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HIGHER NUMERICAL RANGES OF QUATERNION MATRICES∗
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MOMENAEE KERMANI§

Abstract. Let n and k be two positive integers and k ≤ n. In this paper, the notion of

k−numerical range of n−square quaternion matrices is introduced. Some algebraic and geometrical

properties are investigated. In particular, a necessary and sufficient condition for the convexity of

k−numerical range of a quaternion matrix is given. Moreover, a new description of 1−numerical

range of normal quaternion matrices is also stated.
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1. Introduction and preliminaries. Division rings [4] are of interest because

they resemble fields in every way except for commutativity of multiplication. The

division ring H of quaternions was first discovered by W.R. Hamilton and is narrated

in numerous resources; e.g., see [13, 19]. Nowadays quaternions are not only part

of contemporary mathematics such as algebra, analysis, geometry, and computation;

but they are also widely and heavily used in computer graphics, control theory, signal

processing, altitude control, physics, and mechanics; e.g., see [1, 5, 6, 9, 11, 14, 20].

Formally, H which is denoted by this notation because of Hamilton, is the four-

dimensional algebra over the field of real numbers R with the standard basis {1, i, j, k}
and multiplication rules:

i2 = j2 = k2 = −1,

ij = k = −ji, jk = i = −kj, ki = j = −ik, and

1q = q1 = q for all q ∈ {i, j, k}.

If q ∈ H, then there are α0, α1, α2, α3 ∈ R such that

q = α0 + α1i+ α2j + α3k.(1.1)
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Equation (1.1) is known as the canonical representation of a quaternion q ∈ H, and the

scalar α0 is called the real part of q, denoted by Re q; the quantity α0+α1i is said to be

the complex part of q, denoted by Co q; the part α1i+α2j+α3k is called the imaginary

part of q, symbolized as Im q; the set of all q ∈ H such that Re q = 0 is denoted by

P; the conjugate of q is q̄ = α0−α1i−α2j−α3k; and the norm or length, or modulus

of q is defined and denoted by |q| =
√

α2
0 + α2

1 + α2
2 + α2

3 = (qq̄)
1
2 = (q̄q)

1
2 , which is

nothing more than the Euclidean distance from the origin to the point (α0, α1, α2, α3)

in the space R
4. It is known that if q, q1, q2 ∈ H, then

(a) |q| = 0 if and only if q = 0;

(b) |q1 + q2| ≤ |q1|+ |q2|, and |q1q2| = |q1||q2|;

(c) |q̄| = |q|, and q1q2 = q̄2q̄1;

(d) if q 6= 0, then q−1q = qq−1 = 1, where q−1 = q̄
|q|2 .

Two quaternions x and y are said to be similar, denoted by x ∼ y, if there exists

a nonzero quaternion q ∈ H such that x = q−1yq. It is clear that if x ∼ y, then there

exists a q ∈ H such that |q| = 1 and x = q̄yq. Also, it is known, see [21, Theorem

2.2], that x ∈ H is similar to y ∈ H if and only if Re x = Re y and |Im x| = |Im y|.
For instance, i and j are similar. It is clear that ∼ is an equivalence relation on the

quaternions. The equivalence class containing x is denoted by [x].

The division ring H is an algebra over the field R, and the set C of complex

numbers appears as a real subspace ofH; that is, C = SpanR{1, i} = {q ∈ H : qi = iq}.
Moreover, SpanR{j, k} = {q ∈ H : qi = −iq}, and λq = qλ̄ for every λ ∈ SpanR{1, i}
and q ∈ SpanR{j, k}. Also, using this fact that ij = k, each quaternion q ∈ H, as in

(1.1), is uniquely represented by:

q = α0 + α1i + α2j + α3k = (α0 + α1i) + (α2 + α3i)j = γ1 + γ2j,

where γ1 = α0 + α1i ∈ C and γ2 = α2 + α3i ∈ C.

Let Hn be the collection of all n-column vectors with entries in H, and Mm×n(H)

be the set of all m×n quaternion matrices. For the case m = n, Mn×n(H) is denoted

by Mn(H), i.e., the algebra of all n × n quaternion matrices. For any 1 ≤ i ≤ n,

ei ∈ H
n has a 1 as its ith component and 0’s elsewhere. For every m× n quaternion

matrix A = (aij) ∈ Mm×n(H), Ā := (āij) is called the conjugate of A; the matrix

AT := (aji) ∈ Mn×m(H) is called the transpose of A; and A∗ := (Ā)T ∈ Mn×m(H) is

said to be the conjugate transpose of A.

Let A ∈ Mn(H). As in the complex case, A is called normal if AA∗ = A∗A;

Hermitian if A∗ = A; and skew-Hermitian if A∗ = −A. A quaternion λ is called a

(right) eigenvalue of A if Ax = xλ for some nonzero x ∈ Hn. If λ is an eigenvalue of A,

then any element in [λ] is also an eigenvalue of A. It is known, see [21, Theorem 5.4],
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that A has exactly n (right) eigenvalues which are complex numbers with nonnegative

imaginary parts. These eigenvalues are called the standard right eigenvalues of A. The

right spectrum of A is defined and denoted by

σr(A) = {λ ∈ H : Ax = xλ for some nonzero x ∈ H
n}.

