dim(R(¥)R(A)) < n or
dim(L(A)L(¥)) < n. Suppose first that dim(R(¥)R(A)) < n. A careful reading of the
proof of Proposition 3.6 and Theorem 3.7 shows that we have only to treat the case
where the space {Lp|r(a) : B € R(¥)} has constant rank n—1 and dim(R(¥)R(A)) =
n — 1 (indeed, if the space {Lp|ra) : B € R(¥)} has rank n, then there exists
a multiplication operator M such that M¥ = 0). Tt follows, by Lemma 2.2, that
dim(L(A)L(¥)) < n + 1. If Rann(R(¥)) # {0}, then it is obvious that there exists
a multiplication operator M such that M¥ = 0. Next suppose that there exists
A e L(¥)\ {0} such that R4 is not injective. Write ¥ = My p + M4/ g/ for suitable
A" € L(¥) and B, B’ € R(¥) (Lemma 2.4). Choose E € L(Z"), F € R(A) such that
EA=B'F =0. Then Mg p¥ = 0. Now suppose that the space {Ral (a): A € L(¥)}
has constant rank n. Since the constant rank n subspaces of M, have dimension 1
we conclude that dim(L(A)L(¥)) = n + 1, as desired. The case dim(L(A)L(T)) <n
is treated similarly.

For the converse, suppose that (2) holds. Arguing as in the proof of Lemma 3.5,
we see that the set {Lp|y : B € R(¥)} is equivalent to the constant rank subspace of
M, 1, of the form

g a 0 - 0
0 8 « 0
0 0 8«

On the other hand, it is easy to show that the set {Ra|s : A € L(¥)} is equivalent
to the constant rank subspace of M, 41, of the form
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a 0 0 O
b « 0 0
0 8 0 0
00 -+ B a
o o .- 0 6

Write U = Zle My, B;, where A; € L(¥) and B; € R(¥). Then there exist
Ey,...,E, €% and Iy,..., F, € ¥ such that

BlFl = B2Fn = 0, Bng = Ble;Jrl, and Ek-AQ = 7Ek+1A1 (]. § k § n — ].)

It is easily seen that A = >  Mpg, g, is a left zero divisor of W. The case (3) is
treated similarly. O

REMARK 3.10. Let ¥ € &4(L(2")) be an elementary operator of length 2. Sup-
pose that the equation XU = 0 has a solution in &(L£(2")) and M¥ # 0, for every
nonzero multiplication operator M. Then, for every elementary operator ® satisfying
L(®) = L(¥) and R(®) = R(¥), the equation X® = 0 admits a solution in (L(Z")).

4. Invertibility. In this section, we are concerned with the (left, respectively
right) invertibility in the algebra &%(L(Z")) of short elementary operators. Thus, the
main question is, under which condition on an invertible elementary operator A of
length 1 or 2 does the equation AX = I, respectively the equation XA = I, or the
system of both, have a solution in &¢(L(Z"))?

Recall from [6, Ch. II, Theorem 16] that a bounded linear operator on a Ba-
nach space is left-invertible if and only if it is bounded below and its range is a
complemented subspace. Similarly, a bounded linear operator on a Banach space is
right-invertible if and only if it is surjective and its kernel is a complemented subspace.

It is easily seen that a two sided multiplication operator M 4 p is invertible if and
only if A, B € L(4") are invertible. In this case, MZIB =My-1 g-1. What about the
existence of the right (respectively, left) inverse of M4 p in &U(L(27))?

PROPOSITION 4.1. For A, B € L(Z"), the equation
XMy p = I (4.1)

has a solution in SU(L(Z")) if and only if A is right-invertible and B is left-invertible.
Moreover, any minimal solution of (4.1) has length one.

Proof. If A is right-invertible with a right inverse A, and B is left-invertible with
a left inverse By, then M4, p, solves the equation (4.1). For the opposite implication,
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if there exists a multiplication operator which solves (4.1), then we are done. Assume
that A € &(L(Z7)) is a minimal solution of (4.1) of length n > 2. Write BR(A) =
CI@®W, for some suitable subspace W of BR(A). Let 7 : BR(A) — W be the natural
projection. Then AMy gy = 0. It follows, by Proposition 3.3, that one can write
A = 3" Mg, p such that either ;A = 0 or m(B)F; = 0. Since A is a minimal
solution of (4.1) only the last case is possible. Thus, 7(B)F; = 0, for any i. Choose i
such that BF; # 0. Clearly, we can assume that BF; = I. Let j # i, with 1 < j < n.
Then there exists A € C such that B(F; — A\F;) = 0. Write A = Mg, F—ar, + A,
where ((A) = n — 1. Then Mg, r,_xr,Ma = 0, and consequently, AMs g =1, a
contradiction. This completes the proof. O

