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Abstract. A universal adjacency matrix U of a graph G is a linear combination of the 0–1

adjacency matrix A, the diagonal matrix of vertex degrees D, the identity matrix I and the matrix

J each of whose entries is 1. A main eigenvalue of U is an eigenvalue having an eigenvector that

is not orthogonal to the all–ones vector. It is shown that the number of distinct main eigenvalues

of U associated with a simple graph G is at most the number of orbits of any automorphism of

G. The definition of a U–controllable graph is given using control–theoretic techniques and several

necessary and sufficient conditions for a graph to be U–controllable are determined. It is then

demonstrated that U–controllable graphs are asymmetric and that the converse is false, showing

that there exist both regular and non–regular asymmetric graphs that are not U–controllable for

any universal adjacency matrix U. To aid in the discovery of these counterexamples, a γ–Laplacian

matrix L (γ) is used, which is a simplified form of U. It is proved that any U–controllable graph is

a L (γ)–controllable graph for some parameter γ.

Key words. Main eigenvalue, Universal adjacency matrix, Asymmetric graph, γ–Laplacian

matrix, U–Controllable graph.
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1. Preliminaries. Only simple graphs will be considered in this paper, that is,

undirected graphs with no loops, no multiple edges, and no weighted edges. The sets

of vertices and edges of a graph G will be denoted by V(G) and E(G) respectively,

with n = |V(G)|. The adjacency matrix A of a graph G is the n × n matrix (aij)

where aij = 1 if {i, j} ∈ E(G) and is 0 otherwise. If v1, . . . , vn are the vertices of G,

then the matrix D is the diagonal matrix whose ith diagonal entry is the degree of vi

for all 1 ≤ i ≤ n. The vector j denotes the vector
(
1 1 · · · 1

)T
of all ones. We

shall denote the identity matrix by I and the square matrix of all ones by J.

A graph G is said to be regular of degree ρ if D = ρI, otherwise, G is non–regular .

If G is any graph, then the cone G⊲ of G is obtained from the graph G by inserting a

vertex adjacent to all the vertices of G. The complement of G, denoted by G, is the

graph with V(G) = V(G) where two distinct vertices are adjacent if and only if they

are not adjacent in G.

∗Received by the editors on March 10, 2015. Accepted for publication on October 29, 2015.

Handling Editor: Bryan L. Shader.
†Department of Mathematics, University of Malta, Malta (alex.farrugia@um.edu.mt,

isci1@um.edu.mt).

812

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 812-826, November 2015



ELA

On the Main Eigenvalues of Universal Adjacency Matrices and U–Controllable Graphs 813

An automorphism of a graph G is a mapping σ from V(G) to itself preserving

adjacencies, that is, {i, j} ∈ E(G) if and only if {σ(i), σ(j)} ∈ E(G). The set of

all automorphisms of G forms the automorphism group of G with the operation of

composition. For any automorphism σ, we associate the permutation matrix Pσ

such that the ith column of Pσ is the jth column of I if and only if σ(i) = j. Any

automorphism σ can be expressed as a product of disjoint cycles, and this determines

a partition of V(G) into orbits . If G has a trivial automorphism group consisting only

of the identity automorphism, then G is said to be asymmetric.

Let M be a real and symmetric matrix satisfying the equation Mx = λx for some

scalar λ and some nonzero vector x. The vector x is an eigenvector associated with

the eigenvalue λ of M. The set of all eigenvectors associated with λ, together with

the zero vector, form a vector space, called the eigenspace of λ. The spectrum of M

is the multiset of all eigenvalues of M, that is, the multiset of all solutions of the

characteristic equation det(λI−M) = 0. If 0 is an eigenvalue of M, then M is said to

be singular , in which case the nullspace ker(M) 6= {0}. SinceM is real and symmetric,

the multiplicity of an eigenvalue λ is the dimension of its eigenspace, or, equivalently,

the number of times it is repeated in the spectrum of M. An eigenvalue is said to

be simple if its multiplicity is one. A main eigenvalue of M is an eigenvalue having

some associated eigenvector not orthogonal to j, referred to as a main eigenvector .

On the other hand, the eigenspace of a non–main eigenvalue contains only non–main

eigenvectors, that is, eigenvectors that are orthogonal to j.