For A ∈ Mn(H), as in the complex case (see [7, Chapter 1]), the quaternionic

numerical range of A is defined and denoted by

W (A) = {x∗Ax : x ∈ H
n, x∗x = 1}.

The notion of quaternionic numerical range of matrices was first studied in 1951

by Kippenhahn [10]. In the last two decades, the study of quaternionic numerical

range is revived in a series of papers; for example, see [3, 16, 18, 21, 22].

In this paper, we are going to introduce and study the higher numerical ranges

of quaternionic matrices. To this end, in Section 2, we introduce, as in the complex

case, the k−numerical range and the right k−spectrum of quaternion matrices. We

also study the projection of the k−numerical range of quaternion matrices on R and

C. The emphasis is on the study of algebraic properties of them and their relations.

Moreover, we characterize the k−numerical range of Hermitian quaternion matrices

and we give a necessary and sufficient condition for the convexity of the k−numerical

range of quaternion matrices. In Section 3, we show that the 1−numerical range of a

normal quaternion matrix can be characterized by its standard right eigenvalues.

2. k−Numerical range of quaternion matrices. Throughout this section,

we assume that k and n are positive integers, and k ≤ n. Also, Ik denotes the k × k

identity matrix. A matrix X ∈ Mn×k(H) is called an isometry if X∗X = Ik, and the

set of all n × k isometry matrices is denoted by Xn×k. For the case k = n, Xn×n is

denoted by Un, which is the set of all n × n quaternionic unitary matrices. In this

section, we are going to introduce and study the notion of higher numerical ranges

of quaternion matrices. To access more information about some known results in the

complex case, see [12] and its references.

Definition 2.1. Let A ∈ Mn(H). The k−numerical range of A is defined and

denoted by

W k(A) =

{

1

k
tr(X∗AX) : X ∈ Xn×k

}

.
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The sets W k(A), where k ∈ {1, 2, . . . , n}, are generally called higher numerical ranges

of A.

Remark 2.2. Let A ∈ Mn(H). Since for every X = [x1, x2, . . . , xk] ∈ Xn×k,

{x1, x2, . . . , xk} is an othonormal set in Hn, by Definition 2.1, we have

W k(A) =

{

1

k

k
∑

i=1

x∗
iAxi : {x1, . . . , xk} is an othonormal set in H

n

}

.

Also, it is clear that W 1(A) = W (A). So, the notion of k−numerical range is a

generalization of the classical numerical range of quaternion matrices.

Definition 2.3. Let A ∈ Mn(H) have the standard right eigenvalues λ1, . . . , λn,

counting multiplicities. The right k−spectrum of A is defined and denoted by

σk
r (A) =







1

k

k
∑

j=1

αij : 1 ≤ i1 < i2 < · · · < ik ≤ n, αij ∈ [λij ]







.

It is clear that σ1
r (A) = σr(A). In the following theorem, we state some basic

properties of σk
r (A). Recall that the convex hull of a set S ⊆ H, which is denoted by

conv(S), is defined as the set of all convex linear combinations of elements of S.

Theorem 2.4. Let A ∈ Mn(H) have the standard right eigenvalues λ1, . . . , λn,

counting multiplicities. Then the following assertions are true:

(a) If α ∈ σk
r (A), then [α] ⊆ σk

r (A);

(b) conv(C
⋂

σk
r (A)) = C

⋂

conv(σk
r (A));

(c) If k < n, then σk+1
r (A) ⊆ conv(σk

r (A)). Consequently,

conv(σn
r (A)) ⊆ conv(σn−1

r (A)) ⊆ · · · ⊆ conv(σr(A)).

Proof. The part (a) follows easily from Definition 2.3.

For (b), it is clear that conv(C
⋂

σk
r (A)) ⊆ C

⋂

conv(σk
r (A)). Conversely, let

λ =
∑m

l=1 θl(al + bli+ clj + dlk) ∈ C
⋂

conv(σk
r (A)), where θl ≥ 0,

∑m
l=1 θl = 1, and

al + bli+ clj + dlk ∈ σk
r (A) for all l = 1, . . . ,m. Then we have

λ =

m
∑

l=1

θl(al + bli), and

m
∑

l=1

θl(clj + dlk) = 0.

Since al± i
√

b2l + c2l + d2l ∈ [al+bli+clj+dlk], by (a), we have al± i
√

b2l + c2l + d2l ∈
C
⋂

σk
r (A) for all l = 1, . . . ,m. So, for every l ∈ {1, . . . ,m}, we have al + bli =
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t(al + i
√

b2l + c2l + d2l ) + (1 − t)(al − i
√

b2l + c2l + d2l ) ∈ conv(C
⋂

σk
r (A)), where t =

bl+
√

b2
l
+c2

l
+d2

l

2
√

b2
l
+c2

l
+d2

l

for the case
√

b2l + c2l + d2l 6= 0, and for the case bl = cl = dl = 0,

t ∈ [0, 1] is arbitrary. Therefore, λ ∈ conv(C
⋂

σk
r (A)). Hence,

C

⋂

conv(σk
r (A)) ⊆ conv(C

⋂

σk
r (A)).

