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Abstract. It is well known that as a famous type of iterative methods in numerical linear

algebra, Gauss-Seidel iterative methods are convergent for linear systems with strictly or irreducibly

diagonally dominant matrices, invertible H−matrices (generalized strictly diagonally dominant ma-

trices) and Hermitian positive definite matrices. But, the same is not necessarily true for linear

systems with nonstrictly diagonally dominant matrices and general H−matrices. This paper firstly

proposes some necessary and sufficient conditions for convergence on Gauss-Seidel iterative methods

to establish several new theoretical results on linear systems with nonstrictly diagonally dominant

matrices and general H−matrices. Then, the convergence results on preconditioned Gauss-Seidel

(PGS) iterative methods for general H−matrices are presented. Finally, some numerical examples

are given to demonstrate the results obtained in this paper.

Key words. Gauss-Seidel iterative methods, Convergence, Nonstrictly diagonally dominant

matrices, General H−matrices.
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1. Introduction. In this paper, we consider the solution methods for the system

of n linear equations

Ax = b,(1.1)

where A = (aij) ∈ Cn×n and is nonsingular, b, x ∈ Cn and x unknown. Let us recall

the standard decomposition of the coefficient matrix A ∈ Cn×n,

A = DA − LA − UA,

where DA = diag(a11, a22, . . . , ann) is a diagonal matrix, LA and UA are strictly

lower and strictly upper triangular matrices, respectively. If aii 6= 0 for all i ∈ 〈n〉 =
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{1, 2, . . . , n}, the Jacobi iteration matrix associated with the coefficient matrix A is

HJ = D−1
A (LA + UA);

the forward, backward and symmetric Gauss-Seidel (FGS-, BGS- and SGS-) iteration

matrices associated with the coefficient matrix A are

HFGS = (DA − LA)
−1UA,(1.2)

HBGS = (DA − UA)
−1LA,(1.3)

and

HSGS = HBGSHFGS

= (DA − UA)
−1LA(DA − LA)

−1UA,
(1.4)

respectively. Then, the Jacobi, FGS, BGS and SGS iterative method can be denoted

the following iterative scheme:

x(i+1) = Hx(i) + f, i = 0, 1, 2, . . .(1.5)

where H denotes iteration matrices HJ , HFGS , HBGS and HSGS, respectively,

correspondingly, f is equal to D−1
A b, (DA − LA)

−1b, (DA − UA)
−1b and (DA −

UA)
−1DA(DA − LA)

−1b, respectively. It is well-known that (1.5) converges for any

given x(0) if and only if ρ(H) < 1 (see [11]), where ρ(H) denotes the spectral radius of

the iteration matrix H . Thus, to establish the convergence results of iterative scheme

(1.5), we mainly study the spectral radius of the iteration matrix in the iterative

scheme (1.5).

As is well known in some classical textbooks and monographs, see [11], Jacobi

and Gauss-Seidel iterative methods for linear systems with Hermitian positive def-

inite matrices, strictly or irreducibly diagonally dominant matrices and invertible

H−matrices (generalized strictly diagonally dominant matrices) are convergent. Re-

cently, the class of strictly or irreducibly diagonally dominant matrices and invertible

H−matrices has been extended to encompass a wider set, known as the set of gen-

eral H−matrices. In a recent paper, Ref. [2, 3, 4], a partition of the n × n general

H−matrix set, Hn, into three mutually exclusive classes was obtained: The Invertible

class, HI
n, where the comparison matrices of all general H−matrices are nonsingular,

the Singular class, HS
n , formed only by singular H−matrices, and the Mixed class,

HM
n , in which singular and nonsingular H−matrices coexist. Lately, Zhang in [16]

proposed some necessary and sufficient conditions for convergence on Jacobi iterative

methods for linear systems with general H−matrices.
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A problem has to be proposed, i.e., whether Gauss-Seidel iterative methods for

linear systems with nonstrictly diagonally dominant matrices and generalH−matrices

are convergent or not. Let us investigate the following examples.

Example 1.1. Assume that either A or B is the coefficient matrix of linear

system (1.1), where A =




2 1 1

−1 2 1

−1 −1 2


 and B =




2 −1 −1

1 2 −1

1 1 2


. It is verified

that both A and B are nonstrictly diagonally dominant and nonsingular. Direct

computations yield that ρ(HA
FGS) = ρ(HB

BGS) = 1, while ρ(HA
BGS) = ρ(HB

FGS) =

0.3536 < 1 and ρ(HA
SGS) = ρ(HB

SGS) = 0.5797 < 1. This shows that BGS and

SGS iterative methods for the matrix A are convergent, while the same is not FGS

iterative method for A. However, FGS and SGS iterative methods for the matrix B

are convergent, while the same is not BGS iterative method for B.

Example 1.2. Assume that either A or B is the coefficient matrix of linear

system (1.1), where A =




2 −1 1

1 2 1

1 1 2


 and B =

[
2 −1

2 1

]
. It is verified that A

is nonstrictly diagonally dominant matrix and B is a mixed H−matrix. Further, they

are nonsingular. By direct computations, it is easy to get that ρ(HA
FGS) = 0.4215 <

1, ρ(HA
BGS) = 0.3536 < 1 and ρ(HA

SGS) = 0.3608 < 1, while ρ(HB
FGS) = ρ(HB

BGS) =

ρ(HB
SGS) = 1. This shows that FGS, BGS and SGS iterative methods converge for

the matrix A, while they fail to converge for the matrix B.

In fact, the matricesA andB in Example 1.1 and Example 1.2, respectively, are all

generalH−matrices, but are not invertible H−matrices. Gauss-Seidel iterative meth-

ods for these matrices sometime may converge for some given general H−matrices,

but may fail to converge for other given general H−matrices. Thus, an important

question is how one can obtain the convergence on Gauss-Seidel iterative methods for

the class of general H−matrices without a direct computation of the spectral radius?

Aimed at the problem above, some necessary and sufficient conditions for con-

vergence on Gauss-Seidel iterative methods are first proposed to establish some new

results on nonstrictly diagonally dominant matrices and general H−matrices. In par-

ticular, the convergence results on preconditioned Gauss-Seidel (PGS) iterative meth-

ods for general H−matrices are presented. Furthermore, some numerical examples

are given to demonstrate the results obtained in this paper.

The paper is organized as follows. Some notations and preliminary results about

special matrices are given in Sections 2 and 3. Some special matrices will be de-

fined, based on which some necessary and sufficient conditions for convergence on

Gauss-Seidel iterative methods are firstly proposed in Section 4. Some convergence

results on preconditioned Gauss-Seidel iterative methods for general H−matrices are
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then presented in Section 5. In Section 6, some numerical examples are given to

demonstrate the results obtained in this paper. Conclusions are given in Section 7.

2. Preliminaries. In this section, we give some notions and preliminary results

about special matrices that are used in this paper.

Cm×n (Rm×n) will be used to denote the set of all m×n complex (real) matrices.

Z denotes the set of all integers. Let α ⊆ 〈n〉 = {1, 2, . . . , n} ⊂ Z. For nonempty

index sets α, β ⊆ 〈n〉, A(α, β) is the submatrix of A ∈ C
n×n with row indices in α and

column indices in β. The submatrix A(α, α) is abbreviated to A(α). Let A ∈ Cn×n,

α ⊂ 〈n〉 and α′ = 〈n〉 − α. If A(α) is nonsingular, the matrix

A/α = A(α′)−A(α′, α)[A(α)]−1A(α, α′)

is called the Schur complement with respect to A(α), indices in both α and α′ are

arranged with increasing order. We shall confine ourselves to the nonsingular A(α)

as far as A/α is concerned.