In Section 2, we describe the universal adjacency matrix U [1, 8] associated with

a graph G and prove that its main eigenvalues must have an associated eigenvector

of a certain form, from which an upper bound on the number of main eigenvalues of

U is deduced. In Section 3, we summarize the principal results from control theory

that will be used in subsequent sections, leading to the definition of a U–controllable

graph G in Section 4, where several characterisations of such a graph are presented.

We prove in Section 5 that U–controllable graphs are asymmetric; yet, there exist

regular, asymmetric graphs G that are not U–controllable. In Section 6, we introduce

the γ–Laplacian matrix L (γ), which is a simpler form of the matrix U, and show

that a graph is U–controllable if and only if it is L (γ)–controllable for an appropriate

value of the scalar γ. This facilitates our search for non–regular asymmetric graphs

that are not U–controllable, and indeed, one such graph is presented in Section 7.

2. The universal adjacency matrix U. The reference [8] (see also [1]) defined

a universal adjacency matrix associated with a simple graph G to be a matrix of the

form

(2.1) U = γ
A
A+ γ

D
D+ γ

I
I+ γ

J
J, γ

A
6= 0
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for some nonzero scalar γ
A
and some arbitrary scalars γ

I
, γ

D
and γ

J
. The authors of

[8] determined the graphs that admit a universal adjacency matrix having only two

distinct eigenvalues. In [1], the minimum rank of U was studied. In this article, we

consider the number of distinct main eigenvalues of U and relate this number to what

we call U–controllable graphs.

The matrix U includes five of the most commonly–used matrices in algebraic

graph theory, namely:

• the adjacency matrix A of G (γ
A
= 1, γ

I
= γ

D
= γ

J
= 0);

• the Laplacian matrix L = D−A of G (γ
A
= −1, γ

D
= 1, γ

I
= γ

J
= 0);

• the signless Laplacian matrix Q = D+A of G (γ
A
= 1, γ

D
= 1, γ

I
= γ

J
= 0);

• the adjacency matrix A = J−I−A of G (γ
A
= −1, γ

I
= −1, γ

J
= 1, γ

D
= 0);

• the Seidel matrix S = J− I− 2A of G (γ
A
= −2, γ

I
= −1, γ

J
= 1, γ

D
= 0).

Thus, U allows us to consider all the above five matrices (and more) collectively

in order to obtain results that would be valid for all of them at once. Indeed, the

following theorem generalizes the result found in [9, 10], there shown to be true only

for the adjacency matrix A, to the case of a universal adjacency matrix U.

Theorem 2.1. [6, Theorem 5.4] If P is an arbitrary permutation matrix and G

is a graph with associated universal adjacency matrix U, then P is the permutation

matrix Pσ of an automorphism σ of G if and only if PU = UP.

A consequence to the above theorem is the result below.

Theorem 2.2. Let U be a universal adjacency matrix for a graph G, λ be a main

eigenvalue of U and σ be an automorphism of G. Then there is a main eigenvector

x associated with λ such that Pσx = x.

Proof. Let Uy = λy such that jTy 6= 0. If Pσy = y, then we are done. If Pσy 6=

y, then let r be the order ofPσ and consider the vector x = (I+Pσ+P2
σ+· · ·+Pr−1

σ )y.

By Theorem 2.1, we have

Ux = U(I+Pσ +P2
σ + · · ·+Pr−1

σ )y = (I+Pσ +P2
σ + · · ·+Pr−1

σ )Uy

= λ(I+Pσ +P2
σ + · · ·+Pr−1

σ )y = λx.

Also, note that jTx = jT(I + Pσ + P2
σ + · · · + Pr−1

σ )y = rjTy 6= 0. Therefore,

x 6= 0, and thus, x is an eigenvector in the eigenspace of λ.

Moreover,

Pσx = Pσ(I+Pσ + · · ·+Pr−1
σ )y = (Pσ +P2

σ + · · ·+Pr
σ)y

= (I+Pσ + · · ·+Pr−1
σ )y = x,

as required.
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We remark that the analogous result for non–main eigenvalues is false in general.

The three statements Ux = λx, jTx = 0 and Pσx = x would not be enough to prove

that x is an eigenvector of a non–main eigenvalue λ with the requirements of Theorem

2.2, as x could possibly be the zero vector. This happens, for example, if we take y

to be the eigenvector of λ = −1 of the matrix A in Table 2.1 (in page 817).