To prove (c), let α ∈ σk+1
r (A) be given. Then there exist 1 ≤ i1 < i2 < · · · <

ik+1 ≤ n and αij ∈ [λij ] such that α = 1
k+1

∑k+1
j=1 αij . Therefore, we have

α =
1

k + 1

k+1
∑

j=1

αij =
1

k + 1

k+1
∑

j=1

(
1

k

k+1
∑

t=1,t6=j

αit).

So, α ∈ conv(σk
r (A)). Hence, the proof is complete.

In the following theorem, we state some basic properties of the k−numerical range

of quaternion matrices.

Theorem 2.5. Let A ∈ Mn(H). Then the following assertions are true:

(a) W k(αI + βA) = α + βW k(A) and W k(A + B) ⊆ W k(A) + W k(B), where

α, β ∈ R and B ∈ Mn(H);

(b) W k(U∗AU) = W k(A), where U ∈ Un;

(c) If λ ∈ W k(A), then [λ] ⊆ W k(A);

(d) If B ∈ Mm(H) is a principal submatrix of A, and k ≤ m, then W k(B) ⊆
W k(A). Consequently, if V ∈ Xn×s, where 1 ≤ s ≤ n, then W k(V ∗AV ) ⊆ W k(A),

and the equality holds if s = n;

(e) σk
r (A) ⊆ W k(A);

(f) ᾱW k(A)α = W k(A), where α ∈ H is such that ᾱα = 1;

(g) W k(A∗) = W k(A);

(h) Let A = H +K, where H is Hermitian and K is skew-Hermitian. Moreover,

let Ã = aH + bK, where a and b are nonzero real numbers. If x ∈ R and y ∈ P, then

x+ y ∈ W k(A) if and only if ax+ by ∈ W k(Ã);

(i) If B ∈ Mn
′ and k ≤ min{n, n′}, then W k(A)∪W k(B) ⊆ W k(A⊕B). For the

case k = 1,

conv(W 1(A⊕B)) = conv(W 1(A) ∪W 1(B)).
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Proof. The assertions in (a) and (b) follow easily from Definition 2.1.

To prove (c), since λ ∈ W k(A), there exists a X ∈ Xn×k such that

λ =
1

k
tr(X∗AX).

Now, let µ ∈ [λ] be given. Then there exists a u ∈ H such that |u| = 1 and µ = ūλu.

By setting Y := Xu, we have Y ∈ Xn×k and µ = 1
k
tr(Y ∗AY ). Therefore, µ ∈ W k(A).

To prove (d), we assume that B ∈ Mm(H) is formed by considering rows i1, . . . , im
and the corresponding columns from A, and let µ ∈ W k(B) be given. Then by Remark

2.2, there exists an othonormal set {x1, . . . , xk} in Hm such that µ = 1
k

∑k
i=1 x

∗
iBxi.

Now for any 1 ≤ i ≤ k, define yi ∈ Hn such that (yi)j = 0 for j 6= 1, . . . ,m,

and other its entries are formed by xi. Then {y1, . . . , yk} is an othonormal set in

Hn and µ = 1
k

∑k
i=1 y

∗
iAyi. Therefore, µ ∈ W k(A). So, W k(B) ⊆ W k(A). If

V = [v1, . . . , vs] ∈ Xn×s, then by [21, Lemma 5.2], there exist unit vectors vs+1, . . . , vn
in Hn such that U := [v1, . . . , vs, vs+1, . . . , vn] ∈ Un. Since V ∗AV is a principal

submatrix of U∗AU , the result follows from the first case and part (b). Moreover, if

s = n, then V ∈ Un, and hence, by (b), the equality holds.

For (e), let µ ∈ σk
r (A) be given. Then there exist 1 ≤ i1 < i2 < · · · < ik ≤ n

such that µ = 1
k

∑k
j=1 αij , where αij ∈ [λij ]. Now, let {xi1 , . . . , xik} be a set of

orthonormal eigenvectors of A such that Axij = xijαij . So, µ = 1
k

∑k
j=1 xijAxij , and

hence, µ ∈ W k(A).

The assertion in (f) follows from (c).

To prove (g), for every µ ∈ H, since µ ∼ µ̄, there exists a α ∈ H such that ᾱα = 1

and ᾱµα = µ̄. We know that W k(A∗) = W k(A) := {µ ∈ H : µ̄ ∈ W k(A)}. So, by

(c), we have that µ ∈ W k(A) if and only if µ̄ ∈ W k(A) or equivalently, µ ∈ W k(A∗).

For (h), let x+ y ∈ W k(A). Then there exists a X ∈ Xn×k such that

x+ y =
1

k
tr(X∗AX) =

1

k
tr(X∗HX) +

1

k
tr(X∗KX).

