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ON THE ROBUST STABILITY OF POLYNOMIAL

MATRIX FAMILIES∗
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Abstract. In this study, the problem of robust asymptotic stability of n × n polynomial ma-

trix family, in both continuous-time and discrete-time cases, is considered. It is shown that in the

continuous case the problem can be reduced to positivity of two specially constructed multivariable

polynomials, whereas in the discrete-time case it is required three polynomials. Number of examples

are given, where the Bernstein expansion method and sufficient conditions from [L.H. Keel and S.P.

Bhattacharya. Robust stability via sign-definite decomposition. IEEE Transactions on Automatic

Control, 56(1):140–145, 2011.] are applied to test positivity of the obtained multivariable polyno-

mials. Sufficient conditions for matrix polytopes and one interesting negative result for companion

matrices are also considered.
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1. Introduction. It is well-known that establishing whether an uncertain sys-

tem is robustly D-stable is a key problem in automatic control, whereD is a symmetric

region of the complex plane.

If D is

• open left half plane, then robust asymptotic stability of continuous systems

(Hurwitz stability),

• open unit disc, then robust asymptotic stability of discrete systems (Schur

stability)

are under consideration.

On the other hand, the dependence of systems on the uncertainty is typically

polynomial.

In this paper, we consider the problem of robust D-stability of polynomial matri-

ces, i.e., D-stability of the real matrix family

A(q) = [aij(q)] (i, j = 1, 2, . . . , n),(1.1)
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where aij(q) are multivariable polynomials on q = (q1, q2, . . . , ql) ∈ Q and Q ⊂ Rl is

a box.

The stability region D is assumed to be

D = {s ∈ C : a+ b(s+ s̄) + css̄ < 0} ,(1.2)

where a, b and c are real numbers, b ≥ 0, c ≥ 0, C is the complex plane.

In particular, if c = 0 and b > 0 the region D is a shifted left half plane x < −
a

2b
.

If c > 0 the region D is a shifted disc
(

x−

(

−
b

c

))2

+ y2 <
b2 − ac

c2
,

where s = x+ jy, b2 − ac > 0.

Related stability problems have been studied in a lot of works (see [2, 3] and

references therein). In [11], the general problem of root-clustering of a single matrix

in the complex plane is considered and algebraic criterion which is necessary and

sufficient for D-stability is obtained.

In [4, 12], necessary and sufficient conditions are formulated for the zeros of an

arbitrary polynomial matrix to belong to a given region D of the complex plane.

They are expressed as an LMI feasibility problem that can be tackled with powerful

interior-point methods.

The paper [5] discusses analysis and synthesis techniques for robust pole place-

ment in LMI regions, a class of convex regions of the complex plane that embraces

most practically useful stability regions. The notion of quadratic stability is general-

ized to these regions and results involving LMI problems are obtained.

In this report, we show that robust D-stability of a polynomial matrix family

can be reduced to positivity of multivariable polynomials. It is shown that in the

continuous case the problem can be reduced to positivity of two specially constructed

multivariable polynomials, whereas in the discrete-time case it is required three poly-

nomials. Number of examples are considered, where the Bernstein expansion method

[6, 8] and sufficient conditions from [14] are applied to test positivity of the obtained

polynomials.

2. Continuous time case (c = 0). Let the region D (1.2) be given and c = 0.

Recall that a matrix A is called D-stable if all eigenvalues of A lie in D. Since A is

real, the region must be symmetric with respect to the real axis.

If s = x+ jy and b > 0, then

D =
{

s : x < −
a

2b

}

.(2.1)
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We establish that in the case of (2.1) robust D-stability of the family

{A(q) : q ∈ Q}(2.2)

can be reduced to the positivity of two specially constructed multivariable polynomi-

als. These polynomials are defined by using the bialternate product of matrices. Here

A(q) is defined by (1.1).

Definition 2.1 ([7, 15]). Let A and B be n × n matrices. The bialternate

product F = A ·B of A and B is defined by

F = (fij,kl), fij,kl =
1

2

(

det

[

aik ail
bjk bjl

]

+ det

[

bik bil
ajk ajl

])

where i, j, k, l ∈ {1, 2, . . . , n} and i < j, k < l.

The matrix F is r × r dimensional, where r = n(n−1)
2 . For a comparison the

Kronecker product has dimension n2 × n2.