Moreover, note that the matrix M = I+Pσ +P2
σ + · · ·+Pr−1

σ used in the proof

of Theorem 2.2 is singular if and only if r > 1. Indeed, if r = 1, then M = I, whilst

if r > 1, then M(I − Pσ) = I − Pr
σ = 0. Thus, when r > 1, the matrices M and

(I−Pσ) are nonzero matrix divisors of the zero matrix, so that the nonzero columns

of M are in the nullspace of the matrix (I−Pσ).

Theorem 2.2 can be restated in the following way.

Corollary 2.3. If λ is a main eigenvalue of a universal adjacency matrix

U associated with a graph G and σ is an automorphism of G, then there exists an

eigenvector x of λ whose entries do not sum to zero. Moreover, the entries of x are

constant on each orbit of vertices determined by σ.

Note that Theorem 2.2 and Corollary 2.3 hold for any main eigenvalue of a uni-

versal adjacency matrix U, regardless of its multiplicity.

We now use Corollary 2.3 to show that the number of main eigenvalues of a

universal adjacency matrix U associated with a graph G is limited to at most the

number of orbits of any automorphism of G. This is a generalisation of the result in

[3, Theorem 4], there proved only for the adjacency matrix A associated with G.

Theorem 2.4. The number of orbits of any automorphism of a graph G is an

upper bound for the number of distinct main eigenvalues of any universal adjacency

matrix U associated with G.

Proof. Let σ be an automorphism of G expressed as the product of q cycles of

length r1, r2, . . . , rq respectively. By Corollary 2.3, each distinct main eigenvalue of

U has an associated eigenvector of the form

(
r1

︷ ︸︸ ︷
x1 x1 · · · x1

r2
︷ ︸︸ ︷
x2 x2 · · · x2 · · ·

rq
︷ ︸︸ ︷
xq xq · · · xq

)T
,

after possibly reordering the vertices of G. Since these eigenvectors are linearly inde-

pendent, the number of distinct main eigenvalues of U cannot exceed q.

We demonstrate these results for the graph G in Figure 2.1. The permutation

σ = (1 2 3)(4 5) is an automorphism of G, showing that there is a partition of the

vertices into four orbits. The eigenspaces of A, L, Q, A and S are displayed in Table

2.1. The eigenvalues in boldface are main, and we observe that each of the matrices

has at most four main eigenvalues, as expected from Theorem 2.4. In addition,
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note that each main eigenvalue has one eigenvector x =
(
x1 x2 · · · xn

)T
where

x1 = x2 = x3 and x4 = x5, conforming with the automorphism σ. Moreover, note that

the converse of Theorem 2.2 is false, since there are non–main eigenvalues, notably

the eigenvalues 5.262, 3.340 and 0.398 of L, with all their eigenvectors satisfying these

equalities as well.

1

2 37

6

4 5

Fig. 2.1. An example graph.

We remark that any two universal adjacency matrices having the same coefficients

of A and D must have the same number of distinct main eigenvalues, since they

share the same non–main eigenvectors. On the other hand, two universal adjacency

matrices with different coefficients of A or D can have a different number of distinct

main eigenvalues. This becomes evident when considering U–controllable graphs in

Section 4.

3. Control theory. Before we introduce U–controllable graphs, we summarize

various results from control theory, on which the definition of U–controllable graphs

is based. These results are also mentioned in [6].

A networked dynamical system is a set of n agents and a set of links intercon-

necting these agents. Such a networked dynamical system can thus be represented

as a graph G, with the n vertices denoting the agents and the edges denoting the

interconnections between distinct pairs of agents. Each edge is weighted according to

the strength of the exchange link between the two agents, giving rise to a weighted

graph. However, in this article we assume that every exchange link between any two

interconnected agents has the same strength, which is why only simple graphs are

considered.