Let A = (aij) ∈ Cm×n and B = (bij) ∈ Cm×n, A ◦ B = (aijbij) ∈ Cm×n

denotes the Hadamard product of the matrices A and B. A matrix A = (aij) ∈ Rn×n

is called nonnegative if aij ≥ 0 for all i, j ∈ 〈n〉. A matrix A = (aij) ∈ Rn×n is

called a Z−matrix if aij ≤ 0 for all i 6= j. We will use Zn to denote the set of all

n × n Z−matrices. A matrix A = (aij) ∈ Zn is called an M−matrix if A can be

expressed in the form A = sI − B, where B ≥ 0, and s ≥ ρ(B), the spectral radius

of B. If s > ρ(B), A is called a nonsingular M−matrix; if s = ρ(B), A is called a

singular M−matrix. Mn, M
•
n and M0

n will be used to denote the set of all n × n

M−matrices, the set of all n × n nonsingular M−matrices and the set of all n × n

singular M−matrices, respectively. It is easy to see that

Mn = M•
n ∪M0

n and M•
n ∩M0

n = ∅.(2.1)

The comparison matrix of a given matrix A = (aij) ∈ Cn×n, denoted by µ(A) =

(µij), is defined by

µij =

{ |aii|, if i = j,

−|aij |, if i 6= j.
(2.2)

It is clear that µ(A) ∈ Zn for a matrix A ∈ Cn×n. The set of equimodular matrices

associated with A, denoted by ω(A) = {B ∈ Cn×n : µ(B) = µ(A)}. Note that both

A and µ(A) are in ω(A). A matrix A = (aij) ∈ Cn×n is called a general H−matrix if

µ(A) ∈ Mn (see [1]). If µ(A) ∈ M•
n, A is called an invertible H−matrix; if µ(A) ∈ M0

n

with aii = 0 for at least one i ∈ 〈n〉, A is called a singular H−matrix; if µ(A) ∈ M0
n

with aii 6= 0 for all i ∈ 〈n〉, A is called a mixed H−matrix. Hn, H
I
n, H

S
n and HM

n
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will denote the set of all n × n general H−matrices, the set of all n × n invertible

H−matrices, the set of all n× n singular H−matrices and the set of all n× n mixed

H−matrices, respectively (see [2]). Similar to equalities (2.1), we have

Hn = HI
n ∪HS

n ∪HM
n and HI

n ∩HS
n ∩HM

n = ∅.(2.3)

For n ≥ 2, an n × n complex matrix A is reducible if there exists an n × n

permutation matrix P such that

PAPT =

[
A11 A12

0 A22

]
,

where A11 is an r × r submatrix and A22 is an (n − r) × (n − r) submatrix, where

1 ≤ r < n. If no such permutation matrix exists, then A is called irreducible. If A is a

1×1 complex matrix, then A is irreducible if its single entry is nonzero, and reducible

otherwise.

Definition 2.1. A matrix A ∈ Cn×n is called diagonally dominant by row if

|aii| ≥
n∑

j=1,j 6=i

|aij |(2.4)

holds for all i ∈ 〈n〉. If inequality in (2.4) holds strictly for all i ∈ 〈n〉, A is called

strictly diagonally dominant by row. If A is irreducible and the inequality in (2.4)

holds strictly for at least one i ∈ 〈n〉, A is called irreducibly diagonally dominant by

row. If (2.4) holds with equality for all i ∈ 〈n〉, A is called diagonally equipotent by

row.

Dn(SDn, IDn) and DEn will be used to denote the sets of all n×n (strictly, irre-

ducibly) diagonally dominant matrices and the set of all n× n diagonally equipotent

matrices, respectively.

Definition 2.2. A matrix A ∈ Cn×n is called generalized diagonally dominant

if there exist positive constants αi, i ∈ 〈n〉, such that

αi|aii| ≥
n∑

j=1,j 6=i

αj |aij |(2.5)

holds for all i ∈ 〈n〉. If inequality in (2.5) holds strictly for all i ∈ 〈n〉, A is called

generalized strictly diagonally dominant. If (2.5) holds with equality for all i ∈ 〈n〉,
A is called generalized diagonally equipotent.

We denote the sets of all n×n generalized (strictly) diagonally dominant matrices

and the set of all n × n generalized diagonally equipotent matrices by GDn(GSDn)
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and GDEn, respectively.

Definition 2.3. A matrix A is called nonstrictly diagonally dominant, if either

(2.4) or (2.5) holds with equality for at least one i ∈ 〈n〉.

Remark 2.4. Let A = (aij) ∈ Cn×n be nonstrictly diagonally dominant and α =

〈n〉 − α′ ⊂ 〈n〉. If A(α) is a (generalized) diagonally equipotent principal submatrix

of A, then the following hold:

• A(α, α′) = 0, which shows that A is reducible;

• A(i1) = (ai1i1) being (generalized) diagonally equipotent implies ai1i1 = 0.

Remark 2.5. Definition 2.2 and Definition 2.3 show that

Dn ⊂ GDn and GSDn ⊂ GDn.

The following will introduce the relationship of (generalized) diagonally dominant

matrices and general H−matrices and some properties of general H−matrices that

will be used in the rest of the paper.

Lemma 2.6. (See [12, 13, 15, 14]) Let A ∈ Dn(GDn). Then A ∈ HI
n if and only

if A has no (generalized) diagonally equipotent principal submatrices. Furthermore, if

A ∈ Dn∩Zn(GDn∩Zn), then A ∈ M•
n if and only if A has no (generalized) diagonally

equipotent principal submatrices.

Lemma 2.7. (See [1]) SDn ∪ IDn ⊂ HI
n = GSDn.

Lemma 2.8. (See [2]) GDn ⊂ Hn.

It is interesting whether Hn ⊆ GDn is true or not. The answer is “NOT”. Some

counterexamples are given in [2] to show that Hn ⊆ GDn is not true. But, under the

condition of “irreducibility”, the following conclusion holds.

Lemma 2.9. (See [2]) Let A ∈ Cn×n be irreducible. Then A ∈ Hn if and only if

A ∈ GDn.

More importantly, under the condition of “reducibility”, we have the following

conclusion.

Lemma 2.10. Let A ∈ Cn×n be reducible. Then A ∈ Hn if and only if in the

Frobenius normal form of A

PAPT =




R11 R12 · · · R1s

0 R22 · · · R2s

...
...

. . .
...

0 0 · · · Rss


 ,(2.6)
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each irreducible diagonal square block Rii is generalized diagonally dominant, where P

is a permutation matrix, Rii = A(αi) is either 1×1 zero matrices or irreducible square

matrices, Rij = A(αi, αj), i 6= j, i, j = 1, 2, . . . , s, further, αi∩αj = ∅ for i 6= j, and

∪si=1αi = 〈n〉.

The proof of this lemma follows from Theorem 5 in [2] and Lemma 2.9.

Lemma 2.11. A matrix A ∈ HM
n ∪ HS

n if and only if in the Frobenius normal

from (2.6) of A, each irreducible diagonal square block Rii is generalized diagonally

dominant and has at least one generalized diagonally equipotent principal submatrix.

Proof. It follows from (2.3), Lemma 2.6 and Lemma 2.10 that the conclusion of

this lemma is obtained immediately.

3. Some special matrices and their properties. In order to investigate con-

vergence on Gauss-Seidel iterative methods, some definitions of special matrices will

be defined and their properties will be proposed to be used in this paper.

Definition 3.1. Let Eiθ = (eiθrs) ∈ Cn×n, where eiθrs = cos θrs + i sin θrs,

i =
√
−1 and θrs ∈ R for all r, s ∈ 〈n〉.

1. The matrix Eiθ = (eiθrs) ∈ Cn×n is called a π−ray pattern matrix if

(a) θrs + θsr = 2kπ holds for all r, s ∈ 〈n〉, r 6= s, where k ∈ Z;

(b) θrs−θrt = θts+(2k+1)π holds for all r, s, t ∈ 〈n〉 and r 6= s, r 6= t, t 6= s,

where k ∈ Z;

(c) θrr = 0 for all r ∈ 〈n〉.
2. The matrix Eiθ = (eiθ̂rs) ∈ Cn×n is called a forward θ−ray pattern matrix if

(a) θ̂rs = θrs + θ if r > s and r, s ∈ 〈n〉; θ̂rs = θrs, otherwise;

(b) for all r, s, t ∈ 〈n〉, θrs, θsr, θrt and θrr satisfy the conditions (a), (b)

and (c) of 1.

3. The matrix Eiθ = (eiθ̃rs) ∈ Cn×n is called a backward θ−ray pattern matrix

if

(a) θ̃rs = θrs + θ if r < s and r, s ∈ 〈n〉; θ̃rs = θrs, otherwise;

(b) for all r, s, t ∈ 〈n〉, θrs, θsr, θrt and θrr satisfy the conditions (a), (b)

and (c) of 1.

It is easy to see that a π−ray pattern matrix is a θ−ray pattern matrix defined

in Definition 3.4 in [16]. In addition, forward θ−ray pattern matrix and backward

θ−ray pattern matrix are both π−ray pattern matrices when θ = 0.

Example 3.2. R =




1 ei7π/4 ei5π/3 ei11π/6

eiπ/4 1 ei11π/12 ei13π/12

eiπ/3 ei13π/12 1 ei7π/6

eiπ/6 ei11π/12 ei5π/6 1


,
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Rθ =




1 ei7π/4 ei5π/3 ei11π/6

ei(π/4+θ) 1 ei11π/12 ei13π/12

ei(π/3+θ) ei(13π/12+θ) 1 ei7π/6

ei(π/6+θ) ei(11π/12+θ) ei(5π/6+θ) 1


 and

Rθ =




1 ei(7π/4+θ) ei(5π/3+θ) ei(11π/6+θ)

eiπ/4 1 ei(11π/12+θ) ei(13π/12+θ)

eiπ/3 ei13π/12 1 ei(7π/6+θ)

eiπ/6 ei11π/12 ei5π/6 1




are π−ray pattern matrix, forward θ−ray pattern matrix and backward θ−ray pattern

matrix, respectively.

