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MAXIMA OF THE SIGNLESS LAPLACIAN SPECTRAL
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Abstract. The signless Laplacian spectral radius of a graph is the largest eigenvalue of its

signless Laplacian. In this paper, it is proved that the graph K2 ∨ Pn−2 has the maximal signless

Laplacian spectral radius among all planar graphs of order n ≥ 456.
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1. Introduction. Recently, the signless Laplacian has attracted the attention

of researchers (see [3–6, 9]). Some results on the signless Laplacian spectrum have

been reported since 2005 and a new spectral theory called Q-theory is being devel-

oped by many researchers. Simultaneously, the application of the Q-theory has been

extensively explored [7, 8, 16].

Schwenk and Wilson initiated the study of the eigenvalues of planar graphs [12].

In [2], D. Cao and A. Vince conjectured that K2 ∨ Pn−2 has the maximum spectral

radius among all planar graphs of order n, where ∨ denotes the join of two graphs

obtained from the union of these two graphs by joining each vertex of the first graph to

each vertex of the second graph. The conjecture is still open. With the development

of the Q-theory, a natural question is: What about the maximum signless Laplacian

spectral radius of planar graphs? By some comparisons in [9], it seems plausible

that K2∨Pn−2 also has the maximal signless Laplacian spectral radius among planar

graphs. In this paper, we confirm that among planar graphs with order n ≥ 456,

K2 ∨ Pn−2 has the maximal signless Laplacian spectral radius.

The layout of this paper is as follows. Section 2 gives some notations and some

needed lemmas. In Section 3, our results are presented.
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2. Preliminaries. All graphs considered in this paper are undirected and sim-

ple, i.e., no loops or multiple edges are allowed. Denote by G = G[V (G), E(G)]

a graph with vertex set V (G) and edge set E(G). The number of vertices, resp.,

edges, of G is denoted by n = |V (G)|, resp., m(G) = |E(G)|. Recall that given

a graph G, Q(G) = D(G) + A(G) is the signless Laplacian matrix of G, where

D(G) = diag(d1, d2, . . . , dn) with di = dG(vi) being the degree of vertex vi (1 ≤ i ≤ n),

and A(G) being the adjacency matrix of G. The signless Laplacian spectral radius

of G, denoted by q(G), is the largest eigenvalue of Q(G). For a connected graph

G of order n, the Perron eigenvector of Q(G) is the unit (with respect to the Eu-

clidean norm) positive eigenvector corresponding to q(G); the standard eigenvector

of Q(G) is the positive eigenvector X = (x1, x2, . . . , xn)
T ∈ R

n corresponding to q(G)

satisfying

n
∑

i=1

xi = 1.

Denote by Kn, Cn, Pn a complete graph, a cycle and a path of order n, respec-

tively. For a graph G, if there is no ambiguity, we use d(v) instead of dG(v), use δ

or δ(G) to denote the minimum vertex degree, use ∆ or ∆(G) to denote the largest

vertex degree, and use ∆
′

or ∆
′

(G) to denote the second largest vertex degree. In

a graph, the notation vi ∼ vj denotes that vertex vi is adjacent to vj . Denote by

Ks,t a complete bipartite graph with one part of size s and another part of size t. In

a graph G, for a vertex u ∈ V (G), let NG(u) denote the neighbor set of u, and let

NG[u] = {u} ∪ NG(u). G(u) = G[NG[u]], G
◦(u) = G[NG(u)] denote the subgraphs

induced by NG[u], NG(u), respectively.

The reader is referred to [1, 10] for the facts about planar and outer-planar graphs.