The state of each agent is affected by the information exchanged with other

agents through the interconnections, and also by signals received from external leaders

that attempt to control these agents in order to direct their information to some

predetermined state. The number of leaders in a networked dynamical system could

be arbitrary, however, in this paper we shall assume that exactly one leader agent is

present. Thus, we end up with a follower graph, which is the original graph G of n

follower agents, and a system graph which is the graph G together with one leader
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Eigenvalues of A Eigenbases

2.369
(

0.422 0.422 0.422 0.805 0.805 1.102 1
)

T

1.527
(

0.655 0.655 0.655 −0.835 −0.835 −0.440 1
)

T

0 (−1 0 1 0 0 0 0) T

(−1 1 0 0 0 0 0) T

−0.789
(

−1.270 −1.270 −1.270 −1.690 −1.690 3.021 1
)

T

−1 (0 0 0 −1 1 0 0) T

−2.107
(

−0.475 −0.475 −0.475 0.220 0.220 −0.683 1
)

T

Eigenvalues of L Eigenbases

5.262 (−0.235 −0.235 −0.235 0.131 0.131 −0.558 1) T

3.340 (−0.427 −0.427 −0.427 −0.830 −0.830 1.942 1) T

3 (0 0 0 −1 1 0 0) T

1 (−1 0 1 0 0 0 0) T

(−1 1 0 0 0 0 0) T

0.398 (1.662 1.662 1.662 −2.301 −2.301 −1.384 1) T

0
(

1 1 1 1 1 1 1
)

T

Eigenvalues of Q Eigenbases

5.354
(

0.230 0.230 0.230 0.282 0.282 0.665 1
)

T

4
(

1 1 1 −3 −3 −3 3
)

T

1.524
(

1.910 1.910 1.910 5.558 5.558 −8.207 1
)

T

1 (0 0 0 −1 1 0 0) T

(−1 0 1 0 0 0 0) T

(−1 1 0 0 0 0 0) T

0.123
(

−1.140 −1.140 −1.140 0.159 0.159 −0.458 1
)

T

Eigenvalues of A Eigenbases

4.277
(

2.715 2.715 2.715 2.138 2.138 1.905 1
)

T

0.894
(

−0.200 −0.200 −0.200 0.447 0.447 −0.672 1
)

T

0 (0 0 0 −1 1 0 0) T

−0.614
(

−0.270 −0.270 −0.270 −0.307 −0.307 1.321 1
)

T

−1 (−1 0 1 0 0 0 0) T

(−1 1 0 0 0 0 0) T

−2.556
(

0.756 0.756 0.756 −1.278 −1.278 −0.887 1
)

T

Eigenvalues of S Eigenbases

4.123
(

−1.281 −1.281 −1.281 −0.360 −0.360 −1 1
)

T

2
(

1 1 1 3 3 −3 3
)

T

1 (0 0 0 −1 1 0 0) T

−1
(

0 0 0 0 0 1 1
)

T

(−1 0 1 0 0 0 0) T

(−1 1 0 0 0 0 0) T

−4.123
(

0.781 0.781 0.781 −1.390 −1.390 −1 1
)

T

Table 2.1

The eigenspaces of A, L, Q, A and S of the graph in Figure 2.1.
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agent connected to some follower agents of G. If the leader happens to be adjacent

to all the vertices (followers) of G, then the system graph would be G⊲, the cone of

G. Indeed, we shall be considering this scenario below.

Let us first consider a networked dynamical system of n agents with no leaders.

The dynamics ẋi of the state xi of the ith agent is taken to depend on those of its

neighbours. These dynamics are usually of the following form:

(3.1) ẋi(t) = γ
A




∑

{i,j}∈E(G)

xj(t)



 + γ
D




∑

{i,j}∈E(G)

xi(t)



+ γ
I
xi(t) + γ

J





n∑

j=1

xj(t)



 ,

i ∈ {1, . . . , n},

where γ
A
is a nonzero constant and γ

D
, γ

I
and γ

J
are arbitrary constants (which may

possibly be zero). If we denote the vector
(
x1 x2 · · · xn

)T
by x(t) and the vector

(
ẋ1 ẋ2 · · · ẋn

)T
by ẋ(t), we can write down the n dynamical equations in (3.1)

as the one vector equation:

(3.2) ẋ(t) = (γ
A
A+ γ

D
D+ γ

I
I+ γ

J
J)x(t) = Ux(t),

where U is the universal adjacency matrix of the graph G akin to (2.1).

Let us now add one leader agent adjacent to every follower in G to the networked

dynamical system of n followers, so that we form the system graph G⊲ as in Figure

3.1. This leader does not follow the dynamics described in (3.2), but it introduces an

arbitrary input u(t) to each of the followers instead. Thus, the system now satisfies

the differential equation

(3.3) ẋ(t) = Ux(t) + ju(t)

If, starting from any initial state, it is possible for the leader agent to transfer the

followers in finite time to a state chosen arbitrarily in advance, then the underlying

networked dynamical system is said to be controllable. If the networked dynamical

system in (3.3) is controllable, then (U, j) is referred to as a controllable pair [2,

Definition 6.1].