In fact, any complex matrix A = (ars) ∈ C
n×n has the following form:

A = eiη · |A| ◦ Eiθ = (eiη · |ars|eiθrs) ∈ C
n×n,(3.1)

where η ∈ R, |A| = (|ars|) ∈ Rn×n and Eiθ = (eiθrs) ∈ Cn×n with θrs ∈ R and

θrr = 0 for r, s ∈ 〈n〉. The matrix Eiθ is called a ray pattern matrix of the matrix A.

Definition 3.3. If the ray pattern matrix Eiθ of the matrix A given in (3.1) is

a π−ray pattern matrix, then A is called a π−ray matrix; if the ray pattern matrix

Eiθ is a forward θ−ray pattern matrix, then A is called a forward θ−ray matrix; and

if the ray pattern matrix Eiθ is a backward θ−ray pattern matrix, then A is called a

backward θ−ray matrix.

Rπ
n , L θ

n and U θ
n denote the set of all n× n π−ray matrices, the set of all n× n

forward θ−ray matrices and the set of all n×n backward θ−ray matrices, respectively.

Obviously, if a matrix A ∈ Rπ
n , then ξ ·A ∈ Rπ

n for all ξ ∈ C, the same is the matrices

in L θ
n and U θ

n , respectively.

Example 3.4. Let η = π/4, |A| =




5 2 9 3

0 3 1 1

5 3 5 2

2 4 2 1


. Then B = eiη · |A| ◦ R,

C = eiη · |A| ◦Rθ and D = eiη · |A| ◦Rθ are π−ray matrix, forward θ−ray matrix and

backward θ−ray matrix, respectively.

Theorem 3.5. Let a matrix A = DA − LA − UA = (ars) ∈ Cn×n with DA =

diag(a11, a22, . . . , ann). Then A ∈ Rπ
n if and only if there exists an n × n unitary

diagonal matrix D such that D−1AD = eiη · (|DA| − |LA| − |UA|) for η ∈ R.

Proof. According to Definition 3.3, A = eiη · |A|⊗Eiθ = (eiη · |ars|eiθrs). Define a

diagonal matrix Dφ = diag(eiφ1 , eiφ2 , . . . , eiφn) with φr = θ1r+φ1+(2k+1)π for φ1 ∈
R, r = 2, 3, . . . , n, and k ∈ Z. By Definition 3.1, D−1AD = eiη · (|DA| − |LA| − |UA|),
which shows that the necessity is true.
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The following will prove the sufficiency. Assume that there exists an n×n unitary

diagonal matrix Dφ = diag(eiφ1 , . . . , eiφn) such that D−1
φ ADφ = eiη · (|DA| − |LA| −

|UA|). Then

θrs = φr − φs + (2krs + 1)π(3.2)

holds for all r, s ∈ 〈n〉 and r 6= s, where krs ∈ Z. In (3.2), θrs+θsr = 2(krs+ksr+1)π =

2kπ with k = krs + ksr + 1 ∈ Z and for all r, s ∈ 〈n〉, r 6= s. Following (3.2),

θts = φs − φt + (2kts + 1)π. Hence, φs − φt = θts − (2kts + 1)π. Consequently,

θrs−θrt = φs−φt+2(krs−krt)π = θts+[2(krs−krt−kts−1)+1]π = θts+(2k′+1)π

for all r, s, t ∈ 〈n〉 and r 6= s, r 6= t, t 6= s, where k′ = krs − krt − kts − 1 ∈ Z. In the

same method, we can prove that θsr − θtr = θst + (2k̂ + 1)π hold for all r, s, t ∈ 〈n〉
and r 6= s, r 6= t, t 6= s, where k̂ ∈ Z. Furthermore, it is obvious that θrr = θ for all

r ∈ 〈n〉. This completes the sufficiency.

In the same method of proof as Theorem 3.5, the following conclusions will be

established.

Theorem 3.6. Let a matrix A = DA − LA − UA = (ars) ∈ Cn×n with DA =

diag(a11, a22, . . . , ann). Then A ∈ L θ
n if and only if there exists an n × n unitary

diagonal matrix D such that D−1AD = eiη · [(|DA| − |UA|])− eiθ|LA| for η ∈ R.

Theorem 3.7. Let a matrix A = DA − LA − UA = (ars) ∈ Cn×n with DA =

diag(a11, a22, . . . , ann). Then A ∈ U θ
n if and only if there exists an n × n unitary

diagonal matrix D such that D−1AD = eiη · [(|DA| − |LA|)− eiθ|UA|] for η ∈ R.

Corollary 3.8. Rπ
n = L 0

n = U 0
n = L θ

n ∩ U θ
n .

Proof. By Theorem 3.5, Theorem 3.6 and Theorem 3.7, the proof is obtained

immediately.

4. Convergence on Gauss-Seidel iterative methods. In numerical linear

algebra, the Gauss-Seidel iterative method, also known as the Liebmann method or

the method of successive displacement, is an iterative method used to solve a linear

system of equations. It is named after the German mathematicians Carl Friedrich

Gauss(1777-1855) and Philipp Ludwig von Seidel(1821-1896), and is similar to the

Jacobi method. Later, this iterative method was developed as three iterative meth-

ods, i.e., the forward, backward and symmetric Gauss-Seidel (FGS-, BGS- and SGS-)

iterative methods. Though these iterative methods can be applied to any matrix with

non-zero elements on the diagonals, convergence is only guaranteed if the matrix is

strictly or irreducibly diagonally dominant matrix, Hermitian positive definite ma-

trix and invertible H−matrix. Some classic results on convergence on Gauss-Seidel
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iterative methods as follows:

Theorem 4.1. (See [8, 10, 11]) Let A ∈ SDn ∪ IDn. Then ρ(HFGS) < 1,

ρ(HBGS) < 1 and ρ(HSGS) < 1, where HFGS , HBGS and HSGS are defined in (1.2),

(1.3) and (1.4), respectively, and therefore, the sequence {x(i)} generated by FGS-,

BGS- and SGS-scheme (1.5), respectively, converges to the unique solution of (1.1)

for any choice of the initial guess x(0).

Proof. The proof of convergence on FGS-scheme is seen in the proof of Theorem

3.4 in [11]. In the same method as the proof on convergence of FGS-scheme in Theorem

3.4 of [11], we can prove the convergence of BGS-scheme. In addition, according to

Lemma 2.7 and Theorem 5.22 in [8] for ω = 1, SGS-scheme converges to the unique

solution of (1.1) for any choice of the initial guess x(0).

Theorem 4.2. (See [8, 10, 11]) Let A ∈ HI
n. Then the sequence {x(i)} generated

by FGS-, BGS- and SGS-scheme (1.5), respectively, converges to the unique solution

of (1.1) for any choice of the initial guess x(0).

Proof. The proof of convergence on FGS-scheme is seen in the proof of Theorem

5.12 in [8]. Similar to the proof of Theorem 5.12 in [8], we can prove the convergence

of BGS-scheme. Further, according to Theorem 5.22 in [8] for ω = 1, the proof of

convergence on SGS-scheme is obtained immediately.

Theorem 4.3. (See [8, 10, 11]) Let A ∈ Cn×n be a Hermitian positive definite

matrix. Then the sequence {x(i)} generated by FGS-, BGS- and SGS-scheme (1.5),

respectively, converges to the unique solution of (1.1) for any choice of the initial guess

x(0).

Proof. The proof of convergence on FGS-scheme is seen in the proof of Corollary

1 of Theorem 3.6 in [11]. Similar to the proof of this corollary, the convergence of

BGS-scheme can be proved. Furthermore, when ω = 1, Theorem 5.23 in [8] implies

that SGS-scheme converges to the unique solution of (1.1) for any choice of the initial

guess x(0).

In this section, we consider convergence on Gauss-Seidel iterative methods for

nonstrictly diagonally dominant matrices and general H−matrices. Above all, we

investigate the case of nonstrictly diagonally dominant matrices.

Theorem 4.4. Let A ∈ Dn(GDn). If A has no (generalized) diagonally equipo-

tent principal submatrices, then the sequence {x(i)} generated by FGS-, BGS- and

SGS-scheme (1.5), respectively, converges to the unique solution of (1.1) for any choice

of the initial guess x(0).

