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INTEGRAL REPRESENTATION OF THE DRAZIN INVERSE∗

N. CASTRO GONZÁLEZ† , J. J. KOLIHA‡ , AND YIMIN WEI§

Abstract. In this note we present an integral representation for the Drazin inverse AD of a
complex square matrix A. This representation does not require any restriction on its eigenvalues.
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1. Introduction. It is a well-known fact that if the eigenvalues of A ∈ Cn×n lie
in the open right halfplane, then the inverse of A can be represented by

A−1 =
∫ ∞

0

exp(−tA) dt.

This representation was extended to the Drazin inverse by Koliha and Straškraba [2,
Theorem 6.3] in the form

AD =
∫ ∞

0

exp(−tA)(I − Aπ) dt

for those singular matrices whose nonzero eigenvalues lie in the open right halfplane
and for which ind(A) = 1; here Aπ is the eigenprojection of A corresponding to the
eigenvalue 0. Recall that ind(A), the index of A, is the least nonnegative k for which
the nullspace of Ak coincides with the nullspace of Ak+1.

Recently, Castro, Koliha and Wei [1, Corollary 2.5] obtained a simple integral
representation of the Drazin inverse AD for matrices A ∈ Cn×n (and more generally
elements of a Banach algebra) for which the nonzero eigenvalues of Am+1 lie in the
open right halfplane for some m ≥ ind(A):

AD =
∫ ∞

0

exp(−tAm+1)Am dt.

It is natural to ask whether we can drop the restriction on the spectrum of Am+1.
In this note we will establish an integral representation for the Drazin inverse AD

which holds without any restriction on the eigenvalues of A.
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2. Integral representation for the Drazin inverse AD. We mention that
for the Moore–Penrose inverse A† of a matrix A ∈ Cn×n (and more generally of a
bounded Hilbert space operator A with closed range) there is a well known integral
representation due to Showalter [3],

A† =
∫ ∞

0

exp(−tA∗A)A∗ dt,

generalized recently by Wei and Wu to the weighted Moore–Penrose inverse [4].
Our main result which follows bears a certain resemblance to this representation.
Theorem 2.1. Suppose that A ∈ Cn×n and k = ind(A). Then

AD =
∫ ∞

0

exp[−tAk(A2k+1)∗Ak+1]Ak(A2k+1)∗Ak dt.

Proof. For each matrix A ∈ Cn×n there exists a nonsingular matrix P such that

A = P

[
C 0
0 N

]
P−1,

where C is a nonsingular matrix and N is a nilpotent matrix of index k; either block
C or block N may be empty.

The Drazin inverse of A can be then expressed by

AD = P

[
C−1 0
0 0

]
P−1.

We partition the Hermitian matrices P ∗P and (P ∗P )−1 into block matrices com-
patible with the above partitioning of A (and AD):

P ∗P =
[
P11 P12

P ∗
12 P22

]
, (P ∗P )−1 =

[
Q11 Q12

Q∗
12 Q22

]
.

Since P ∗P and (P ∗P )−1 are positive definite Hermitian matrices, so are the subma-
trices P11 and Q11. By a direct computation we obtain

Ak(A2k+1)∗Ak = P

[
Ck 0
0 0

]
(P ∗P )−1

[
(C2k+1)∗ 0

0 0

]
P ∗P

[
Ck 0
0 0

]
P−1

= P

[
Ck 0
0 0

] [
Q11 Q12

Q∗
12 Q22

] [
(C2k+1)∗ 0

0 0

] [
P11 P12

P ∗
12 P22

] [
Ck 0
0 0

]
P−1

= P

[
CkQ11(C2k+1)∗P11C

k 0
0 0

]
P−1.

Similarly, we get

Ak(A2k+1)∗Ak+1 = P

[
CkQ11(C2k+1)∗P11C

k+1 0
0 0

]
P−1.
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Write σ(A) for the spectrum of A (that is, the set of all eigenvalues of A). Then

σ[CkQ11(C2k+1)∗P11C
k+1] = σ[Q11(C2k+1)∗P11C

2k+1]

= σ[Q1/2
11 (C

2k+1)∗P 1/2
11 P

1/2
11 C2k+1Q

1/2
11 ]

= σ[(P 1/2
11 C2k+1Q

1/2
11 )

∗(P 1/2
11 C2k+1Q

1/2
11 )],

where the last spectrum is positive being the spectrum of a positive definite Hermitian
matrix. Thus∫ ∞

0

exp[−tAk(A2k+1)∗Ak+1]Ak(A2k+1)∗Ak dt

= P

[∫ ∞
0
exp[−tCkQ11(C2k+1)∗P11C

k+1] dt 0
0 0

] [
CkQ11(C2k+1)∗P11C

k 0
0 0

]
P−1

= P

[
[CkQ11(C2k+1)∗P11C

k+1]−1 0
0 0

] [
CkQ11(C2k+1)∗P11C

k 0
0 0

]
P−1

= P

[
C−1 0
0 0

]
P−1

= AD.

This completes the proof.
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[1] N. Castro González, J. J. Koliha, and Yimin Wei. On integral representations of the Drazin
inverse in Banach algebras. Proceedings of the Edinburgh Mathematical Society , 45:327–
331, 2002.
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