Now we consider elementary operators of length 2. We start with length 2 ele-
mentary operators of the form Y 4 g, where A, B € L(Z"). Let Ta,p = La —Rp be
the generalized inner derivation implemented by A and B. Note that for a suitable
scalar A, the operator Liy_x;)-1Ta p has the form Y¢ p, for some C,D € L(Z").
On the other hand, T4 5 = RpT 4 _p-1 whenever B is invertible. In [7], Rosenblum
studied the inverse of an invertible generalized inner derivation T4 p.

LEMMA 4.2. Let Tap € EU(L(Z)) be an invertible generalized inner derivation
of length 2. Suppose that B is algebraic of degree n and that {I, A,..., A" '} is
a linearly independent set of operators. Then the inverse T;}B is an elementary
operator of length n.

Proof. Since B is not a scalar multiple of I the integer n is actually at least 2.
Let

mp(z) = 2"+ an_12" '+ +arz+ q

be the minimal polynomial of B. Then mp(A) is an invertible operator (since o(B)N
a(A)=0). Let A" € &(L(Z")) be defined by

n—2
A= Z MA”_“rOtnf1A”_i_1+---+ai+1A,B7'_1 +MA,B"_2 +Rpn-14a, 1 Br =24 tasBtarl

i=1
(if n = 2, then A = La + Rpya,1). Observe that £(A’) = n. A straightforward
computation shows that A'Ta p = T4 A’ = Ly, ,(4). Since mp(A) is invertible we
see that TZ}B = ALy, 54)-1 = Ly, 4)-1 A" which means that TZ}B is an elementary
operator of length n. O

THEOREM 4.3. Let A, B € L(Z"). Suppose that Y 4.p is invertible and of length
2. Then T;}B s an elementary operator if and only if either A or B is algebraic.
Moreover, E(TZ}B) = min{deg(A), deg(B)} = n.

Proof. Suppose that T;}B is an elementary operator of length n. By Lemma 2.1,

dim(R(Y4,8)R(T'5)) + dim(L(Y;'5)L(Ya,5)) < 2n+ 1.
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Hence, either dim(R(TA,B)R(T,Z}B)) <mnor dim(L(T;}B)L(TA,B)) < n. Suppose, for
instance, that dim(L(TZB)L(TAB)) < n. Since I € L(Y 4, 5) and dim(L(Y,'5)) = n
we have L(Y,';) = L(Y,'5)L(Ta,5). Therefore, CI + L(Y,'5)A C L(T;,}B). Let
L(TZ}B) = span{Ey,...,E,}, where [ = E; and EyA = A¥ = By, for 1 < k <
n—1. Then E, A = A" € span{l, A,..., A" '}, As a result, A is algebraic of degree
at most n. We have thereby shown that either A or B is algebraic of degree at most
n.

Suppose now that A is algebraic. Since o(A) is finite we can choose A € C such
that B — Al and I + AA are invertible. Write Y4 p = M4 p—ar + Lryaa. Then
Mr4a4)-1,(B=xn)-1 T a,B is a generalized inner derivation. The desired conclusion
follows by Lemma 4.2. O

COROLLARY 4.4. Let T4 p € EUL(X)) be an invertible generalized inner deriva-
tion of length 2. The inverse TZ}B is an elementary operator if and only if either A
or B is algebraic. Moreover, {(T ') = min{deg(A), deg(B)} = n.

Proof. With no loss of generality, we may assume that A is invertible (since we
can replace A and B by A— Xl and B—\I respectively). Then Ly-1Typ ="_4-1 p.
Now the desired conclusion follows by Theorem 4.3. O

Next we characterize generalized inner derivations whose inverses are generalized
inner derivations, too.

COROLLARY 4.5. Let T4 g be an invertible generalized inner derivation of length
2. The inverse T;}B is a generalized inner derivation if and only if there exists A € C
such that (A — XI)? and (B — X )? are scalar multiples of I.

Proof. 1f there exists A € C such that (A—AI)? and (B — \I)? are scalar multiples
of I, say (A— A)? = ol and (B — \I)? = BI, then o # 3 as T4 p is invertible. It is
easy to check that T;}B = a—iBTAfAjnyJr)\].