Proof. Since A ∈ Dn(GDn) and has no (generalized) diagonally equipotent prin-

cipal submatrices, it follows from Lemma 2.6 that A ∈ HI
n. Then Theorem 4.2 shows
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that the sequence {x(i)} generated by FGS-, BGS- and SGS-scheme (1.5), respec-

tively, converges to the unique solution of (1.1) for any choice of the initial guess

x(0).

Theorem 4.4 indicates that if we study convergence on Gauss-Seidel iterative

methods for nonstrictly diagonally dominant matrices we only investigate the case of

(generalized) diagonally equipotent matrices.

4.1. Convergence on forward Gauss-Seidel iterative methods.

In this subsection, we mainly establish some convergence results on FGS-iterative

method for linear systems with (generalized) diagonally equipotent matrices and

then generalize these results to nonstrictly diagonally dominant matrices and gen-

eral H−matrices. Finally, an analogous way presents convergence on BGS-iterative

method for nonstrictly diagonally dominant matrices and general H−matrices. Let

us consider firstly the case of 2× 2 (generalized) diagonally equipotent matrices.

Theorem 4.5. Let an irreducible matrix A = (aij) ∈ GDE2. Then ρ(HFGS) =

ρ(HBGS) = ρ(HSGS) = 1, where HFGS, HBGS and HSGS are defined in (1.2), (1.3)

and (1.4), respectively, and therefore, the sequence {x(i)} generated by FGS-, BGS-

and SGS-scheme (1.5), respectively, doesn’t converge to the unique solution of (1.1)

for any choice of the initial guess x(0).

Proof. Assume A =

[
a11 a12
a21 a22

]
∈ GDE2. By Definition 2.2, α1|a11| = α2|a12|

and α2|a22| = α1|a21| with aij 6= 0 and αi > 0 for all i, j = 1, 2. Consequently, A ∈
GDE2 if and only if |a12a21|/|a11a22| = 1. Direct computations give that ρ(HFGS) =

ρ(HBGS) = ρ(HSGS) = |a12a21|/|a11a22| = 1 and consequently, the sequence {x(i)}
generated by FGS-, BGS- and SGS-scheme (1.5), respectively, doesn’t converge to the

unique solution of (1.1) for any choice of the initial guess x(0).

In what follows, we consider the convergence of FGS-scheme for linear systems

with n× n (n ≥ 3) (generalized) diagonally equipotent matrices. Continuing in this

direction, some lemmas will be introduced firstly to be used in this section.

Lemma 4.6. (See [7, 13]) Let an irreducible matrix A ∈ Dn(GDn). Then A is

singular if and only if D−1
A A ∈ DEn(GDEn) ∩Rπ

n , where DA = diag(a11, . . . , ann).

Lemma 4.7. Let A = (aij) ∈ DEn (n ≥ 3) be irreducible. Then eiθ is an

eigenvalue of HFGS if and only if D−1
A A ∈ U θ

n , where DA = diag(a11, a22, . . . , ann)

and θ ∈ R.

Proof. We prove the sufficiency firstly. Since A = (aij) ∈ DEn is irreducible,

aii 6= 0 for all i ∈ 〈n〉 and DA−LA ∈ IDn is nonsingular. Consequently, (DA−LA)
−1

and HFGS exist, where DA = diag(a11, a22, . . . , ann). Assume D−1
A A ∈ U θ

n . Theorem
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3.6 shows that there exists an unitary diagonal matrix D such that

D−1(D−1
A A)D = [(I − |D−1

A LA|)− eiθ|D−1
A UA|]

for θ ∈ R. Hence,

D−1
A A = D(I − |D−1

A LA|)D−1 − eiθD|D−1
A UA|D−1

and

HFGS = (DA − LA)
−1UA = (I −D−1

A LA)
−1D−1

A UA
= [D(I − |D−1

A LA|)D−1]−1(eiθD|D−1
A UA|D−1)

= eiθD[(I − |D−1
A LA|)−1|D−1

A UA|]D−1.

(4.1)

Using (4.1),

det(eiθI −HFGS) = det[eiθI − eiθD((I − |D−1
A LA|)−1|D−1

A UA|)D−1]

= eiθ · det(I − (I − |D−1
A LA|)−1|D−1

A UA|)

=
eiθ · det(I − |D−1

A LA| − |D−1
A UA|)

det(I − |D−1
A LA|)

=
eiθ · detµ(D−1

A A)

det(I − |D−1
A LA|)

.

(4.2)

Since A ∈ DEn is irreducible, so is µ(D−1
A A) ∈ DEn. Furthermore, according to

the definition (2.2) and Theorem 3.5, we have µ(D−1
A A) ∈ Rπ

n . Thus, µ(D−1
A A) ∈

DEn ∩Rπ
n is irreducible. Then it follows from Lemma 4.6 that µ(D−1

A A) is singular.

As a result, (4.2) gives det(eiθI − HFGS) = 0 to reveal that eiθ is an eigenvalue of

HFGS . This completes the sufficiency.

The following prove the necessity. Let eiθ is an eigenvalue of HFGS . Then

det(eiθI −HFGS) = det(eiθI − (DA − LA)
−1UA)

=
det[eiθ(DA − LA)− UA]

det(DA − LA)
= 0.

Thus, det(eiθ(DA −LA)−UA) = 0 which shows that eiθ(DA −LA)−UA is singular.

Since eiθ(DA −LA)−UA ∈ DEn is irreducible due to irreducibility of A, Lemma 4.6

implies that I −D−1
A LA − e−iθD−1

A UA ∈ Rπ
n . Thus, according to Theorem 3.5, there

exists a unitary diagonal matrix D such that

D−1(I −D−1
A LA − e−iθD−1

A UA)D = I − |D−1
A LA| − |D−1

A UA|.(4.3)

But, equality (4.3) shows

D−1(D−1
A LA)D = |D−1

A LA| and D−1(D−1
A UA)D = eiθ|D−1

A UA|.
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Then,

D−1(D−1
A A)D = I −D−1(D−1

A LA)D −D−1(D−1
A UA)D

= I − |D−1
A LA| − eiθ|D−1

A UA|,

and there exists an unitary diagonal matrix D such that

D−1(D−1
A A)D−1 = I − |D−1

A LA| − eiθ|D−1
A UA|).

Theorem 3.6 shows that D−1
A A ∈ U

θ
n . So, we finish the necessity.

Theorem 4.8. Let A ∈ DEn (n ≥ 3) be irreducible. Then ρ(HFGS) < 1, where

HFGS is defined in (1.2), i.e., the sequence {x(i)} generated by FGS-scheme (1.5)

converges to the unique solution of (1.1) for any choice of the initial guess x(0) if and

only if D−1
A A /∈ U θ

n .

Proof. The sufficiency can be proved by contradiction. We assume that there

exists an eigenvalue λ of HFGS such that |λ| ≥ 1. Then

det(λI −HFGS) = 0.(4.4)

If |λ| > 1, then λI−HFGS = (DA−LA)
−1(λDA−λLA−UA). Obviously, λI−λL−U ∈

IDn and is nonsingular (see Theorem 1.21 in [11]). As a result, det(λI −HFGS) 6= 0,

which contradicts (4.4). Thus, |λ| = 1. Set λ = eiθ, where θ ∈ R. Then Lemma

4.7 shows that D−1
A A ∈ U θ

n , which contradicts the assumption A /∈ U θ
n . Therefore,

ρ(HFGS) < 1. The sufficiency is finished.

Let us prove the necessity by contradiction. Assume that D−1
A A ∈ U θ

n . It then

follows from Lemma 4.7 that ρ(HFGS) = 1 which contradicts ρ(HFGS) < 1. A

contradiction arises to demonstrate that the necessity is true. Thus, we complete the

proof.

Following, the conclusion of Theorem 4.8 will be extended to irreducibly gener-

alized diagonally equipotent matrices and irreducibly mixed H−matrices.

Theorem 4.9. Let A = (aij) ∈ GDEn (n ≥ 3) be irreducible. Then the sequence

{x(i)} generated by FGS-scheme (1.5) converges to the unique solution of (1.1) for

any choice of the initial guess x(0) if and only if D−1
A A /∈ U θ

n .

Proof. According to Definition 2.2, the exists a diagonal matrix E = diag(e1, e2,

. . . , en) with ek > 0 for all k ∈ 〈n〉, such that AE = (aijej) ∈ DEn. Let AE =

F = (fij) with fij = aijej for all i, j ∈ 〈n〉. Then HF
FGS = E−1HFGSE and

D−1
F F = E−1(D−1

A A)E with DF = DAE. Theorem 4.8 yields that ρ(HF
FGS) < 1

if and only if D−1
F F /∈ U θ

n . Since ρ(HF
FGS) = ρ(HFGS and D−1

A A /∈ U θ
n for

D−1
F F = E−1(D−1

A A)E /∈ U θ
n and E = diag(e1, e2, . . . , en) with ek > 0 for all
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k ∈ 〈n〉, ρ(HFGS) < 1, i.e., the sequence {x(i)} generated by FGS-scheme (1.5) con-

verges to the unique solution of (1.1) for any choice of the initial guess x(0) if and

only if D−1
A A /∈ U θ

n ., i.e., ρ(HFGS) < 1 if and only if D−1
A A /∈ U θ

n .