4. U–Controllable graphs. In view of what was just presented in the previous

section, we define a U–controllable graph as follows:

Definition 4.1. A simple graph G on n vertices having an associated universal

adjacency matrix U as in (2.1) is said to be U–controllable if (U, j) is a controllable

pair, that is, if the system (3.3) with the same universal adjacency matrix U as that

of G is controllable.
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Fig. 3.1. A follower graph (left), and its cone graph (right).

The terminology U(G)–controllable shall be used instead of the term “U–contr-

ollable” whenever an emphasis on the graph G in question is deemed necessary.

In the rest of this section, we shall determine necessary and sufficient conditions

for a graph to be U–controllable. To this end, we first combine several results that

were presented in [6] in the theorem below.

Theorem 4.2. [6] Let F be an n × n real and symmetric matrix representing

some graph G, let r be any n× 1 vector and let

S =

(
F r

rT c

)

for some arbitrary real constant c. Then the following five statements are equivalent:

(i) (F, r) is a controllable pair.

(ii) The controllability matrix
(
r Fr F2r · · · Fn−1r

)
has full rank n.

(iii) No eigenvector of F is orthogonal to r.

(iv) No eigenvector of S has its last entry equal to zero.

(v) The matrices F and S have no common eigenvalues.

We require (U, j) to be a controllable pair. The matrix S of Theorem 4.2 is the

system matrix of G, which, for the system (3.3) being considered, is

US =

(
U j

jT c

)

,(4.1)

where c is an arbitrary scalar. By Theorem 4.2 (iii), a graph G is U–controllable if

and only if no eigenvector of U is orthogonal to j. In other words, G is U–controllable

if and only if U has only main eigenvectors.

We remark that if λ is an eigenvalue of U having two linearly independent main

eigenvectors x1 and x2, then the vector x = (jTx2)x1 − (jTx1)x2 is a non–main

eigenvector of λ, and thus, the graph would not be U–controllable. Hence, for a

graph to be U–controllable, all the eigenvalues of U must be simple and main.
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We thus have the following five necessary and sufficient conditions for a graph to

be U–controllable.

Theorem 4.3. Let U be the n × n universal adjacency matrix as in (2.1) as-

sociated with a simple graph G, and let US be as in (4.1). Then the following six

statements are equivalent:

(i) G is a U–controllable graph.

(ii) The matrix
(
j Uj U2j · · · Un−1j

)
is invertible.

(iii) U has only main eigenvectors.

(iv) All the eigenvalues in the spectrum of U are simple and main.

(v) No eigenvector of US has its last entry equal to zero.

(vi) The matrices U and US have no common eigenvalues.

4.1. The universal adjacency matrix of the cone graph. Let us consider

the matrix U⊲, the universal adjacency matrix of G⊲ with the same parameters as

those used for the universal adjacency matrix of G. We now pose the question: for

which class of graphs will considering U⊲ be sufficient to determine whether G is

U–controllable?

To answer this question, we expand U⊲ = γ
A
A⊲ + γ

D
D⊲ + γ

I
I⊲ + γ

J
J⊲, where

A⊲ =

(
A j

jT 0

)

, D⊲ =

(
D+ I 0

0T n

)

, I⊲ =

(
I 0

0T 1

)

, J⊲ =

(
J j

jT 1

)

.

Thus,

U⊲ = γ
A

(
A j

jT 0

)

+ γ
D

(
D+ I 0

0T n

)

+ γ
I

(
I 0

0T 1

)

+ γ
J

(
J j

jT 1

)

=

(
γ

A
A γ

A
j

γ
A
jT 0

)

+

(
γ

D
D+ γ

D
I 0

0T γ
D
n

)

+

(
γ

I
I 0

0T γ
I

)

+

(
γ

J
J γ

J
j

γ
J
jT γ

J

)

=

(
γ

A
A+ γ

D
D+ γ

D
I+ γ

I
I+ γ

J
J γ

A
j+ γ

J
j

γ
A
jT + γ

J
jT γ

D
n+ γ

I
+ γ

J

)

=

(
U+ γ

D
I (γ

A
+ γ

J
)j

(γ
A
+ γ

J
)jT γ

D
n+ γ

I
+ γ

J

)

.(4.2)

It is important to stress that, in general, the matrix U⊲ in (4.2) is different from

the system matrix US in (4.1).