A graph which can be drawn in the plane in such a way that edges meet only at points

corresponding to their common ends is called a planar graph, and such a drawing is

called a planar embedding of the graph. A simple planar graph is (edge) maximal

if no edge can be added to the graph without violating planarity. In the planar

embedding of a maximal planar graph G of order n ≥ 3, each face is triangle. For a

planar graph G of order n ≥ 3, we have m(G) ≤ 3n− 6 with equality if and only if

it is maximal. In a maximal planar graph G of order n ≥ 4, δ(G) ≥ 3. A graph G is

outer-planar if it has a planar embedding, called standard embedding, in which all

vertices lie on the boundary of its outer face. A simple outer-planar graph is (edge)

maximal if no edge can be added to the graph without violating outer-planarity. In a

standard embedding of a maximal outer-planar graph G of order n ≥ 3, the boundary

of the outer face is a Hamiltonian cycle (a cycle contains all vertices) of G, and each

of the other faces is triangle. For an outer-planar graph G, we have m(G) ≤ 2n− 3

with equality if and only if it is maximal. In a maximal planar graph G of order

n ≥ 4 and for a vertex u ∈ V (G), we have that G◦(u) is an outer-planar graph, and

G(u) = u ∨ G◦(u). From a nonmaximal planar graph G, by inserting edges to G, a

maximal planar graph G
′

can be obtained. From spectral graph theory, for a graph

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 795-811, November 2015



ELA

Maxima of the Signless Laplacian Spectral Radius for Planar Graphs 797

G, it is known that q(G+e) > q(G) if e /∈ E(G). Consequently, when we consider the

maxima of the signless Laplacian spectral radius among planar graphs, it suffices to

consider the maximal planar graphs directly. Note that for n = 1, 2, 3, 4, a maximal

planar graph G of order n is isomorphic to Kn. Their signless Laplacian spectral

radii can be easily determined by some computations. As a result, to consider the

maxima of the signless Laplacian spectral radius among planar graphs of order n, we

pay more attentions to those of order n ≥ 5.

Next we introduce some needed lemmas.

Lemma 2.1. [13] Let u be a vertex of a maximal outer-planar graph on n ≥ 2

vertices. Then
∑

v∼u

d(v) ≤ n+ 3d(u)− 4.

Lemma 2.2. [11] Let G be a graph. Then

q(G) ≤ max
u∈V (G)

{

dG(u) +
1

dG(u)

∑

v∼u

dG(v)

}

.

Lemma 2.3. [5] Let G be a connected graph containing at least one edge. Then

q(G) ≥ ∆+ 1 with equality if and only if G ∼= K1,n−1.

3. Main results.

Lemma 3.1. Let G be a maximal planar graph of order n ≥ 3. Then

q(G) ≤ max
u∈V (G)

{

dG(u) + 2 +
3n− 9

dG(u)

}

.

Proof. Let u ∈ V (G), NG(u) = {v1, v2, . . . , vt}, and V1 = V (G)\NG[u]. For

1 ≤ i ≤ t, let αi = dG◦(u)(vi). Note that m(G◦(u)) = |E(G◦(u))| =
1

2

t
∑

i=1

αi.

Between NG(u) and V1, there are 3n− 6−
1

2

t
∑

i=1

αi − dG(u) edges. Consequently,

∑

v∼u

dG(v) = dG(u) +

[

3n− 6−
1

2

t
∑

i=1

αi − dG(u)

]

+
t

∑

i=1

αi = 3n− 6 +
1

2

t
∑

i=1

αi.

Since G◦(u) is an outer-planar graph, m(G◦(u)) ≤ 2dG(u)− 3. As a result,
∑

v∼u

dG(v)

≤ 3n− 9 + 2dG(u), and thus,

dG(u) +
1

dG(u)

∑

v∼u

dG(v) ≤ dG(u) + 2 +
3n− 9

dG(u)
.
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By Lemma 2.2, q(G) ≤ max
u∈V (G)

{

dG(u) + 2 +
3n− 9

dG(u)

}

.

Remark 1. Let f(x) = x + 2 +
3n− 9

x
. It can be checked that f(x) is convex

when n ≥ 4. Let G be a maximal planar graph of order n with largest degree ∆(G).

As discussed in section 2, we know that if n ≥ 4, then dG(u) ≥ 3 for any vertex

u ∈ V (G). Thus,

dG(u) +
1

dG(u)

∑

v∼u

dG(v) ≤ max

{

5 +
3n− 9

3
,∆(G) + 2 +

3n− 9

∆(G)

}

.