Therefore, x = 1
k
tr(X∗HX) and y = 1

k
tr(X∗KX). So, we have

ax+ by =
1

k
tr(X∗(aH)X) +

1

k
tr(X∗(bK)X) =

1

k
tr(X∗ÃX) ∈ W k(Ã).

By a similar argument, one can prove that if ax+ by ∈ W k(Ã), then x+ y ∈ W k(A).

Finally, the first assertion in (i) follows from (d). Now, for the second assertion

in (i), let k = 1. By the first case, we have conv(W (A) ∪W (B)) ⊆ conv(W (A⊕B)).
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Conversely, let µ ∈ W (A ⊕ B) be given. Then there exists a z =

(

x

y

)

∈ Hn+n′

such that x ∈ Hn, y ∈ Hn′

, x∗x + y∗y = 1 and µ = z∗(A ⊕ B)z = x∗Ax + y∗By. If

x = 0, then y∗y = 1 and µ = y∗By ∈ W (B) ⊆ conv(W (A) ∪W (B)). The argument

is analogous if y = 0. Now, suppose that both x and y are nonzero. Then, we have:

µ = x∗x(
x∗Ax

x∗x
) + y∗y(

y∗By

y∗y
) ∈ conv(W (A) ∪W (B)).

Therefore, conv(W (A ⊕B)) ⊆ conv(W (A) ∪W (B)). So, the set equality holds.

Hence, the proof is complete.

By Theorem 2.5 (c), one can prove the following corollary.

Corollary 2.6. Let A ∈ Mn(H) and x0+x1i+x2j+x3k ∈ W k(A). If t ∈ [−1, 1]

and y2, y3 ∈ R such that (y22+y23)−(x2
2+x2

3) = (1− t2)x2
1, then x0+ tx1i+y2j+y3k ∈

W k(A).

Using Remark 2.2 and by the same manner as in the proof of Theorem 2.4 (c),

we have the following result.

Proposition 2.7. Let k < n and A ∈ Mn(H). Then

W k+1(A) ⊆ conv(W k(A)).

Consequently, conv(Wn(A)) ⊆ conv(Wn−1(A)) ⊆ · · · ⊆ conv(W (A)).

Now, we are going to study some properties of the k−numerical range of Hermi-

tian matrices. For this, we need the following lemma. Recall that if A,B ∈ Mn(H),

then the relation tr(AB) = tr(BA) does not hold in general; for example, consider

A =

(

i 0

0 0

)

and B =

(

j 0

0 0

)

.

Lemma 2.8. Let A,B ∈ Mn(H). Then the following assertions are true:

(a) Re(tr(AB)) = Re(tr(BA));

(b) If at least one of A and B is a real matrix, then tr(AB) = tr(BA);

(c) If A is a real diagonal matrix and U ∈ Un, then

tr(U∗AU) = tr(A);

(d) If λ1, . . . , λn are the standard eigenvalues, counting multiplicities, of A, then

Re(tr(A)) = Re

(

n
∑

i=1

λi

)

.
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Proof. For (a), see [15, Lemma 2.11]. The assertions in (b) and (c) can be easily

verified. The part (d) also follows from (a). So, the proof is complete.

The following example shows that the result in Lemma 2.8 (c) does not hold in

general.

Example 2.9. Let D =

(

i 0

0 0

)

∈ M2(H) and U =

(

1√
2
− 1√

2
k 0

0 1

)

∈ U2.

Then

tr(U∗DU) = j 6= i = tr(D).

Proposition 2.10. Let A ∈ Mn(H) be a Hermitian matrix. If k < n, then

(n− k)Wn−k(A) = tr(A) − kW k(A).

Proof. Since A is Hermitian, there exists a U ∈ Un such that U∗AU = D, where

D ∈ Mn(H) is a real diagonal matrix. Using Lemma 2.8 ((c) and (d)) and Theorem

2.5 (b), we have

(n− k)Wn−k(A) = (n− k)Wn−k(D)

=

{

n−k
∑

i=1

x∗
iDxi : {x1, . . . , xn−k} is an othonormal set in H

n

}

=

{

tr(U∗DU)−
n
∑

i=n−k+1

x∗
iDxi : U = [x1 · · ·xn] ∈ Un

}

=

{

tr(D)−
n
∑

i=n−k+1

x∗
iDxi : {xn−k+1, . . . , xn} is othonormal

}

= tr(A) − kW k(A).

Hence, the proof is complete.

Theorem 2.11. Let A ∈ Mn(H). Then the following assertions are true:

(a)
{

1
n
tr(A)

}

⊆ Wn(A), and the equality holds if A is Hermitian;

(b) If Wn(A) =
{

1
n
tr(A)

}

, then σr(A) ⊆ R.