We now present the following result that gives another characterization of U–

controllable graphs, but only for those whose universal adjacency matrix satisfies the

relation γ
A
+ γ

J
6= 0.
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Theorem 4.4. Let U be the universal adjacency matrix of a graph G whose

parameters satisfy the relation γ
A
+ γ

J
6= 0 and let U⊲ be the universal adjacency

matrix of G⊲ with the same parameters as those of U. Then G is U–controllable if

and only if, whenever λ is an eigenvalue of U, (λ+ γ
D
) is not an eigenvalue of U⊲.

Proof. We prove the contrapositive statement. So suppose G is not U–contr-

ollable. By Theorem 4.3 (iii), we can find an eigenvalue λ of U with a non–main

eigenvector x. Let k = γ
D
n+ γ

I
+ γ

J
. Then

U⊲

(
x

0

)

=

(
U+ γ

D
I (γ

A
+ γ

J
)j

(γ
A
+ γ

J
)jT k

)(
x

0

)

=

(
Ux+ γ

D
x

(γ
A
+ γ

J
)jTx

)

= (λ+ γ
D
)

(
x

0

)

,

and hence, (λ+ γ
D
) is an eigenvalue of U⊲.

Conversely, suppose λ is an eigenvalue of U with associated eigenvector x and

(λ+ γ
D
) is an eigenvalue of U⊲ with associated eigenvector

(
yT c

)T
. Then

U⊲

(
y

c

)

=

(
U+ γ

D
I (γ

A
+ γ

J
)j

(γ
A
+ γ

J
)jT k

)(
y

c

)

=

(
Uy + γ

D
y + (γ

A
+ γ

J
)cj

(γ
A
+ γ

J
)jTy + ck

)

= (λ+ γ
D
)

(
y

c

)

.

Hence, we have:

Uy + (γ
A
+ γ

J
)cj = λy,(4.3)

(γ
A
+ γ

J
)jTy + ck = c(λ+ γ

D
).(4.4)

If we premultiply (4.3) by xT, we obtain

xTUy + (γ
A
+ γ

J
)cxTj = λxTy,

(γ
A
+ γ

J
)cjTx = 0.

But γ
A
+ γ

J
6= 0, so either jTx = 0 or c = 0.

If jTx = 0, then we have found a non–main eigenvector of U, and consequently,

G is not U–controllable by Theorem 4.3 (iii).

If c = 0, then (4.3) becomes Uy = λy. Moreover, (4.4) becomes (γ
A
+γ

J
)jTy = 0,

from which jTy = 0. Thus, y is a non–main eigenvector of U, so by Theorem 4.3 (iii)

again, G is not U–controllable.

Note that Theorem 4.4 holds for the most commonly used matrices, but not,

for instance, for A. So the theorem cannot be applied to test whether a graph is

A–controllable.
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4.2. A–Controllable and Q–controllable graphs. A controllable graph G,

as defined in [4], is a simple graph G with the spectrum of A consisting entirely

of distinct and main eigenvalues. Similarly, a Q–controllable graph [5] is a simple

graph G whose signless Laplacian matrix Q has eigenvalues that are simple and

main. Thus, by Theorem 4.3 (i) and (iv), these two aforementioned classes of graphs

are represented in our work by A–controllable graphs and Q–controllable graphs

respectively.

We have the following two corollaries to Theorem 4.4, which were originally proved

in [6] (Theorems 4.3 and 4.4) in a different manner.

Corollary 4.5. [6] A graph G is A–controllable if and only if the adjacency

matrices of G and G⊲ have no common eigenvalues.

Proof. Apply Theorem 4.4 with γ
D
= 0.

Corollary 4.6. [6] A graph G is Q–controllable if and only if (λ+1) is not an

eigenvalue of the signless Laplacian matrix of G⊲ whenever λ is an eigenvalue of Q.

Proof. Apply Theorem 4.4 with γ
D
= 1.