Theorem 4.10. Let A = (aij) ∈ HM
n (n ≥ 3) be irreducible. Then the sequence

{x(i)} generated by FGS-scheme (1.5) converges to the unique solution of (1.1) for

any choice of the initial guess x(0) if and only if D−1
A A /∈ U θ

n .

Proof. Since A ∈ HM
n (n ≥ 3) be irreducible, it follows from Lemma 2.9 and

Lemma 2.11 that A ∈ GDEn (n ≥ 3) be irreducible. Therefore, Theorem 4.9 shows

that the conclusion of this theorem holds.

It follows that some convergence results on forward Gauss-Seidel iterative method

are established for nonstrictly diagonally dominant matrices and generalH−matrices.

Theorem 4.11. Let A = (aij) ∈ Dn(GDn) with aii 6= 0 for all i ∈ 〈n〉. Then

the sequence {x(i)} generated by FGS-scheme (1.5) converges to the unique solution

of (1.1) for any choice of the initial guess x(0) if and only if A has neither 2 ×
2 irreducibly (generalized) diagonally equipotent principal submatrix nor irreducibly

principal submatrix Ak = A(i1, i2, . . . , ik), 3 ≤ k ≤ n, such that D−1
Ak

Ak /∈ U θ
k ∩

DEk(U
θ
k ∩GDEk), where DAk

= diag(ai1i1 , ai2i2 , . . . , aikik).

Proof. The proof is obtained immediately by Theorem 4.4, Theorem 4.5, Theorem

4.8 and Theorem 4.9.

Theorem 4.12. Let A = (aij) ∈ Hn with aii 6= 0 for all i ∈ 〈n〉. Then the

sequence {x(i)} generated by FGS-scheme (1.5) converges to the unique solution of

(1.1) for any choice of the initial guess x(0) if and only if A has neither 2 × 2 irre-

ducibly generalized diagonally equipotent principal submatrix nor irreducibly principal

submatrix Ak = A(i1, i2, . . . , ik), 3 ≤ k ≤ n, such that D−1
Ak

Ak /∈ U θ
k ∩GDEk.

Proof. If A ∈ Hn is irreducible, it follows from Theorem 4.5 and Theorem 4.10

that the conclusion of this theorem is true. If A ∈ Hn is reducible, since A ∈ Hn with

aii 6= 0 for all i ∈ 〈n〉, Theorem 2.10 shows that each diagonal square block Rii in the

Frobenius normal from (2.6) of A is irreducible and generalized diagonally dominant

for i = 1, 2, . . . , s. Let HRii

FGS denote the Gauss-Seidel iteration matrix associated with

diagonal square block Rii. Direct computations give

ρ(HFGS) = max
1≤i≤s

ρ(HRii

FGS).

Since Rii is irreducible and generalized diagonally dominant, Theorem 4.4, The-

orem 4.5, Theorem 4.8, Theorem 4.9 and Theorem 4.11 show that ρ(HFGS) =

max
1≤i≤s

ρ(HRii

FGS) < 1, i.e., the sequence {x(i)} generated by FGS-scheme (1.5) con-

verges to the unique solution of (1.1) for any choice of the initial guess x(0) if and
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only if A has neither 2 × 2 irreducibly generalized diagonally equipotent principal

submatrix nor irreducibly principal submatrix Ak = A(i1, i2, . . . , ik), 3 ≤ k ≤ n, such

that D−1
Ak

Ak /∈ U θ
k ∩GDEk.

As has been shown in Theorem 4.8, Theorem 4.9, Theorem 4.10, Theorem 4.11

and Theorem 4.12, convergence on FGS-scheme is established for (generalized) di-

agonally equipotent matrices, nonstrictly diagonally dominant matrices and general

H−matrices. The following will list the same convergence results on the BGS-scheme.

The proofs can be derived in an analogous way to the ones that are given.

Theorem 4.13. Let A ∈ DEn (n ≥ 3) be irreducible. Then the sequence {x(i)}
generated by BGS-scheme (1.5) converges to the unique solution of (1.1) for any choice

of the initial guess x(0) if and only if D−1
A A /∈ L θ

n .

Theorem 4.14. Let A = (aij) ∈ GDEn (n ≥ 3) be irreducible. Then the

sequence {x(i)} generated by BGS-scheme (1.5) converges to the unique solution of

(1.1) for any choice of the initial guess x(0) if and only if D−1
A A /∈ L θ

n .

Theorem 4.15. Let A = (aij) ∈ HM
n (n ≥ 3) be irreducible. Then the sequence

{x(i)} generated by BGS-scheme (1.5) converges to the unique solution of (1.1) for

any choice of the initial guess x(0) if and only if D−1
A A /∈ L θ

n .

Theorem 4.16. Let A = (aij) ∈ Dn(GDn) with aii 6= 0 for all i ∈ 〈n〉. Then

the sequence {x(i)} generated by BGS-scheme (1.5) converges to the unique solution

of (1.1) for any choice of the initial guess x(0) if and only if A has neither 2 ×
2 irreducibly (generalized) diagonally equipotent principal submatrix nor irreducibly

principal submatrix Ak = A(i1, i2, . . . , ik), 3 ≤ k ≤ n, such that D−1
Ak

Ak /∈ L θ
k ∩

DEk(L
θ
k ∩GDEk), where DAk

= diga(ai1i1 , ai2i2 , . . . , aikik).

Theorem 4.17. Let A = (aij) ∈ Hn with aii 6= 0 for all i ∈ 〈n〉. Then the

sequence {x(i)} generated by BGS-scheme (1.5) converges to the unique solution of

(1.1) for any choice of the initial guess x(0) if and only if A has neither 2 × 2 irre-

ducibly generalized diagonally equipotent principal submatrix nor irreducibly principal

submatrix Ak = A(i1, i2, . . . , ik), 3 ≤ k ≤ n, such that D−1
Ak

Ak /∈ L θ
k ∩GDEk.

4.2. Convergence on symmetric Gauss-Seidel iterative method.

In this subsection, convergence on SGS-iterative method will be established for

nonstrictly diagonally dominant matrices and general H−matrices.

Above all, the case of (generalized) diagonally equipotent matrices will be studied.

The following lemma will be used in this section.

Lemma 4.18. (See Lemma 3.13 in [15]) Let A =

[
E U

L F

]
∈ C2n×2n, where
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E,F, L, U ∈ Cn×n and E is nonsingular. Then the Schur complement of A with

respect to E, i.e., A/E = F −LE−1U is nonsingular if and only if A is nonsingular.

Theorem 4.19. Let A ∈ DEn (n ≥ 3) be irreducible. Then ρ(HSGS) < 1, where

HSGS is defined in (1.4), i.e., the sequence {x(i)} generated by SGS-scheme (1.5)

converges to the unique solution of (1.1) for any choice of the initial guess x(0) if and

only if D−1
A A /∈ Rπ

n .

Proof. The sufficiency can be proved by contradiction. We assume that there

exists an eigenvalue λ of HSGS such that |λ| ≥ 1. According to equality (1.4),

det(λI −HSGS) = det(λI − (DA − UA)
−1LA(DA − LA)

−1UA)

= det[(DA − UA)
−1] det[λ(DA − UA)− LA(DA − LA)

−1UA]

=
det[λ(DA − UA)− LA(DA − LA)

−1UA]

det(DA − UA)
= 0.

(4.5)

Equality (4.5) gives

detB = det[λ(DA − UA)− LA(DA − LA)
−1UA]] = 0,(4.6)

i.e., B := λ(DA − UA) − LA(DA − LA)
−1UA is singular. Let E = DA − LA, F =

λ(DA − UA) and

C =

[
E −UA

−LA F

]
=

[
DA − LA −UA
−LA λ(DA − UA)

]
.(4.7)

Then B = F − LAE
−1UA is the Schur complement of C with respect to the prin-

cipal submatrix E. Now, we investigate the matrix C. Since A is irreducible, both

LA 6= 0 and UA 6= 0. As a result, C is also irreducible. If |λ| > 1, then (4.7)

indicates C ∈ ID2n. Consequently, C is nonsingular, so is B = λ(DA − UA) −
LA(DA − LA)

−1UA coming from Lemma 4.18, i.e., detB 6= 0, which contradicts

(4.6). Therefore, |λ| = 1. Let λ = eiθ with θ ∈ R. (4.6) and Lemma 4.18 yield that

C =

[
DA − LA −UA
−LA eiθ(DA − UA)

]
, and hence, C1 =

[
DA − LA −UA
−e−iθLA DA − UA

]

are singular. Since A = I − L − U ∈ DEn and is irreducible, both C and C1 are

irreducible diagonally equipotent. The singularity of C1 and Lemma 4.6 yield that

D−1
C1

C1 ∈ Rπ
2n, whereDC1

= diag(DA, DA), i.e., there exists an n×n unitary diagonal

matrix D such that D̃ = diag(D,D) and

D̃−1(D−1
C1

C1)D̃ =

[
I −D−1(D−1

A LA)D −D−1(D−1
A UA)D

−e−iθD−1(D−1
A LA)D

−1
A LAD I −D−1(D−1

A UA)D

]

=

[
I − |D−1

A LA| −|D−1
A UA|

−|D−1
A LA| I − |D−1

A UA|

]
.