Theorem 2.2 (Eigenvalue property, [7, 9, 15]). The eigenvalues of 2A · I are

λi + λj and the eigenvalues of A · A are λi.λj (i < j), where λi (i = 1, 2, . . . , n) are

the eigenvalues of A.

Consider the multivariable polynomials

f1(q) := det
[

− a
2bI −A(q)

]

,

f2(q) := det
[

−2( a
2bI +A(q)) · I

]

.

Theorem 2.3. Let the family (2.2) be given, D is defined by (2.1) and the family

(2.2) contains at least one D-stable member. Then the family (2.2) is robust D-stable

if and only if f1(q) > 0 and f2(q) > 0 for all q ∈ Q.

Proof. For the sake of simplicity, let us carry out the proof for the Hurwitz case

a = 0 so f1(q) = det [−A(q)], f2(q) = det [−2A(q) · I].

(⇐). By contrary, assume that the family (2.2) is not robust stable. Then by con-

tinuity, there exists q∗ ∈ Q such that A(q∗) has a pure imaginary eigenvalue jω. If

ω = 0 then det [A(q∗)] = 0 and f1(q∗) = 0 which is a contradiction. If ω > 0 then

f2(q∗) = det [−2A(q∗) · I] = µ1.µ2. . . . .µr where µi are the eigenvalues of −2A(q∗) ·I.

By Theorem 2.2 one of eigenvalues µi is (−jω) + jω = 0 and f2(q∗) = 0 which is a

contradiction.

(⇒). Assume that the family (2.2) is robust Hurwitz stable. Consider the character-

istic polynomial of A(q):

p(s) = det [sI −A(q)] = sn + an−1(q)s
n−1 + · · ·+ a1(q)s+ a0(q).
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A necessary conditions for Hurwitz stability of a monic polynomial is positivity of

all coefficients, therefore a0(q) = p(0) = det (−A(q)) = f1(q) > 0 for all q ∈ Q. On

the other hand, f2(q) = µ1.µ2. . . . .µr where µi are the eigenvalues of −2A(q) · I. By

Theorem 2.2 and stability of A(q), each µi is real positive (is the sum of two real

eigenvalues or two conjugate eigenvalues) or has a conjugate partner µj . Therefore,

the product is positive and f2(q) > 0 for all q ∈ Q.

3. Discrete-time case (c > 0). Let the region D (1.2) be given and c > 0.

Then D is reduced to

D = {(x, y) : (x − δ)2 + y2 < r},(3.1)

where

δ = −
b

c
, r =

(

b2 − ac

c2

)

.

Define

g1(q) := det
[

(1 + δ
r
)I − 1

r
A(q)

]

,

g2(q) := det
[

(1 − δ
r
)I + 1

r
A(q)

]

,

g3(q) := det
[

I −
(

− δ
r
I + 1

r
A(q)

)

·
(

− δ
r
I + 1

r
A(q)

)]

.

In the case of (3.1), robust D-stability of the family (2.2) can be reduced to positivity

of the multivariable polynomials g1(q), g2(q) and g3(q).

Theorem 3.1. Let the family (2.2) be given, D is defined by (3.1) and the family

(2.2) contains at least one D-stable member. Then the family (2.2) is robust D-stable

if and only if g1(q) > 0, g2(q) > 0 and g3(q) > 0 for all q ∈ Q.

Proof. As in the case of the proof of Theorem 2.3, for the sake of simplicity

take δ = 0, r = 1 that is g1(q) = det (I −A(q)), g2(q) = det (I +A(q)), g3(q) =

det (I −A(q) · A(q)).

(⇐). By contrary, if the family (2.2) is not robust stable by continuity there exists

q∗ ∈ Q such that A(q∗) has an eigenvalue λ = ejθ. If θ = 0 then g1(q∗) = 0, if θ = π

then g2(q∗) = 0, if 0 < θ < π then by Theorem 2.2 the matrix A(q∗) · A(q∗) has

eigenvalue ejθ · e−jθ = 1 so g3(q∗) = 0. These contradictions proof the sufficiency.

(⇒). Assume that A(q) is robust stable and λ1, λ2, . . . , λn be the eigenvalues of A(q).

Then |λi| < 1 (i = 1, 2, . . . , n) and

g1(q) = (1− λ1)(1− λ2) · · · (1− λn) > 0, g2(q) = (1 + λ1)(1 + λ2) · · · (1 + λn) > 0.