As mentioned earlier, a relation between the number of main eigenvalues of the

matrices A and Q associated with the same graph G is not known. Indeed, Figure

4.1 shows two graphs, the first of which is A–controllable but not Q–controllable,

and the second is Q–controllable but not A–controllable. The graph in Figure 2.1

is neither A–controllable nor Q–controllable, but the matrices A and Q associated

with it have the same number (four) of main eigenvalues.

Fig. 4.1. An A–controllable graph which is not Q–controllable (left), and a Q–controllable

graph which is not A–controllable (right).

5. The automorphism group of U–controllable graphs. Henceforth, we

make use of Theorem 4.3 to test whether a graph G is U–controllable.

It is known that the automorphism group of A–controllable graphs is trivial [4, 7].

This result can be shown to be true for U–controllable graphs as well.

Theorem 5.1. If G is a U–controllable graph for a universal adjacency matrix

U, then G is asymmetric.

Proof. By Theorem 4.3 (iv), all the eigenvalues of U are distinct and main.
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Thus, by Theorem 2.4, G has at least n orbits, and therefore must have a trivial

automorphism group.

We note that the converse to Theorem 5.1 is false by considering regular asym-

metric graphs, of which the Frucht graph, depicted in Figure 5.1, is the smallest

example among graphs of degree three.

Fig. 5.1. The Frucht graph is an asymmetric graph which is not U–controllable.

Theorem 5.2. If G is an asymmetric regular graph on at least two vertices, then

G is not U–controllable whatever the parameters of the universal adjacency matrix U

associated with G are.

Proof. Let G have degree ρ, so that Aj = ρj and D = ρI. Consider Uj:

Uj = γ
A
Aj+ γ

D
(ρI)j+ γ

I
Ij+ γ

J
Jj = γ

A
ρj+ (ργ

D
+ γ

I
)j+ nγ

J
j.

Hence, λ = ρ(γ
A
+ γ

D
) + γ

I
+ nγ

J
is an eigenvalue of U with associated eigenvector

j. Since U is real and symmetric and n > 1, it has an orthogonal set of eigenvectors,

one of which is j. Thus, there must exist at least one non–main eigenvector of U.

Hence, by Theorem 4.3 (iii), G is not U–controllable.

6. The γ–Laplacian matrix. In Section 7, we show that there exist non–

regular asymmetric graphs that are not U–controllable for any universal adjacency

matrixU. To arrive at this result, we introduce a simpler form of a universal adjacency

matrix.

For a scalar γ, the matrix A+ γD associated with a graph G, denoted by L (γ),

will be called the γ–Laplacian matrix of G. Note that the matrices L (0), L (1) and

L (−1) are the adjacency matrix A, the signless Laplacian matrix Q and the negative

Laplacian matrix −L respectively. Moreover, a γ–Laplacian matrix is a universal

adjacency matrix with parameters γ
A
= 1, γ

D
= γ and γ

I
= γ

J
= 0.

In Theorem 6.4, we shall show that a L (γ)–controllable graph is also U–contr-

ollable for appropriate parameters of U. First, we require the following two lemmas.

Lemma 6.1. The graph G is U–controllable for some universal adjacency matrix

U if and only if G is (kU)–controllable for some nonzero scalar k.
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Proof. The matrices U and kU have the same eigenvectors. Since, by Theorem

4.3 (iii), G is U–controllable if and only if U has only main eigenvectors, the result

follows.

Lemma 6.2. The graph G is U–controllable for some universal adjacency matrix

U if and only if G is (U+ αI+ βJ)–controllable for any scalars α and β.

Proof. We are going to prove the contrapositive statement. So suppose G is

not V–controllable, where V = U + αI + βJ. By Theorem 4.3 (iii), there exists an

eigenvalue λ of V with an associated non–main eigenvector x. But Vx = λx if and

only if Ux = (λ − α)x, which means that x is also an eigenvector of U. It follows

that G is not V–controllable if and only if it is not U–controllable.

The following corollary is immediate from Lemma 6.2.

Corollary 6.3. A graph is A–controllable if and only if it is A–controllable if

and only if it is S–controllable.

We remark that if the universal adjacency matrix of a graph G is A, then the

system matrix AS is

(6.1)

(
A j

jT c

)

.