(4.8)
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(4.8) indicates that θ = 2kπ, where k is an integer. Thus, λ = ei2kπ = 1, and

there exists an n × n unitary diagonal matrix D such that D−1(D−1
A A)D = I −

|D−1
A LA|− |D−1

A UA|, i.e., D−1
A A ∈ Rπ

n . However, this contradicts D
−1
A A /∈ R0

n. Thus,

|λ| 6= 1. According to the proof above, we have that |λ| ≥ 1 is not true. Therefore,

ρ(HSGS) < 1, i.e., the sequence {x(i)} generated by SGS-scheme (1.5) converges to

the unique solution of (1.1) for any choice of the initial guess x(0).

The following will prove the necessity by contradiction. Assume thatD−1
A A ∈ Rπ

n .

Then there exists an n×n unitary diagonal matrix D such that D−1
A A = I−D−1

A LA−
D−1
A UA = I −D|D−1

A LA|D−1 −D|D−1
A UA|D−1 and

HSGS = (DA − UA)
−1LA(DA − LA)

−1UA
= [I − (D−1

A UA)]
−1(D−1

A LA)[I − (D−1
A LA)]

−1(D−1
A UA)

= D[(I − |D−1
A U |)−1|D−1

A L|(I − |D−1
A L|)−1|D−1

A U |]D−1.

Hence,

det(I −HSGS)

= det{I −D[(I − |D−1
A U |)−1|D−1

A L|(I − |D−1
A L|)−1|D−1

A U |]D−1}
= det[I − (I − |D−1

A UA|)−1|D−1
A LA|(I − |D−1

A LA|)−1|D−1
A UA|]

=
det[(I − |D−1

A UA|)− |D−1
A LA|(I − |D−1

A LA|)−1|D−1
A UA|]

det(I − |D−1
A UA|)

.

(4.9)

Let V =

[
I − |D−1

A LA| −|D−1
A UA|

−|D−1
A LA| I − |D−1

A UA|

]
and W = (I − |D−1

A UA|) − |D−1
A LA|(I −

|D−1
A LA|)−1|D−1

A UA|. Then W is the Schur complement of V with respect to I −
|D−1

A LA|. Since A = I−L−U ∈ DEn is irreducible, D−1
A A = I−D−1

A LA−D−1
A UA ∈

DEn is irreducible. Therefore, V ∈ DE2n ∩Rπ
2n and is irreducible. Lemma 4.6 shows

that V is singular, and hence,

det V = det[(I − |D−1
A UA|)− |D−1

A LA|(I − |D−1
A LA|)−1|D−1

A UA|] = 0.

Therefore, (4.9) yields det(I − HSGS) = 0, which shows that 1 is an eigenvalue of

HSGS . Thus, ρ(HSGS) ≥ 1, i.e., the sequence {x(i)} generated by SGS-scheme (1.5)

doesn’t converge to the unique solution of (1.1) for any choice of the initial guess

x(0). This is a contradiction which shows that the assumption is incorrect. Therefore,

A /∈ Rπ
n .

Lemma 4.6 shows that the following corollary holds.

Corollary 4.20. Let A ∈ DEn (n ≥ 3) be irreducible and nonsingular. Then

the sequence {x(i)} generated by SGS-scheme (1.5) converges to the unique solution

of (1.1) for any choice of the initial guess x(0).
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Theorem 4.21. Let A ∈ HM
n (GDEn) be irreducible for n ≥ 3. Then the

sequence {x(i)} generated by SGS-scheme (1.5) converges to the unique solution of

(1.1) for any choice of the initial guess x(0) if and only if D−1
A A /∈ Rπ

n .

Proof. According to Lemma 2.9 and Lemma 2.11, under the condition of irre-

ducibility, HM
n = GDEn. Then, similar to the proof of Theorem 4.9, we can obtain

the proof by Definition 2.2 and Theorem 4.19.

Corollary 4.22. Let A ∈ HM
n (n ≥ 3) be irreducible and nonsingular. Then

the sequence {x(i)} generated by SGS-scheme (1.5) converges to the unique solution

of (1.1) for any choice of the initial guess x(0).

Proof. It follows from Lemma 4.6 that the proof of this corollary is obtained

immediately.

In what follows, some convergence results on symmetric Gauss-Seidel iterative

methods are established for nonstrictly diagonally dominant matrices.

Theorem 4.23. Let A = (aij) ∈ Dn(GDn) with aii 6= 0 for all i ∈ 〈n〉. Then

the sequence {x(i)} generated by SGS-scheme (1.5) converges to the unique solution

of (1.1) for any choice of the initial guess x(0) if and only if A has neither 2 ×
2 irreducibly (generalized) diagonally equipotent principal submatrix nor irreducibly

principal submatrix Ak = A(i1, i2, . . . , ik), 3 ≤ k ≤ n, such that D−1
Ak

Ak /∈ R
π
k ∩

DEk(R
π
k ∩GDEk).

Proof. It follows from Theorem 4.4, Theorem 4.5, Theorem 4.19 and Theorem

4.21 that the proof of this theorem is obtained immediately.

Theorem 4.24. Let A ∈ GDn be nonsingular. Then the sequence {x(i)} gener-

ated by SGS-scheme (1.5) converges to the unique solution of (1.1) for any choice of

the initial guess x(0) if and only if A has no 2 × 2 irreducibly generalized diagonally

equipotent principal submatrices.

Proof. Since A ∈ GDn is nonsingular, it follows from Theorem 3.11 in [16] that

A hasn’t any irreducibly principal submatrix Ak = A(i1, i2, . . . , ik), 3 ≤ k ≤ n, such

that D−1
Ak

Ak ∈ Rπ
k , and hence, D−1

Ak
Ak /∈ Rπ

k ∩ GDEk. Then the conclusion of this

theorem follows Theorem 4.23.

In the rest of this section, the convergence results on symmetric Gauss-Seidel

iterative method for nonstrictly diagonally dominant matrices will be extended to

general H−matrices.

Theorem 4.25. Let A = (aij) ∈ Hn with aii 6= 0 for all i ∈ 〈n〉. Then the

sequence {x(i)} generated by SGS-scheme (1.5) converges to the unique solution of

(1.1) for any choice of the initial guess x(0) if and only if A has neither 2 × 2 irre-
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ducibly generalized diagonally equipotent principal submatrix nor irreducibly principal

submatrix Ak = A(i1, i2, . . . , ik), 3 ≤ k ≤ n, such that D−1
Ak

Ak /∈ Rπ
k ∩GDEk.

Proof. Similar to the proof of Theorem 4.12, we can obtain the proof immediately

by Theorem 2.10 and Theorem 4.23.

Theorem 4.26. Let A ∈ Hn be nonsingular. Then the sequence {x(i)} generated

by SGS-scheme (1.5) converges to the unique solution of (1.1) for any choice of the

initial guess x(0) if and only if A has no 2 × 2 irreducibly generalized diagonally

equipotent principal submatrices.

Proof. The proof is similar to the proof of Theorem 4.24.

4.3. Conclusions and remarks.

In the end, the convergence results established in Subsection 1 and 2 are sum-

marized into a table (see Table 4.1) which shows that the comparison results on

convergence of FGS, BGS and SGS method for different class of general H−matrices.

In Table 4.1, DD, GDE(DE), PSM , Y , N , C, D and × denote diagonal dominance,

generalized diagonally equipotent (diagonally equipotent), principal submatrices (sub-

matrix), yes, no, convergence, divergence and unapplicable, respectively.

The research in this section shows that the FGS iterative method associated

with the irreducible matrix A ∈ HM
n ∩ U θ

n fails to converge, the same does for the

BGS iterative method associated with the irreducible matrix A ∈ HM
n ∩ L θ

n and the

SGS iterative method associated with the irreducible matrix A ∈ HM
n ∩ R

π
n . It is

natural to consider convergence on preconditioned Gauss-Seidel iterative methods for

nonsingular general H−matrices.