If ν1, ν2, . . . , νr are the eigenvalues of A(q) · A(q), by Theorem 2.2, νk has the form

λi.λj , and therefore, |νk| < 1 and

g3(q) = (1− ν1)(1− ν2) · · · (1− νr) > 0.
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Example 3.2 ([1]). Consider the following interval matrix family

A =

{

A(q) =

[

0.6 q1
q2 q3

]

: q1 ∈ [0, 0.2], q2 ∈ [−0.78, 0], q3 ∈ [−0.6, 0.6]

}

.

The matrix A(0, 0, 0) is Schur stable and

g1(q) = det [I −A(q)]

= 0.4− 0.4q3 − q1q2,

g2(q) = det [I +A(q)]

= 1.6 + 1.6q3 − q1q2,

g3(q) = det [I −A(q) ·A(q)]

= 1 + q1q2 − 0.6q3.

These polynomials are multilinear and by the known property of multilinear polyno-

mials [2, p. 247] the minimum values on Q are obtained at vertices and are 0.16, 0.64

and 0.484 respectively. Therefore, g1(q) > 0, g2(q) > 0 and g3(q) > 0 for all q ∈ Q,

and by Theorem 3.1 this family is robust Schur stable.

For the comparison this example to be solved by Theorem 5.1 [1] gives the fol-

lowing multivariate polynomial:

g(q) = 2q1q2 + q21q
2
2 + · · ·+ 2.4t2q3 − 4t2q1q2 − 1.2tq23,

which requires an additional investigation on positivity.

4. Bernstein expansion. One of the well-known methods to test positivity of

a multivariate polynomial over a box is the Bernstein expansion. We don’t give the

detailed description and refer to [6]. This expansion gives bounds for the range of

a multivariable polynomial. If the lower bound is not positive then the initial box

should be divided into two subboxes and so on. If for a subbox the lower bound is

positive this subbox should be eliminated since the polynomial is positive on this box.

Example 4.1. Consider the following family from [4]

A(q) =









0 1 0 2− q

−1− q2 −2 7q − 1 0

−q3 1− q −1 0

q 0 q4 −1









and q ∈ [0, 1]. For the robust Hurwitz stability of this family, by Theorem 2.3, we

consider the following functions:

f1(q) = det [−A(q)]

= − q8 + q7 + 3q6 − 3q5 + 16q4 − 23q3 + 20q2 − 6q + 1,

f2(q) = det [−2A(q) · I]

= − q16 + 4q15 − 4q14 + 14q12 − 30q11 − 8q10 + 36q9 − 75q8 + 34q7

+35q6 − 48q5 + 170q4 − 298q3 + 440q2 − 356q + 99.
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Table 4.1

Division and elimination procedure.

f1 f2

min max min max Eliminated intervals

[0, 1] 0.21428 8 −4.46828 99 Divide the interval

[0, 1

2
] 0.35937 1.08203 3.44566 99 Eliminate

[ 1
2
, 1] 1.08203 8 −1.92831 12.375 Divide the interval

[ 1
2
, 3

4
] 1.08203 2.96476 −1.39587 3.44566 Divide the interval

[ 3
4
, 1] 2.96476 8 0.840033 12.1875 Eliminate

[ 1
2
, 5

8
] 1.08203 1.79535 −1.08237 3.44566 Divide the interval

[ 5
8
, 3

4
] 1.79535 2.96476 −1.22773 0.84003 Divide the interval

[ 1
2
, 9

16
] 1.08203 1.39530 0.34755 3.44566 Eliminate

[ 9

16
, 5

8
] 1.39530 1.79535 −1.08237 0.34755 Divide the interval

[ 5
8
, 11

16
] 1.79535 2.30740 −1.20751 −0.88253

[ 11
16

, 3

4
] 2.30740 2.96476 −0.88253 0.840033

The application of the Bernstein expansion gives Table 4.1.

From the table it follows that f2(q) < 0 for all q ∈ [5/8, 11/16] = [0.625, 0.6875].

That is, the family {A(q) : q ∈ [0, 1]} is not robust stable.

5. Sign-definite decomposition. Here we describe a method from [14] to test

positivity of a multivariable polynomial on a box.

Let

q = (q1, q2, . . . , ql)

be real vector, f(q) be a real multivariable polynomial of q ∈ Q where Q is a box:

Q = {q : q−i ≤ qi ≤ q+i , i = 1, 2, . . . , l}.