Proof. (a) At first, by setting X := In, we have X ∈ Xn×n and 1
n
tr(A) =

1
n
tr(X∗AX) ∈ Wn(A). Now, let A ∈ Mn(H) be a Hermitian matrix with eigenvalues
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h1, . . . , hn, counting multiplicities. Then by [21, Corollary 6.2], there exists a unitary

matrix U ∈ Un such that U∗AU = D := diag(h1, . . . , hn). Now by Theorem 2.5 (b)

and Lemma 2.8 ((c) and (d)), we have

Wn(A) = Wn(D) =

{

1

n
tr(D)

}

=

{

1

n

n
∑

i=1

hi

}

=

{

1

n
tr(A)

}

.

To prove (b), by Theorem 2.5 (e), σn
r (A) = { 1

n
tr(A)}. Now, let λ1, . . . , λn be the

standard eigenvalues, counting multiplicities, of A. So, by Theorem 2.4 (a), 1
n
(λ1 +

· · · + λi + · · ·+ λn) =
1
n
(λ1 + · · ·+ αλiα + · · · + λn) for all 1 ≤ i ≤ n and for every

α ∈ H with |α| = 1. Hence, for every 1 ≤ i ≤ n, λi ∈ R. So, the proof is complete.

The following example shows that in Theorem 2.11 (a), the set equality does not

hold in general.

Example 2.12. Let A =

(

i 0

1 j

)

. Now, by setting X =

(

1√
2
i 1√

2
j

1√
2

1√
2
k

)

∈

X2×2, we have
1
2 i =

1
2 tr(X

∗AX) ∈ W 2(A), and hence, W 2(A) 6=
{

1
2 tr(A)

}

=
{

i+j
2

}

.

For any A ∈ Mn(H), let h1 ≤ · · · ≤ hn be the eigenvalues of the Hermitian part

of A, counting multiplicities. Now, we introduce the following notions:

a(k)m =
1

k

k
∑

i=1

hi and a
(k)
M =

1

k

n
∑

i=n−k+1

hi.(2.1)

In the following theorem, we characterize the k−numerical range of Hermitian

quaternionic matrices.

Theorem 2.13. Let A ∈ Mn(H) be a Hermitian matrix with eigenvalues h1 ≤
· · · ≤ hn. Then

W k(A) = [a(k)m , a
(k)
M ].

Proof. For the cases k = 1 and k = n, the result follows from [17, Lemma

IV.1.2 (i)] and Theorem 2.11 (a), respectively. Now, we assume that 1 < k < n. Since

A is Hermitian, by [21, Corollary 6.2], there exists a unitary matrix U ∈ Un such

that U∗AU = D := diag(h1, . . . , hn). Now, let µ ∈ W k(A) be given. Thus, by

Theorem 2.5 (b), µ ∈ W k(D), and hence, there exists a X = (xij) ∈ Xn×k such that

µ = 1
k
tr(X∗DX). So,

µ =
1

k
[h1(|x11|2 + · · ·+ |x1k|2) + · · ·+ hn(|xn1|2 + · · ·+ |xnk|2)].
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Since hi ≤ hn−k for all i = 1, . . . , n− k and X∗X = Ik,

µ ≤ 1

k
[hn−k((|x11|2 + · · ·+ |x1k|2) + · · ·+ (|xn−k,1|2 + · · ·+ |xn−k,k|2))

+ hn−k+1(|xn−k+1,1|2 + · · ·+ |xn−k+1,k|2) + · · ·+ hn(|xn1|2 + · · ·+ |xnk|2)]

=
1

k
[hn−k((1 − |xn−k+1,1|2 − · · · − |xn1|2) + · · ·+ (1 − |xn−k+1,k|2 − · · · − |xnk|2))

+ hn−k+1(|xn−k+1,1|2 + · · ·+ |xn−k+1,k|2) + · · ·+ hn(|xn1|2 + · · ·+ |xnk|2)]

=
1

k
[khn−k + (hn−k+1 − hn−k)(|xn−k+1,1|2 + · · ·+ |xn−k+1,k|2)

+ · · ·+ (hn − hn−k)(|xn1|2 + · · ·+ |xnk|2)]

≤ 1

k
[khn−k + hn−k+1 − hn−k + · · ·+ hn − hn−k]

=
1

k
[hn−k+1 + · · ·+ hn]

= a
(k)
M .

Therefore, µ ≤ a
(k)
M . By the same way, one can prove that µ ≥ a

(k)
m . Thus, a

(k)
m ≤

µ ≤ a
(k)
M , and hence,

W k(A) ⊆ [a(k)m , a
(k)
M ].

Conversely, let µ ∈ [a
(k)
m , a

(k)
M ] be given. Since

h1 + · · ·+ hk ≤ h2 + · · ·+ hk+1 ≤ · · · ≤ hn−k+1 + · · ·+ hn,

there exists 1 ≤ i ≤ n− k such that hi + hi+1 + · · ·+ hi+k−1 ≤ kµ ≤ hi+1 + hi+2 +

· · ·+ hi+k.

If hi+k = hi, then by setting X = (xij) ∈ Mn×k, where xi+1,1 = · · · = xi+k,k = 1,

and xrs = 0 elsewhere, we have X ∈ Xn×k and µ = 1
k
tr(X∗DX) ∈ W k(D) = W k(A).