Suppose now that TZ}B is a generalized inner derivation, say TZ}B = T¢,p.
By Corollary 4.4, A or B is an algebraic operator and min{deg(A),deg(B)} = 2.
Assume that B is algebraic of degree 2. There is no loss of generality if we assume
that B2 = BI for some 3 € C (we can replace A and B by A — A\ and B — I,
respectively, if necessary). Thus, the minimal polynomial of B is mp(z) = 2% — 3. By
the proof of Lemma 4.2, TZ}B = L(az_gr-1a +Ma2_gr)-1, p and therefore, because
of TZ,IB = Tc¢ p, one has L(A275])*1A—C + M(A2,5])—173 +Rp =0. If (A2 — ﬂ])fl
and I were linearly independent, then, by Corollary 2.3, B and D would be scalar
multiples of 1. As this is not the case, we conclude that (4% — BI)~! is a scalar
multiple of I. It is obvious now that A? = ol for some o € C. O
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COROLLARY 4.6. Let A = My g + Mc,p be an invertible elementary oper-
ator of length 2. If B and C are invertible, then the inverse A~' is an elemen-

tary operator of length n if and only if C™'A or DB~ is an algebraic operator and
min{deg(C~1A),deg(DB~ 1)} =n.

Proof. Since B and C are invertible we have A = M¢,pT¢-14,_pp-1, which gives
Al = Tg,l,lA 7DB,1MEIB. Hence, A~! is an elementary operator of length n if and

only if TELA _pp-1 isan elementary operator of length n. Now use Corollary 4.4. O

LEMMA 4.7. Let A,B € L(Z"). Suppose that Y 4 p is invertible and its inverse
is an elementary operator. Then Y 5 p can be written as a sum of two invertible
multiplication operators.

Proof. By Theorem 4.3, either A or B is algebraic. Hence, o(A) or o(B) is finite.
We can now deduce easily the desired decomposition. O

PROPOSITION 4.8. Let A be an invertible elementary operator of length 2. Sup-
pose that A~ is an elementary operator of length n. Then one of the following cases
holds.

(1) A =My g+Mc,p, where Ma g, Mc p are invertible multiplication operators,
either A=*C' or B~1D is algebraic and min{deg(A~1C),deg(B~1D)} = n.

(2) dim(R(A)R(A™Y)) < n, every element of R(A) has a right zero divisor in
R(A™Y) and every element of L(A) has a right inverse in L(A™1).

(3) dim(L(ATY)L(A)) < n, every element of L(A) has a left zero divisor in L(A™1)
and every element of R(A) has a left inverse in L(A™1).

Proof. By Lemma 2.1, dim(R(A)R(A™Y)) + dim(L(A~Y)L(A)) < 2n + 1. This
entails that either dim(R(A)R(A™Y)) < n or dim(L(A™1)L(A)) < n. Suppose first
that the former holds. For B € R(A), denote by B : R(A™!) — R(A)R(A™1) the
restriction of L to R(A™!). Let & = {B : B € R(A)}. Choose By € S such that
rk(B) = rk(S). We distinguish two cases.

Case 1. 1k(S) = n. Then BiR(A™!) = R(A)R(A™!) and B is invertible. Choose
By € R(A) such that Bs is not invertible. Choose a Jordan basis {F},. .., F,} for the
map Eflég such that BoFy = 0. Write A~ = 3> Mg, p, and A = Z?Zl Ma, B,
for suitable Ay, As, Ey,...,E, € L£(Z). Since AA™' =T and ByF; = 0 one has
Z?:l AlEj ® FjBlFl =1 024 Fl. In particular, I e AlL(A_l). Let {Fl, .. -7Fi1} be
the first block of the Jordan basis {F, ..., F,}. Set 27 = span{F1,...,F;, } and 25 =
span{F;, 41,...,Fn}. Then Bo% C B1% and BaFyy1 = B1Fy for 1 <k <3 — 1.
Choose F € 27 and G € %5 such that B1(F + G) = I. Write F = Z?zl o Fy and
let 1 € {1,...,i1} be the greatest integer satisfying a; # 0. It follows from A7'A =1
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and Lemma 2.2 that

i—1

Z(Ek+1A2 + EyA1) ® BiFy, + Ej Ay @ B Fy, + Z EyA; @ BjFy, = 1.

k=1 i1+1<k<n

1<G<2

If I # i1, then F;; A1 = 0, which is not possible as I € A L(A‘l). Hence, | = iy and
E;, A1 = oyI. This entails that A; is invertible. If B; is invertible, then we can apply
Lemma 4.7 and Theorem 4.3 to the operator MZ}BA and get the conclusion (1). Next
suppose that By is not invertible. Since I € BjR(A ™), the restriction of the map Rp,
to R(A™1) has to be injective. Hence, dim(R(A71)R(A)) > n. Since I € Rp, (R(A™1))
one has dim(R(A71)R(A)) > n + 1. By Lemma 2.1, dim(L(A)L(A™1)) < n. Since
Ay is invertible dim(L(A)L(A™!)) = n. The above argument applied to A; and
L(A)L(A™Y) implies that A = M;+Ma, where M; and My are multiplication operators
and M; is invertible. The desired conclusion follows, once again, by Lemma 4.7 and
Theorem 4.3.