The box Q in an arbitrary location of the parameter space can always be translated

to the first orthant. Therefore, one can assume that q−i ≥ 0 without loss of generality.

Then f(q) can be written as

f(q) = f+(q)− f−(q),

where f+(q), f−(q) ≥ 0 for all q ∈ Q and this representation is called the sign-definite

decomposition of f(q). The functions f+(q) and f−(q) refer to the terms with positive

and negative coefficients, respectively.

Define two extreme vertices of the box Q:

q− := (q−1 , q
−

2 , . . . , q
−

l ), q+ := (q+1 , q
+
2 , . . . , q

+
l ).

Proposition 5.1 ([14]). If f+(q−) − f−(q+) > 0 then f(q) > 0, if f+(q+) −

f−(q−) < 0 then f(q) < 0 for all q ∈ Q.
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Using the sufficient condition from Proposition 5.1 we can test positivity of f(q).

If the condition f+(q−) − f−(q+) > 0 is not satisfied, as in the case of Bernstein

expansion the box Q should be divided into small subboxes.

Example 5.2. Consider robust Schur stability of the family

A(q1, q2) =





−0.14 0.235 0.29

−0.94 −0.811 1.246

−0.22 −0.35 0.95



+ q1





−0.3 0.15 0.275

−0.275 −0.3 0.55

−0.35 −0.25 0.625





+ q2





0.4 −0.1 −0.4

−0.6 −0.325 0.225

0.725 0.225 −0.45



 ,

where −1 ≤ q1 ≤ 1, −1 ≤ q2 ≤ 1. A(0, 0) is Schur stable.

The Bernstein expansion applied to the polynomials g1(q), g2(q) and g3(q) from

Theorem 3.1 establishes their positivity after 4 steps and the family is robust Schur

stable. It should be noted that sign-definite decomposition method described above

establishes the positivity only after 4178 steps. The necessary and sufficient condition

from [1] establishes robust Schur stability after 109 steps of the Bernstein expansion.

Fig. 5.1. Eliminated subboxes of [−1, 1]× [−1, 1] according to the Bernstein expansion and the

decomposition method in Example 5.2.

−1

1

−1 1q1

q2

−1

1

−1 1q1

q2

Example 5.3. Consider robust Hurwitz stability of the family

A(q) =





−2 0 0

3 −2 1

3 −1 −2



+ q1





−2 −1 −3

1 −1 0

0 3 −2



+ q2





−2 1 0

−3 1 −1

2 0 −3





+ q3





−3 0 −2

−2 −3 −1

−1 0 −3



+ q4





−2 2 0

−1 −2 −3

1 3 2



 ,
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(q1, q2, q3, q4) ∈ [0, 1] × [−0.1, 0.7] × [−0.11, 0.5] × [0, 1]. A(0, 0, 0, 0) is stable. The

Bernstein expansion applied to the polynomials

f1(q) = det [−A(q)] , f2(q) = det [−2A(q) · I]

from Theorem 2.3 establishes their positivity after 16 steps and the family is Hurwitz

stable.

Example 5.4. Consider the family

A(q) =





2.403 0.807 −0.863

0.194 2.713 0.177

2.261 2.063 1.391



+ q1





−0.54 −0.30 −0.50

0.32 −0.56 0.6

−0.2 −0.4 0.30





+ q2





−0.28 −0.10 0.14

−0.40 0.30 −0.38

−0.70 0.50 −0.50



 ,

where (q1, q2) ∈ [−1, 1] × [−0.6, 0.2] and D = {z ∈ C : (x − 1)2 + y2 < 2}. Here

A(0, 0) is D-stable and

g1(q) := det
[

3
2I −

1
2A(q)

]

,

g2(q) := det
[

1
2I +

1
2A(q)

]

,

g3(q) := det
[

I −
(

− 1
2I +

1
2A(q)

)

·
(

− 1
2I +

1
2A(q)

)]

.

The Bernstein expansion gives answer after 3 steps and the family is robust D-stable.