Now, let hi+k 6= hi. Then by setting X = (xij) ∈ Mn×k, where xi+1,1 = · · · =
xi+k−1,k−1 = 1, |xi+k,k|2 = kµ−hi−···−hi+k−1

hi+k−hi
, |xik|2 = hi+1+···+hi+k−kµ

hi+k−hi
, and xrs = 0

elsewhere, we have X ∈ Xn×k and µ = 1
k
tr(X∗DX). Hence, µ ∈ W k(D) = W k(A).

So, the proof is complete.

Using Theorem 2.13, in the following example, we show that in Theorem 2.5 (i),

the set equality

conv(W k(A⊕B)) = conv(W k(A) ∪W k(B))

does not, in general, hold for the case k > 1.

Example 2.14. Let A =

(

3 0

0 3

)

∈ M2(H) and B =

(

1 0

0 5

)

∈ M2(H).

Then by Theorem 2.13, we have

conv(W 2(A)
⋃

W 2(B)) = {3} 6= [2, 4] = conv(W 2(A⊕B)).
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The following theorem is a generalization of [8, p. 3].

Theorem 2.15. Let A ∈ Mn(H). Then the following assertions are true:

(a) W k(A) ⊆ R if and only if A is Hermitian;

(b) W k(A) ⊆ P if and only if A is skew-Hermitian.

Proof. We will prove the part (a). The proof of (b) is similar.

At first, we assume that W k(A) ⊆ R. We will show that A is Hermitian. Let

A = H + S, where H = 1
2 (A + A∗) is the Hermitian part and S = 1

2 (A − A∗) is the

skew-Hermitian part of A. Since W k(A) ⊆ R, for any othonormal set {x1, . . . , xk}
in Hn,

∑k
i=1 x

∗
iAxi ∈ R. Therefore,

∑k
i=1 x

∗
iHxi +

∑k
i=1 x

∗
i Sxi ∈ R, and hence,

∑k
i=1 x

∗
i Sxi = 0, because S is a skew-Hermitian matrix. So, W k(S) = {0}, and

hence, by Theorem 2.5 (e), σk
r (S) = {0}. Therefore, as the same manner in the proof

of Theorem 2.11 (b), we have S = 0. Hence, A is Hermitian.

The converse follows from Theorem 2.13, and so, the proof is complete.

For convenience, for any A ∈ Mn(H), we denote the projections of W k(A) on R

and C by

W k
R (A) = {Re q : q ∈ W k(A)}(2.2)

and

W k
C (A) = {Co q : q ∈ W k(A)},(2.3)

respectively. Let A = A1 + A2j ∈ Mn(H), where A1, A2 ∈ Mn(C). The complex

adjoint matrix or adjoint of A is defined and denoted by

χ
A
=

(

A1 A2

−Ā2 Ā1

)

∈ M2n(C).(2.4)

Now, we list some basic relations among W k
R
(A),W k

C
(A) and W k(A).

Proposition 2.16. Let A ∈ Mn(H). Then the following assertions are true:

(a) R ∩W k(A) ⊆ W k
R
(A) = W k(H) = [a

(k)
m , a

(k)
M ] ⊆ R ∩ conv(W k(A)), where H

is the Hermitian part of A, and a
(k)
m , a

(k)
M are the notions as in (2.1);

(b) C ∩W k(A) ⊆ W k
C
(A) ⊆ Wk(χA

) ∩ conv(W k(A)), where χ
A
is the matrix as

in (2.4) and Wk(χA
) = { 1

k
tr(X∗χ

A
X) : X ∈ M2n×k(C), X∗X = Ik}. The equality

holds if A is a real scalar matrix;
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(c) If a0 + a1i ∈ W k
C
(A), then {a0 + ta1i : −1 ≤ t ≤ 1} ⊆ W k

C
(A). Consequently,

R ∩W k
C
(A) = W k

R
(A).

Proof. To prove (a), the first inclusion follows from (2.2). The set equality follows

from Theorem 2.13. Now, let a0 ∈ W k
R
(A) be given. Then there exist a1, a2, a3 ∈ R

such that a0 + a1i + a2j + a3k ∈ W k(A). Therefore, by Theorem 2.5 (c), a0 − a1i −
a2j − a3k ∈ W k(A). Hence, a0 = 1

2 (a0 + a1i+ a2j + a3k) +
1
2 (a0 − a1i− a2j − a3k) ∈

R ∩ conv(W k(A)).

The left inclusion in (b) is trivial. Now, let a0 + a1i ∈ W k
C
(A) be given. Then there

are a2, a3 ∈ R such that q := a0 + a1i + a2j + a3k ∈ W k(A). Therefore, there exists

a X ∈ Xn×k such that q = 1
k
tr(X∗AX). By setting A = A1 + A2j, X = X1 +X2j,

where A1, A2 ∈ Mn(C), and X1, X2 ∈ Mn×k(C), and using this fact that jX∗
2 = XT

2 j,

we have

q =
1

k
tr((X∗

1 −XT
2 j)(A1 +A2j)(X1 +X2j)).