Moreover, if n ≥ 6 and ∆(G) ≤ n− 3, then q(G) ≤ n+ 2.

q

q

q q q q qq q qq

v1

v2

v3
v4v5vn

Fig. 3.1. Hn.

Let H1 = K1, H2 = K2, and Hn = k2 ∨ Pn−2 for n ≥ 3 (see Fig. 3.1).

Lemma 3.2. If n ≥ 5, then q(Hn) > n+ 2.

Proof. Let X = (x1, x2, . . . , xn)
T ∈ R

n be the standard eigenvector of Q(Hn).

By symmetry, x1 = x2, x3 = xn. By Lemma 2.3, q(Hn) ≥ n.

Note that q(Hn)x1 = (n− 1)x1 + x2 +
n
∑

i=3

xi = (n− 2)x1 + 1. Thus,

x1 =
1

q(Hn)− n+ 2
.(3.1)

Note that q(Hn)

n
∑

i=3

xi = 6

n
∑

i=3

xn + 2(n− 2)x1 − 2(x3 + xn). Thus,

n
∑

i=3

xi =
2(n− 2)x1 − 4x3

q(Hn)− 6
and 1 =

n
∑

i=1

xi =
2(n− 2)x1 − 4x3

q(Hn)− 6
+ x1 + x2.

As a result,

x3 =
2(n− 2)− (q(Hn)− n)(q(Hn)− 6)

4(q(Hn)− n+ 2)
.(3.2)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 795-811, November 2015



ELA

Maxima of the Signless Laplacian Spectral Radius for Planar Graphs 799

Note that q(Hn)x3 = 3x3 + x1 + x2 + x4. Then

(q(Hn)− 2)(x1 − x3) = (n− 4)x1 +

n
∑

i=5

xi.

The fact n ≥ 5 implies that x1 > x3. Combining with (3.1) and (3.2), we get

2(n− 2)− (q(Hn)− n)(q(Hn)− 6)

4(q(Hn)− n+ 2)
<

1

q(Hn)− n+ 2
.(3.3)

Simplifying (3.3), we get q2(Hn)− (6+n)q(Hn)+4n+8 > 0. It follows that q(Hn) >

n+ 2.

From Remark 1 and Lemma 3.2, we see that to consider the maxima of the signless

Laplacian spectral radius among planar graphs of order n ≥ 5, it suffices to consider

those with maximum degree n− 1 or n− 2.

Lemma 3.3. [14] Let A be an irreducible nonnegative square real matrix of order

n and spectral radius ρ. If there exists a nonnegative real vector y 6= 0 and a real

coefficient polynomial function f such that f(A)y ≤ ry (r ∈ R), then f(ρ) ≤ r.

Lemma 3.4. Let 1 ≤ k ≤ 12 be an integer number, and let G be a maximal

planar graph of order n ≥ 115, where dG(v1) = ∆(G) = n− 2, for i = 2, 3, . . . , k + 1,
n
6 +1 ≤ dG(vi) ≤ n− 61, and for k+2 ≤ i ≤ n, dG(vi) <

n
6 +1. Then q(G) ≤ n− 2.

Proof. Let X = (x1, x2, x3, . . . , xn)
T ∈ R

n be a positive vector, where

xi =



























1, i = 1;

1
k
, 2 ≤ i ≤ k + 1;

3
n−k−1 , k + 2 ≤ i ≤ n.

For v1, we have

(n− 2)x1 +
∑

vj∼v1
xj

x1
≤ n− 2 + 1 +

3(n− k − 2)

n− k − 1
< n+ 2.