6. Simple sufficient conditions for stability and a negative result for

companion matrices. Consider family (1.1) where each function aij(q) is multilin-

ear on Q, i.e., affine-linear with respect to each component qk. Define multilinear map

T : Q → Rn×n by T (q) = A(q). By the well-known extremal property of multilinear

maps ([2, p. 247])

convT (Q) = conv
{

T (q1), T (q2), . . . , T (qm)
}

,(6.1)

where “conv” stands for the convex hull, q1, q2, . . . , qm are the extremal points of

Q. From (6.1) it follows that the family A(q) is robustly D-stable if the extended

polytope conv
{

T (q1), T (q2), . . . , T (qm)
}

is robustly D-stable.

Now we give simple sufficient conditions for stability of matrix polytopes. Let a

polytope

P = conv {A1, A2, . . . , Am}(6.2)

be given. For A ∈ Rn×n define As = 1
2

(

A+AT
)

, where “T ” denotes the transpose.
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Theorem 6.1. Assume that the polytope (6.2) is given. Then

a) If As
i (i = 1, 2, . . . ,m) are Hurwitz stable then P is robust Hurwitz stable.

b) If AT
i = Ai and Ai are Schur stable (i = 1, 2, . . . ,m) then P is robust Schur

stable.

Proof.

a) Hurwitz stability of a symmetric matrix is equivalent to negative definiteness,

therefore Ai + AT
i < 0 or IAi + AT

i I < 0 (i = 1, 2, . . . ,m), where I is

the identity matrix. As a result the matrix I is a common solution to the

Lyapunov inequalities for the family (6.2).

b) Let A ∈ P , A = α1A1 + · · · + αmAm where αi ≥ 0, α1 + · · · + αm = 1

(i = 1, 2, . . . ,m). Since Ai are symmetric and Schur stable matrices (i =

1, 2, . . . ,m), we get

−1 < α1λmin(A1) + · · ·+ αmλmin(Am) ≤ λmin (α1A1 + · · ·+ αmAm)

≤ λmax (α1A1 + · · ·+ αmAm) ≤ α1λmax(A1) + · · ·+ αmλmax(Am) < 1

by Weyl Theorem [13, p. 181]. That is A is Schur stable.

Example 6.2. Consider the family

A(q) =





q1q2 − 3 3 1

1 −5 q1 + q2
2 2q1q3 −8



 ⊂ conv{A1, A2, . . . , A8},

where (q1, q2, q3) ∈ [−5,−4] × [5, 6] × [0, 1] and Ai (i = 1, 2, . . . , 8) are extremal

matrices. Since As
i are Hurwitz stable, A(q) is Hurwitz stable for all q ∈ [−5,−4]×

[5, 6]× [0, 1].

Example 6.3. Consider the symmetric matrix family

A(q) =

[

q1 − q2 + 1 q1q2 + q1 − q2
q1q2 + q1 − q2 q1q2

]

,

where (q1, q2) ∈ [−1.2,−0.4]× [−0.3,−0.1]. The extremal matrices of the family are

Schur stable. Therefore, A(q) is Schur stable for all q ∈ [−1.2,−0.4]× [−0.3,−0.1].

Theorem 6.1 requires the Hurwitz stability of the symmetric parts of extreme

matrices. The following proposition shows that for companion matrices this is not

a case and consequently Theorem 6.1, part a) can not be applied to polynomial

polytopes.

Proposition 6.4. For any real companion matrix A, the matrix As = A+AT

2 is

not Hurwitz stable.
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Proof. Let A be a companion matrix

A =

















0 0 · · · 0 −an
1 0 · · · 0 −an−1

0 1 · · · 0 −an−2

...
...

. . .
...

...

0 0 · · · 1 −a1

















with the characteristic polynomial a(s) = sn + a1s
n−1 + · · ·+ an−1s+ an. Then

As =

















0 1
2 0 · · · 0 −an

2
1
2 0 1

2 · · · 0 −an−1

2

0 1
2 0 · · · 0 −an−2

2
...

...
...

...
...

−an

2 −an−1

2 −an−2

2 · · · 1−a2

2 −a1

















.

Let b(s) = sn + b1s
n−1 + · · · + bn−1s + bn be the characteristic polynomial of As.

Recall that necessary condition for Hurwitz stability of As is positivity of all bi
(i = 1, 2, . . . , n). The coefficient bk is the sum of the k-by-k principal minors of

As. Consider the coefficient b2 which is the sum of the 2-by-2 principal minors of

As. Each such minor has the form

[

0 c

c d

]

, and therefore, the sum of the 2-by-2

principal minors is negative that is b2 < 0. Hence, As is not Hurwitz stable.
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