Case 2. 1k(S) < n—1. Let Ay € L(A). Write A = > Ma, p, for suitable
A, B1,By € L(Z). Choose Fy € R(A™1Y) such that BoFy = 0. Then 2?21 AE; ®
F;BiFy =1 ® Fy. Hence, A; is right invertible.

Now suppose that dim(L(A7!)L(A) < n. A reasoning similar to that one just
presented gives that either (1) or (3) holds. O

COROLLARY 4.9. Let A be an elementary operator of length 2 on M,,. Then one
of the following conditions holds.

(1) There exists a multiplication operator M such that MA = 0.
(2) A is a sum of two invertible multiplication operators and is invertible.

Proof. Suppose first that A is invertible. If every nonzero element of L(A) is
right invertible, then L(A) can be seen as a two dimensional subspace of constant
rank n, which is impossible. Analogously, we see that there exists a nonzero element
of R(A) which is not left invertible. It follows, by Proposition 4.8, that A is a sum
of two invertible multiplication operators. Assume now that A is not invertible and
MA # 0, for every multiplication operator M. Then, by Theorem 3.9, either every
element of L(A) \ {0} is invertible or every element of R(A) \ {0} is invertible, which
is impossible, as shown above. O

THEOREM 4.10. Let A be an invertible elementary operator of length 2. Suppose
that A= is an elementary operator of length 2, as well. Then there exist multiplication
operators My, Mg, T'1, and T'y such that A = My + My, A=t =T + Ty, and one of
the following assertions holds.

(1) My and My are invertible.
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(2) FiMj = MjI’,- = 0, fO?” 7 7& j

Proof. Once again, for each B € R(A), let B : R(A™Y) — R(A)R(A™1) denote
the restriction of L to R(A)~!. In view of Proposition 4.8 it is enough to consider
the case when every element of R(A) has a right zero divisor in R(A)~!. Write
A = span{ By, By} and choose F; € R(A)~1\{0} such that BoFy = 0. Then By Fy # 0.
Choose F» € R(A)~1\ {0} such that BiFy = 0. If {B1Fy, BoFy} was a linearly
independent set, then {(By + B2)F1,(B1 + Bz)F2} would be linearly independent,
which contradicts our assumption. On the other hand, I € R(A)R(A)~!. Thus, with
no loss of generality, we may suppose that B1Fy = BoFy = I. Write A =Y My, B,
and A7 = Z?Zl Mg, F,. Then it follows from our assumptions and Lemma 2.2 that
(E1A1 + E2A2) ® By Fy = I. This implies that E1 A; + F2As = I. Now we infer from
the fact that AA_I = [ that ZAIEZ & FzBl + ZAQE:L' ® FL'BQ = [. This entails
that > A1E; @ F; =1 ® Fy and Y AsE; ® F; = I @ Fy. Consequently, A;E; = I and
AjE; = 0, for @ # j. Therefore, we have F1 By + FoBy = I. Set I'j = Mg, r, and
M; = My, B;- Then I'M; = M,;I'; = 0, as desired. O

The following example illustrates the second case in the above theorem.

EXAMPLE 4.11. Let % be the separable Hilbert space and let {e;}°; be an
orthonormal basis. Let the operators By, Bs be defined by

Biegit1 =0, Bsegip1 =eip1 (i >0)
and
Blegi = €4, Bgegi =0 (Z Z ].)

Set A = Mp, B, + Mp,,B,- Then A is invertible and its inverse is Mg, g, + Mg, 7y,
where

Flei = €9; and Fgei = €2;—1 (Z Z ].)

Observe that A cannot be a sum of two invertible multiplication operators as the
pencil (By, Bz) is not regular. Moreover, a straightforward calculation shows that
every elementary operator ¥ satisfying L(¥) = L(A) and R(¥) = R(A) has to be
invertible and its inverse is a length 2 elementary operator.
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