For vi (k + 2 ≤ i ≤ n), we have

dG(vi)xi +
∑

vj∼vi
xj

xi

≤



















dG(vi) +
∑k+1

j=1 xj+
3(dG(vi)−k−1)

n−k−1
3

n−k−1

≤ n+ 2, d(vi) ≥ k + 1;

dG(vi) +
∑dG(vi)

j=1 xj

3
n−k−1

≤ dG(vi) +
1+

dG(vi)−1

k
3

n−k−1

< n+ 2, dG(vi) ≤ k.
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For vi (2 ≤ i ≤ k + 1), since n ≥ 115 and 1 ≤ k ≤ 12, we have dG(vi) > k. Thus,

dG(vi)xi +
∑

vj∼vi
xj

xi

=
(dG(vi)− 1)xi + xi +

∑

vj∼vi
xj

xi

≤ dG(vi)− 1 +

∑k+1
j=1 xj +

3(dG(vi)−k)
n−k−1

1
k

=

(

1 +
3k

n− k − 1

)

dG(vi)−
3k2

n− k − 1
+ 2k − 1.(3.4)

Let f(k) =

(

1 +
3k

n− k − 1

)

dG(vi)−
3k2

n− k − 1
+ 2k − 1. Taking derivation of f(k)

with respect to k, we get

f
′

(k) =
(n− k − 1)(2n− 2 + 3dG(vi)− 8k) + 3kdG(vi)− 3k2

(n− k − 1)2
.

Since dG(vi) ≥ k and n ≥ 115, we get f
′

(k) > 0. This implies that f(k) is monotone

increasing with respect to k. Since n ≥ 115, k ≤ 12, and dG(vi) ≤ n−61, we conclude

that
(

1 +
3k

n− k − 1

)

dG(vi)−
3k2

n− k − 1
+ 2k − 1 < n+ 2.

Thus, from (3.4), we get
dG(vi)xi +

∑

vj∼vi
xj

xi

< n+ 2.

By the above discussion, we get Q(G)X ≤ (n+2)X . The proof is now completed

by applying Lemma 3.3.

Lemma 3.5. Let G be a maximal planar graph of order n ≥ 380 with dG(v1) =

∆(G) = n− 2, and ∆
′

(G) ≥ n− 62. Then q(G) ≤ n+ 2.

Proof. Suppose dG(v2) = ∆
′

(G). LetX = (x1, x2, x3, . . . , xn)
T ∈ R

n be a positive

vector, where

xi =



























1, i = 1;

1, i = 2;

3
n−2 , 3 ≤ i ≤ n.

For v1, we have

(n− 2)x1 +
∑

vj∼v1
xj

x1
≤ n− 2 + 1 +

3(n− 3)

n− 2
< n+ 2.

Next, there are two cases to consider.
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Fig. 3.2. dG(v2j ).
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Fig. 3.3. dG(vf ).
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Case 1. v2 ∈ NG(v1). Suppose NG(v1) = {v2, v3, . . . , vn−2, vn−1}. Without loss

of generality suppose that v1 is in the outer face of G◦
v1
. Then vn is in one of the

inner faces of G◦
v1

(see Fig. 3.2).

For v2, since dG(v2) ≤ n− 2, we have

dG(v2)x2 +
∑

vj∼v2
xj

x2
≤ dG(v2) + 1 +

3(dG(v2)− 1)

n− 2
≤ n+ 2−

3

n− 2
.

Denote by Cv1 = v2v3 · · · vn−2vn−1v2 the Hamiltonian cycle in G◦
v1
. Suppose that

vis (2 ≤ i ≤ n− 1) are distributed along the clockwise direction on Cv1 and suppose

NG◦

v1
(v2) = {v21 , v22 , . . . , v2t}, where for 1 ≤ i ≤ t−1, 2i < 2i+1, v21 = v3, v2t = vn−1

(see Fig. 3.2). For 1 ≤ j ≤ t, suppose there are lj−1 vertices between v2j−1 and v2j
along the clockwise direction on Cv1 , where if j = 1, we let v20 = v2. Along the

clockwise direction on Cv1 , suppose there are lt vertices between v2t and v2.