5. Convergence on preconditioned Gauss-Seidel iterative methods. In

this section, Gauss-type preconditioning techniques for linear systems with nonsin-

gular general H−matrices are chosen such that the coefficient matrices are invertible

H−matrices. Then based on structure heredity of the Schur complements for general

H−matrices in [16], convergence on preconditioned Gauss-Seidel iterative methods

will be studied and some results will be established.

Many researchers have considered the left Gauss-type preconditioner applied to

linear system (1.1) such that the associated Jacobi and Gauss-Seidel methods converge

faster than the original ones. Milaszewicz [9] considered the preconditioner

P1 =




1 0 · · · 0

−a21 1 · · · 0
...

...
. . .

...

−an1 0 · · · 1


 .(5.1)
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Later, Hadjidimos et al. [6] generalized Milaszewicz’s preconditioning technique and

presented the preconditioner

P1(α) =




1 0 · · · 0

−α2a21 1 · · · 0
...

...
. . .

...

−αnan1 0 · · · 1


 .(5.2)

Recently, Zhang et al. [17] proposed the left Gauss type preconditioning techniques

which utilizes the Gauss transformation [5] matrices as the base of the Gauss type

preconditioner based on Hadjidimos et al. [6], Milaszewicz [9] and LU factorization

method [5]. The construction of Gauss transformation matrices is as follows:

Mk =




1 · · · 0 0 · · · 0
...

...
...

...

0 · · · 1 0 · · · 0

0 · · · −τk+1 1 · · · 0
...

...
...

...

0 · · · −τn 0 · · · 1




,(5.3)

where τi = aik/akk, i = k+1, . . . , n and k = 1, 2, . . . , n−1. Zhang et al. [17] consider

the following left preconditioners:

P1 = M1, P2 = M2M1, · · · , Pn−1 = Mn−1Mn−2 · · ·M2M1.

Let Hn = {A ∈ Hn : A is nonsingular}. Then HI
n ⊂ Hn while HI

n 6= Hn.

Again, let ĤM
n = {A ∈ HM

n : A is nonsingular}. In fact, Hn = HI
n ∪ ĤM

n .

Thus, nonsingular general H−matrices that the matrices in Hn differ from invert-

ible H−matrices. In this section, we will propose some Gauss-type preconditioning

techniques for linear systems with the coefficient matrices belong to Hn and establish

some convergence results on preconditioned Gauss-Seidel iterative methods.

Firstly, we consider the case that the coefficient matrix A ∈ Hn is irreducible.

Then let us generalize the preconditioner of (5.1),(5.2) and (5.3) as follows:

Pk =




1 · · · 0 −τ1 0 · · · 0
...

...
...

...
...

0 · · · 1 −τk−1 0 · · · 0

0 · · · 0 1 0 · · · 0

0 · · · 0 −τk+1 1 · · · 0
...

...
...

...
...

0 · · · 0 −τn 0 · · · 1




,(5.4)
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where τi = aik/akk, i = 1, . . . , n; i 6= k and k ∈ 〈n〉. Assume that Ãk = PkA for

k ∈ 〈n〉, HA
J , HA

FGS , HA
BGS and HA

SGS denote the Jacobi and the forward, backward

and symmetric Gauss-Seidel (FGS-, BGS- and SGS-) iteration matrices associated

with the coefficient matrix A, respectively.

Theorem 5.1. Let A ∈ Hn be irreducible. Then Ãk = PkA ∈ HI
n for all

k ∈ 〈n〉, where Pk is defined in (5.4). Furthermore, the following conclusions hold:

1. ρ(HÃk

J ) ≤ ρ(H
µ(A/k)
J ) < 1 for all k ∈ 〈n〉, where A/k = A/α with α = {k};

2. ρ(HÃk

FGS) ≤ ρ(H
µ(A/k)
FGS ) < 1 for all k ∈ 〈n〉;

3. ρ(HÃk

BGS) ≤ ρ(H
µ(A/k)
BGS ) < 1 for all k ∈ 〈n〉;

4. ρ(HÃk

SGS) ≤ ρ(H
µ(A/k)
SGS ) < 1 for all k ∈ 〈n〉,

i.e., the sequence {x(i)} generated by the preconditioned Jacobi, FGS, BGS and SGS

iterative schemes (1.5) converge to the unique solution of (1.1) for any choice of the

initial guess x(0).

Proof. Since A ∈ HM
n is irreducible and nonsingular for A ∈ Hn is irreducible,

it follows from Theorem 5.9 in [16] that A/α is an invertible H−matrix, where

α = {k}. For the preconditioner Pk, there exists a permutation matrix Pk such

that PkPkP
T
k =

[
1 0

−τ In−1

]
, where τ = (τ1, . . . , τk−1, τk+1, . . . , τn)

T . As a con-

sequence,

Pk(PkA)P
T
k = PkPkP

T
k PkAP

T
k =

[
akk αk
0 A/α

]

is an invertible H−matrix, so is PkA. Following, Theorem 4.1 in [16] and Theorem

4.2 show that the four conclusions hold.

On the other hand, if an irreducible matrix A ∈ Hn has a principal submatrix

A(α) which is easy to get its inverse matrix or is a (block)triangular matrix, there

exists a permutation matrix Pα such that

PαAP
T
α =

[
A(α) A(α, α′)

A(α′, α) A(α′, α′)

]
,(5.5)

where α′ = 〈n〉 − α. Let

M =

[
I|α| 0)

−[A(α)]−1A(α′, α) I

]
.(5.6)

Then

MPαAP
T
α =

[
A(α) A(α, α′)

0 A/α

]
,
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where A(α) and A/α are both invertible H−matrices, so is MPαAP
T
α . As a result,

PTαMPαA = PT (MPαAP
T
α )P is an invertible H−matrix. Therefore, we consider the

following preconditioner

Pα = PTαMPα,(5.7)

where Pα and M are defined by (5.5) and (5.6), respectively.

Theorem 5.2. Let A ∈ Hn be irreducible. Then Ãα = PαA ∈ HI
n for all

α ⊂ 〈n〉, α 6= ∅, where Pα is defined in (5.7). Furthermore, the following conclusions

hold:

1. ρ(HÃα

J ) ≤ max{ρ(Hµ(A(α))
J ), ρ(H

µ(A/α)
J )} < 1 for all α ∈ 〈n〉;

2. ρ(HÃα

FGS) ≤ max{ρ(Hµ(A(α))
FGS ), ρ(H

µ(A/α)
FGS )} < 1 for all α ∈ 〈n〉;

3. ρ(HÃα

BGS) ≤ max{ρ(Hµ(A(α))
BGS ), ρ(H

µ(A/α)
BGS )} < 1 for all α ∈ 〈n〉;

4. ρ(HÃα

SGS) ≤ max{ρ(Hµ(A(α))
SGS ), ρ(H

µ(A/α)
SGS )} < 1 for all α ∈ 〈n〉,

i.e., the sequence {x(i)} generated by the preconditioned Jacobi, FGS, BGS and SGS

iterative schemes (1.5) converge to the unique solution of (1.1) for any choice of the

initial guess x(0).

Proof. The proof is similar to the proof of Theorem 5.1.

Following, we consider the case that the coefficient matrix A ∈ Hn is reducible. If

there exists a proper α = 〈n〉−α′ ⊂ 〈n〉 such that A(α) and A(α′) are both invertible

H−matrices, we consider the preconditioner (5.7) and have the following conclusion.

Theorem 5.3. Let A ∈ Hn and a proper α = 〈n〉 − α′ ⊂ 〈n〉, α 6= ∅, such that

A(α) and A(α′) are both invertible H−matrices. Then Ãα = PαA ∈ HI
n, where Pα

is defined in (5.7). Furthermore, the following conclusions hold:

1. ρ(HÃα

J ) ≤ max{ρ(Hµ(A(α))
J ), ρ(H

µ(A/α)
J )} < 1 for all α ∈ 〈n〉;

2. ρ(HÃα

FGS) ≤ max{ρ(Hµ(A(α))
FGS ), ρ(H

µ(A/α)
FGS )} < 1 for all α ∈ 〈n〉;

3. ρ(HÃα

BGS) ≤ max{ρ(Hµ(A(α))
BGS ), ρ(H

µ(A/α)
BGS )} < 1 for all α ∈ 〈n〉;

4. ρ(HÃα

SGS) ≤ max{ρ(Hµ(A(α))
SGS ), ρ(H

µ(A/α)
SGS )} < 1 for all α ∈ 〈n〉,

i.e., the sequence {x(i)} generated by the preconditioned Jacobi, FGS, BGS and SGS

iterative schemes (1.5) converge to the unique solution of (1.1) for any choice of the

initial guess x(0).