Hence,

1

k
tr(X∗

1A1X1 −X∗
1A2X̄2 +XT

2 Ā1 X̄2 +XT
2 Ā2X1) = a0 + a1i ∈ W k

C (A).

Now, by setting Y =

(

X1

−X̄2

)

∈ M2n×k(C) and using this fact that X∗X = Ik, we

have Y ∗Y = Ik and

a0 + a1i =
1

k
tr

(

(

X∗
1 −XT

2

)

(

A1 A2

−Ā2 Ā1

)(

X1

−X̄2

))

=
1

k
tr(Y ∗χ

A
Y ) ∈ Wk(χA

).

Hence, W k
C
(A) ⊆ Wk(χA). By the same manner as in the proof of (a), we have

W k
C
(A) ⊆ conv(W k(A)). So, the second inclusion also holds. If A = αIn, where α ∈

R, then Wk(χA
) = Wk(αI2n) = {α}. Since α ∈ R, for every X ∈ Xn×k, αX = Xα,

and hence, W k(A) = {α} = W k
C
(A). So, Wk(χA

) = W k
C
(A) = {α}, and hence, the

set equality holds.

Finally, the first assertion in (c) follows from Corollary 2.6. The inclusionR∩W k
C
(A) ⊆

W k
R
(A) follows from (2.2) and (2.3). Now, let a0 ∈ W k

R
(A). Then there exist

a1, a2, a3 ∈ R such that a0 + a1i + a2j + a3k ∈ W k(A). So, a0 + a1i ∈ W k
C
(A).

Then by the first assertion, a0 ∈ W k
C
(A). Therefore, a0 ∈ W k

C
(A)

⋂

R. So, the proof

is complete.
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By [2, p. 280], W 1
C
(A) = W1(χA

). The following example shows that if k > 1,

then the set equality W k
C
(A) = Wk(χA

) dose not hold in general.

Example 2.17. Let A =

(

−2 4j

−4j 6

)

∈ M2(H). Then

χ
A
=









−2 0 0 4

0 6 −4 0

0 −4 −2 0

4 0 0 6









is a Hermitian matrix with eigenvalues h1 = h2 = 2 − 4
√
2 ≤ h3 = h4 = 2 + 4

√
2.

Therefore, by Theorem 2.13, W 2
C
(A) = W 2(A) = {2} 6= [2−4

√
2, 2+4

√
2] = W2(χA

).

At the end of this section, we are going to give a necessary and sufficient condition

for the convexity of k−numerical range of a quaternion matrix. For this, we need the

following lemma.

Lemma 2.18. Let A ∈ Mn(H) be such that W k(A) ∩ C is convex. If a + p ∈
W k(A), where a ∈ R and p ∈ P, then for any x ∈ P with |x| ≤ |p|, a+ x ∈ W k(A).

Proof. The result trivially holds if p = 0. Now, we assume that p 6= 0. By

Theorem 2.5 (c), we have a±|p|i ∈ W k(A)∩C. Therefore, the convexity of W k(A)∩C
implies that a+ t|p|i ∈ W k(A) ∩ C for any t ∈ [−1, 1]. Now, let x ∈ P with |x| ≤ |p|
be given. Then by setting t = |x|

|p| ≤ 1, we have a + |x|i = a + t|p|i ∈ W k(A) ∩ C.

Therefore, by Theorem 2.5 (c), a+ x ∈ W k(A).

Theorem 2.19. Let A ∈ Mn(H). Then W k(A) is convex if and only if W k(A)∩C
is convex.

Proof. Let W k(A) ∩ C is convex. We will show that W k(A) is also convex. For

this, let x1 := a+ p ∈ W k(A), x2 := b+ q ∈ W k(A) and θ ∈ [0, 1], where a, b ∈ R and

p, q ∈ P, be given. Then, by Theorem 2.5 (c), we have a+ |p|i, b+ |q|i ∈ W k(A) ∩C.

Therefore, the convexity of W k(A) ∩ C implies that

(θa+ (1− θ)b) + (θ|p|+ (1 − θ)|q|)i ∈ W k(A) ∩ C.

Since |Im(θx1 + (1− θ)x2)| = |θp+ (1− θ)q| ≤ θ|p|+ (1− θ)|q|, Lemma 2.18 implies

that

θx1 + (1 − θ)x2 = (θa+ (1− θ)b) + (θp+ (1− θ)q) ∈ W k(A).

Therefore, W k(A) is convex.

The converse is trivial, and so, the proof is complete.
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3. On numerical range of normal quaternion matrices. In this section,

we give a new description of the 1-numerical range of normal quaternion matrices.

Theorem 3.1. Let A ∈ Mn(H) be a normal matrix with the standard right

eigenvalues λ1, . . . , λn, counting multiplicities. Then

W (A) =
⋃

ai∈[λi]

conv({a1, . . . , an}).