For each v2j (1 ≤ j ≤ t, see Fig. 3.2), noting that lj−1 + lj ≤ n− 3− dG(v2) and

dG(v2) ≥ n− 62, we have

dG(v2j ) ≤ lj−1 + lj + 5 ≤ n+ 2− dG(v2) ≤ 64,

and

dG(v2j )x2j +
∑

vk∼v2j
xk

x2j

≤ dG(v2j ) +
2 +

3(dG(v2j )−2)

n−2
3

n−2

≤ n+ 2.

For each vf ∈ (NG(v1)\{v2, v21 , v22 , . . . , v2t}), then along the clockwise direction

on Cv1 , there exists 0 ≤ s ≤ t such that vf is between v2s and v2s+1 , where v2t+1 = v2
(see Fig. 3.3). Note that ls ≤ n−3−dG(v2). Then dG(vf ) ≤ ls+3 ≤ n−dG(v2) ≤ 62,

and thus,

dG(vf )xf +
∑

vk∼vf
xk

xf

≤ dG(vf ) +
2 +

3(dG(vf )−2)
n−2
3

n−2

≤ n+ 2.
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Note that vn is in one of the inner faces of G◦
v1
. Suppose that in G◦

v1
, vn is in

a face v2v2zv2z+1v2z+2 · · · v2z+1v2 (see Fig. 3.4). Note that lz ≤ n − 3 − dG(v2) and

dG(vn) ≤ lz + 3. Then dG(vn) ≤ n− dG(v2) ≤ 62, and

dG(vn)xn +
∑

vk∼vn
xk

xn

≤ dG(vn) +
1 + 3(dG(vn)−1)

n−2
3

n−2

< n+ 2.

q

q

q

q

q

q

q

q

q

q

q

q

q

qqq

q

q

q

v2
v3

q

q

q

q

q

q

v2z
v2z+1

vn

vn−1

Fig. 3.4. dG(vn).
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q
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Fig. 3.5. dG(v2).

Case 2. v2 /∈ NG(v1). Without loss of generality suppose that v1 is in the

outer face of G◦
v1
. Then v2 is in one of the inner faces of G◦

v1
. Then NG(v1) =

{v3, v4, v5, . . . , vn−1, vn}. Suppose that Cv1 = v3v4 · · · vn−1vnv3 is the Hamiltonian

cycle in G◦
v1
, vis (3 ≤ i ≤ n) are distributed along the clockwise direction on Cv1 ,

and suppose NG◦

v1
(v2) = {v21 , v22 , . . . , v2t}, where for 1 ≤ i ≤ t − 1, 2i < 2i+1 (see

Fig. 3.5). For 2 ≤ j ≤ t, along the clockwise direction on Cv1 , suppose there are lj−1

vertices between v2j−1 and v2j . Along the clockwise direction on Cv1 , suppose that

there are lt vertices between v2t and v21 .

For each v2j (1 ≤ j ≤ t), by an argument similar to Case 1, we have dG(v2j ) ≤ 64,

and

dG(v2j )x2j +
∑

vk∼v2j
xk

x2j

≤ dG(v2j ) +
2 +

3(dG(v2j )−2)

n−2
3

n−2

≤ n+ 2.

By an argument similar to Case 1, for each vi ∈ (NG(v1)\{v21 , v22 , . . . , v2t}), we

have dG(vi) ≤ n− dG(v2) ≤ 62, and

dG(vi)xi +
∑

vk∼vi
xk

xi

≤ dG(vi) +
1 + 3(dG(vi)−1)

n−2
3

n−2

< n+ 2.

For v2, since dG(v2) ≤ n− 2, we have

dG(v2)x2 +
∑

vk∼v2
xk

x2
≤ dG(v2) +

3dG(v2)

n− 2
≤ n+ 1.
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By the above discussion, we get Q(G)X ≤ (n+2)X . The proof is now completed

by applying Lemma 3.3.

Lemma 3.6. Let G be a maximal planar graph of order n ≥ 4, where d(v1) =

∆(G) = n− 2, and for 2 ≤ i ≤ n, dG(vi) < 1 + n
6 . Then q(G) ≤ n− 2.