Observe that if the universal adjacency matrix of G, the complement of G, is A(G),

then the system matrix of G is (6.1) as well. Thus, G is A–controllable if and only

if G is A(G)–controllable by Theorem 4.3 (v). Therefore, by Corollary 6.3, G is

A–controllable if and only if G is A(G)–controllable, a result that was noted in [7].

The next result allows us to considerably simplify our work related to U–contr-

ollable graphs.

Theorem 6.4. A graph G is L (γ)–controllable for some parameter γ if and only

if G is U–controllable for parameters satisfying γ =
γ
D

γ
A

.

Proof. Let L (γ) = A + γD. By Lemma 6.1, G is L (γ)–controllable if and only

if G is (γ
A
A + γ

A
γD)–controllable for some nonzero scalar γ

A
. By Lemma 6.2, G is

(γ
A
A+γ

A
γD)–controllable if and only if G is (γ

A
A+γ

A
γD+γ

I
I+γ

J
J)–controllable,

where γ
I
and γ

J
are arbitrary scalars. Hence, the result follows.

Thus, by Theorem 6.4, it suffices to consider only the simpler γ–Laplacian matri-

ces of the form A+ γD to test for U–controllable graphs with γ =
γ
D

γ
A

and arbitrary

values of γ
I
and γ

J
.

Recall that L (−1) = −L. The only L–controllable graph is K1, the trivial

graph on one vertex, as 0 is the only main eigenvalue of the Laplacian matrix L.
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Furthermore, K1 is L (γ)–controllable for all scalars γ. By applying Theorem 6.4, we

obtain that K1 is the only graph that is U–controllable for every possible universal

adjacency matrix U.

7. Non–regular asymmetric graphs. By Theorems 5.1 and 5.2, any U–

controllable graph with n > 1 must be asymmetric and non–regular. Can it be

the case that any non–regular asymmetric graph is U–controllable for some universal

adjacency matrix U? It transpires that the answer is in the negative.

Theorem 7.1. There exist non–regular asymmetric graphs that are not U–

controllable whatever the universal adjacency matrix U is.

Proof. Consider the non–regular, asymmetric graph G in Figure 7.1 and consider

the matrix (A+ γD) associated with G for some arbitrary constant γ:

A+ γD =














γ 1 0 0 0 0 0

1 3γ 1 1 0 0 0

0 1 2γ 1 0 0 0

0 1 1 3γ 1 0 0

0 0 0 1 2γ 1 0

0 0 0 0 1 2γ 1

0 0 0 0 0 1 γ














.

Since














γ 1 0 0 0 0 0

1 3γ 1 1 0 0 0

0 1 2γ 1 0 0 0

0 1 1 3γ 1 0 0

0 0 0 1 2γ 1 0

0 0 0 0 1 2γ 1

0 0 0 0 0 1 γ



























0

0

−1

1

−γ

γ − 1

1














=














0

0

1− 2γ

2γ − 1

γ − 2γ2

2γ2 − 3γ + 1

2γ − 1














= (2γ − 1)














0

0

−1

1

−γ

γ − 1

1














,

the matrix A + γD has an eigenvalue λγ = (1 − 2γ) with associated eigenvector

xγ =
(
0 0 −1 1 −γ γ − 1 1

)T
. Since xγ is a non–main eigenvector, the

graph G is not L (γ)–controllable by Theorem 4.3 (iii). By Theorem 6.4, this means

that G is not U–controllable for any universal adjacency matrix U.

Hence, for n > 1, the U–controllable graphs form a proper subfamily of the family

of all asymmetric, non–regular graphs.
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Fig. 7.1. A non–regular, asymmetric graph that is not U–controllable for any universal adja-

cency matrix U.

8. Conclusion. Graphs on at least two vertices that are A–controllable or Q–

controllable graphs have been considered in the literature and are both shown to be

asymmetric and non–regular. The converse does not hold for either class of graphs.

One may pose the question whether all non–regular asymmetric graphs are U–

controllable for a more general universal adjacency matrix U of the form (2.1). We

have shown that U–controllable graphs are non-regular and asymmetric for any pa-

rameters γ
A
, γ

D
, γ

I
and γ

J
of U, but there exist non–regular asymmetric graphs that

are not U–controllable no matter which parameters are chosen for the matrix U, as

shown by Theorem 7.1. It would be interesting to consider other combinatorial and

structural properties that would further restrict the family of U–controllable graphs

within the family of non–regular, asymmetric graphs.
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