Proof. It is obvious that here exists a permutation matrix Pα such that (5.5)

holds. Further,

PαA = PTαMPαA = PT (MPαAP
T
α )P = PT

[
A(α) A(α, α′)

0 A/α

]
P.(5.8)
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Since A ∈ Hn, A ∈ HI
n ∪ HM

n is nonsingular. Again, A(α) and A(α′) are both

invertible H−matrices, it follows from Theorem 5.2 and Theorem 5.11 in [16] that

A/α is an invertible H−matrix. Therefore, Ãα = PαA ∈ HI
n coming from (5.8).

Following, Theorem 4.1 in [16] and Theorem 4.2 yield that the four conclusions hold,

which completes the proof.

It is noted that the preconditioner Pα has at least two shortcomings when the

coefficient matrix A ∈ Hn is reducible. One is choice of α. For a large scale reducible

matrix A ∈ Hn ∩ HM
n , we are not easy to choose α such that A(α) and A(α′) are

both invertible H−matrices. The other is the computation of [A(α)]−1. Although

A(α) is an invertible H−matrices, it is difficult to obtain its inverse matrix for large

A(α). These shortcomings above are our further research topics.

6. Numerical examples. In this section, some examples are given to illustrate

the results obtained in Section 4 and Section 5.

Example 6.1. Let the coefficient matrix A of linear system (1.1) be given by

the following n× n matrix

An =




1 −1 0 0 · · · 0 0 0

1 2 −1 0 · · · 0 0 0

0 1 2 −1 · · · 0 0 0

0 0 1 2
. . . 0 0 0

...
...

...
. . .

. . .
. . .

...
...

0 0 0 0
. . . 2 −1 0

0 0 0 0 · · · 1 2 −1

0 0 0 0 · · · 0 1 1




.(6.1)

It is easy to see that An ∈ DEn ⊂ Hn is irreducible and An /∈ HI
n, but Lemma

4.3 in [13] shows that An is nonsingular. Thus, An ∈ Hn is irreducible. Since

D−1
n AnDn = |DAn

| − |LAn
| − eiπ|UAn

|,

where

Dn = diag[1,−1, . . . , (−1)k−1, . . . , (−1)n−1],

it follows from Theorem 3.6 that An ∈ U π
n . In addition, it is obvious that An ∈ L π

n .

Therefore, Theorem 4.9 and Theorem 4.10 show that

ρ(HFGS(A100)) = ρ(HBGS(A100)) = 1.

Further, Theorem 4.16 shows that ρ(HSGS(A100)) < 1. In fact, direct computations

also get ρ(HFGS(A100)) = ρ(HBGS(A100)) = 1 and ρ(HSGS(A100)) = 0.3497 < 1
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which demonstrates that the conclusions of Theorem 4.9, Theorem 4.10 and Theorem

4.16 in Section 4 are correct and effective.

The discussion above shows that FGS and BGS iterative schemes fail to converge

to the unique solution of linear system (1.1) with the coefficient matrix (6.1) of for

any choice of the initial guess x(0), but SGS iterative schemes does. Now we con-

sider preconditioned Gauss-Seidel iterative methods for linear system (1.1) with the

coefficient matrix (6.1).

Choose two set α = {1} ∈ 〈n〉 and β = {1, n} ∈ 〈n〉 and partition An into

An =

[
1 −aT

a An−1

]
=




1 −bT 0

b An−2 −cT

0 c 1


 ,

where a = (1, 0, . . . , 0)T ∈ Rn−1, b = (1, 0, . . . , 0)T ∈ Rn−2, cT = (0, . . . , 0, 1)T ∈
Rn−2 and An−2 = tri[1, 2,−1] ∈ R(n−2)×(n−2), we get two preconditioners

P1 =

[
1 0

−a In−1

]
and Pβ =




1 0 0

−b In−2 cT

0 c 1


 ,

where In−1 is the (n− 1)× (n− 1) identity matrix. Then Theorem 5.9 in [16] shows

that Ã1 = P1An =

[
1 −aT

0 An/α

]
and Ãβ = PβAn =




1 0 0

0 An/β 0

0 c 1


 are both

invertible H−matrices. According to Theorem 5.1 and Theorem 5.2, for these two

preconditioners, the preconditioned FGS, BGS and SGS iterative schemes converge

to the unique solution of (1.1) for any choice of the initial guess x(0).

In fact, by direct computations, Table 6.1 in the following is obtained to show

that ρ(HÃ1

FGS) = ρ[H
µ(Ã1)
FGS ] = 0.9970 < 1, ρ(H

Ãβ

BGS) = ρ[H
µ(Ãβ)
BGS ] = 0.9970 < 1 and

ρ(HÃ1

SGS) = 0.3333 < ρ[H
µ(Ã1)
SGS ] = 0.9950 < 1, ρ(H

Ãβ

SGS) = 0.3158 < ρ[H
µ(Ãβ)
SGS ] =

0.9979 < 1, which illustrate specifically that Theorem 5.1 and Theorem 5.2 are both

valid.

X ρ(HÃ1

X ) ρ[H
µ(Ã1)
X ] ρ(H

Ãβ

X ) ρ[H
µ(Ãβ)
X ]

FGS 0.9970 0.9970 0.9900 0.9900

BFS 0.9970 0.9970 0.9900 0.9900

SGS 0.3333 0.9950 0.3158 0.9979
Table 6.1

The comparison result of spectral radii of PGS iterative matrices.
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Example 6.2. Let the coefficient matrix A of linear system (1.1) be given by

the following 6× 6 matrix

A =




5 −1 1 1 1 −1

1 5 −1 1 1 1

1 1 5 −1 1 1

0 0 0 2 −1 1

0 0 0 1 2 −1

0 0 0 1 1 2




.

Although A ∈ DE6 are reducible but there is not any principal submatrix Ak
(k < 6) in A such thatD−1

Ak
Ak ∈ R0

k, Theorem 3.16 in [16] shows that A is nonsingular.

Thus, An ∈ H6 is reducible. Furthermore, there is not any principal submatrix Ak in

A such that D−1
Ak

Ak ∈ U
ψ
k and D−1

Ak
A ∈ L

φ
k . It follows from Theorem 4.20, Theorem

4.21 and Theorem 4.22 that FGS, BGS and SGS iterative schemes converge to the

unique solution of (1.1) for any choice of the initial guess x(0).

From the first column in Table 6.2, one has ρ(HFGS) = ρ(HBGS) = 0.3536 < 1

and ρ(HSGS) = 0.2500 < 1. This naturally verifies the results of Theorem 4.20,

Theorem 4.21 and Theorem 4.22.

X ρ(HX) ρ(HÃα

X ) ρ[H
µ(Ãα)
X ]

FGS 0.3536 0.6000 0.6000

BFS 0.3536 0.6000 0.6000

SGS 0.2500 0.6000 0.6000
Table 6.2

The comparison result of spectral radii of GS and PGS iterative matrices.

Now, we consider convergence on preconditioned Gauss-Seidel iterative methods.

Set α = {3, 4} ⊂ 〈6〉 = {1, 2, 3, 4, 5, 6}, and set β = {3, 4} ⊂ 〈6〉 and γ = {3, 4} ⊂ 〈6〉.
Since A(β ∪ γ) ∈ HI

4 , it follows from Theorem 4.3 in [15] that A/α ∈ HI
4 . Thus, we

choose a preconditioner

Pα =




I2 −A(β, α)[A(α)]−1 0

0 I2 cT

0 −A(γ, α)[A(α)]−1 I2




such that Ãα = PαA ∈ HI
6 . From Theorem 5.3, it is obvious to see that the precon-

ditioned FGS, BGS and SGS iterative schemes (1.5) converge to the unique solution

of (1.1) for any choice of the initial guess x(0).
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As is shown in Table 6.2, ρ(HÃα

FGS) = ρ[H
µ(Ãα)
FGS ] = 0.6000 < 1, ρ(HÃα

BGS) =

ρ[H
µ(Ãα)
BGS ] = 0.6000 < 1 and ρ(HÃα

SGS) = ρ[H
µ(Ãα)
SGS ] = 0.6000 < 1, which directly

verifies the results of Theorem 5.3.

7. Conclusions. This paper studies convergence on Gauss-Seidel iterative meth-

ods for nonstrictly diagonally dominant matrices and general H−matrices. The

definitions of some special matrices are firstly proposed to establish some new results

on convergence of Gauss-Seidel iterative methods for nonstrictly diagonally dominant

matrices and general H−matrices. Following, convergence of Gauss-Seidel iterative

methods for preconditioned linear systems with general H−matrices is established.

Finally, some numerical examples are given to demonstrate the results obtained in

this paper.
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