Proof. Since A is normal, by [21, Corollary 6.2], there exists a unitary matrix

U ∈ Un such that D = U∗AU = diag(λ1, . . . , λn). Now, let µ ∈ W (A) = W (D) be

given. Then there exists a x = (x1, . . . , xn)
T ∈ Hn such that

∑n
i=1 |xi|2 = 1 and

µ = x∗Dx =
∑n

i=1,|xi|6=0 |xi|2( x̄i

|xi|λi
xi

|xi|). So, µ ∈ ⋃

ai∈[λi]
conv({a1, . . . , an}), be-

cause for any 1 ≤ i ≤ n, |xi|2 ≥ 0,
∑n

i=1 |xi|2 = 1, and x̄i

|xi|λi
xi

|xi| ∈ [λi]. Therefore,

W (A) ⊆ ⋃ai∈[λi]
conv({a1, . . . , an}).

Conversely, let µ ∈
⋃

ai∈[λi]
conv({a1, . . . , an}) be given. Then there are nonneg-

ative real numbers t1, . . . , tn ∈ R summing to 1, and x1, . . . , xn ∈ H such that

for any 1 ≤ i ≤ n, |xi|2 = 1, and µ =
∑n

i=1 ti(x̄iλixi). Now, by setting x =

(
√
t1x1, . . . ,

√
tnxn)

T ∈ Hn, we have x∗x = 1 and µ = x∗Dx ∈ W (D) = W (A). So,
⋃

ai∈[λi]
conv({a1, . . . , an}) ⊆ W (A).

Hence, the proof is complete.

Corollary 3.2. Let A ∈ Mn(H) be a normal matrix with the right spectrum

σr(A) as in Definition 2.3. Then

conv(σr(A)) = conv(W (A)).

Proof. By Theorem 2.5 (e), σr(A) ⊆ W (A), and hence,

conv(σr(A)) ⊆ conv(W (A)).

By Theorems 3.1 and 2.5 (e), we haveW (A) ⊆ conv(σr(A)). So, the converse inclusion

also holds, and hence, the proof is complete.

At the end of this section and in the following example, using Theorem 3.1, we

find the 1−numerical range of two normal quaternion matrices.

Example 3.3. (a) Let A =

(

i 0

0 0

)

∈ M2(H). Then A is a normal matrix

with the standard eigenvalues 0, i. Since [0] = {0}, by Theorem 3.1, we have
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W (A) =
⋃

a1∈[i],a2=0

conv({a1, a2})

= {t(α1i+ α2j + α3k) + (1− t).0 : 0 ≤ t ≤ 1, α2
1 + α2

2 + α2
3 = 1}

= {x1i+ x2j + x3k : x2
1 + x2

2 + x2
3 ≤ 1},

which is convex.

(b) Let B =

(

i 0

0 1

)

∈ M2(H). Then B is a normal matrix with standard eigen-

values i, 1. Since [1] = {1}, by Theorem 3.1, we have

W (B) =
⋃

a1=1,a2∈[i]

conv({a1, a2})

= {t(α1i+ α2j + α3k) + (1− t).1 : 0 ≤ t ≤ 1, α2
1 + α2

2 + α2
3 = 1}

= {x0 + x1i + x2j + x3k : 0 ≤ x0 ≤ 1, x2
1 + x2

2 + x2
3 = (1− x0)

2}.

Obviously, W (B) is not convex.

By setting X =

(

1
2 + 1

2 i
1√
5
+ 1√

5
i+ 1√

10
j

1√
2
j 1

2
√
5
+ 1

2
√
5
i−

√
2√
5
j

)

∈ X2×2, we see that

λ =
1

2
+

2

5
i+

1

5
√
2
j +

1

5
√
2
k =

1

2
tr(X∗BX) ∈ W 2(B),

and λ /∈ W (B). So, W 2(B) is not a subset of W (B); see Proposition 2.7.

It is clear that 1
2 + 1

3 i+
√
5
6 j ∈ W 1(B), and 1 + i− (12 + 1

3 i+
√
5
6 j) = 1

2 + 2
3 i−

√
5
6 j /∈

W 1(B). Therefore, (n− k)Wn−k(B) 6= tr(B)− kW k(B), where k = 1 and n = 2; see

Proposition 2.10.

4. Conclusions and future work. In the complex case, the notion of numerical

range is useful in studing and understanding of complex matrices, and has many

applications in numerical analysis, differential equations, systems theory, etc; e.g.,

see [7] and its references. Unlike the complex case, the quaternion numerical range

may not be convex even for a normal quaternion matrix. In this paper, we have

given some fundamental properties and a necessary and sufficient condition for the

convexity of the higher numerical ranges of quaternion matrices. We have also given a

description for the k−numerical range of Hermitian matrices and for the 1−numerical

range of normal quaternion matrices. There are many open problems in the study of

the higher numerical ranges of quaternion matrices. For example, it is very nice if

one can give a description for the structure of the k−numerical range of quaternion

matrices. Also, it is important if one can characterize the shape of the k−numerical

range of skew-Hermitian quaternion matrices.
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