Proof. Let X = (x1, x2, x3, . . . , xn)
T ∈ R

n be a positive vector, where

xi =







1, i = 1;

4
n−1 , 2 ≤ i ≤ n.

For v1, we have

(n− 2)x1 +
∑

vj∼v1
xj

x1
≤ n− 2 +

4(n− 2)

n− 1
< n+ 2.

For vi (2 ≤ i ≤ n), we have

dG(vi)xi +
∑

vj∼vi
xj

xi

≤ dG(vi) +
1 + 4(dG(vi)−1)

n−1
4

n−1

< n+ 2.

By the above discussion, we get Q(G)X ≤ (n + 2)X . Applying Lemma 3.3

completes the proof.

Theorem 3.7. Let G be a maximal planar graph of order n ≥ 380 with ∆(G) =

n− 2. Then q(G) ≤ n+ 2.

Proof. This theorem follows from Lemmas 3.4–3.6.

Lemma 3.8. Let 1 ≤ k ≤ 13 be an integer number, and let G be a maximal

planar graph of order n ≥ 91, where dG(v1) = ∆(G) = n − 1, for i = 2, 3, . . . , k + 1,
n
7 +

19
7 ≤ d(vi) ≤ n−75, and for k+2 ≤ i ≤ n, dG(vi) <

n
7 +

19
7 . Then q(G) ≤ n+2.

Proof. Let X = (x1, x2, x3, . . . , xn)
T ∈ R

n be a positive vector, where

xi =



























1, i = 1;

2
3k , 2 ≤ i ≤ k + 1;

7
3(n−k−1) , k + 2 ≤ i ≤ n.

For v1, we have
(n− 1)x1 +

∑

vj∼v1
xj

x1
= n+ 2.
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For vi (k + 2 ≤ i ≤ n), we have

dG(vi)xi +
∑

vj∼vi
xj

xi

≤



















dG(vi) +
5
3+

7(dG(vi)−k−1)

3(n−k−1)
7

3(n−k−1)

≤ n+ 2, dG(vi) ≥ k + 1;

dG(vi) +
5
3
7

3(n−k−1)

< n+ 2, dG(vi) ≤ k.

For vi (2 ≤ i ≤ k + 1), since n ≥ 91 and 1 ≤ k ≤ 13, we have dG(vi) > k. Thus,

dG(vi)xi +
∑

vj∼vi
xj

xi

=
(dG(vi)− 1)xi + xi +

∑

vj∼vi
xj

xi

≤ dG(vi)− 1 +

∑k+1
j=1 xj +

7(dG(vi)−k)
3(n−k−1)

2
3k

= dG(vi)− 1 +

5
3 + 7(dG(vi)−k)

3(n−k−1)

2
3k

= dG(vi)− 1 +
5

2
k +

7
2k(dG(vi)− k)

n− k − 1
.(3.5)

As the proof of Lemma 3.4, since n ≥ 91 and k < dG(vi) ≤ n− 75, we can prove that

dG(vi)− 1 +
5

2
k +

7
2k(dG(vi)− k)

n− k − 1
≤ n+ 2.

Thus, (3.5) implies
dG(vi)xi +

∑

vj∼vi
xj

xi

≤ n+ 2.

By the above discussion, we get Q(G)X ≤ (n + 2)X . Applying Lemma 3.3

completes the proof.

Lemma 3.9. Let G be a maximal planar graph of order n ≥ 6, where d(v1) =

∆(G) = n− 1, and for 2 ≤ i ≤ n, dG(vi) <
n
7 + 19

7 . Then q(G) ≤ n+ 2.

Proof. Let X = (x1, x2, x3, . . . , xn)
T ∈ R

n be a positive vector, where

xi =







1, i = 1;

3
n−1 , 2 ≤ i ≤ n.

For v1, we have

(n− 1)x1 +
∑

vj∼v1
xj

x1
= n+ 2.

For vi (2 ≤ i ≤ n), we have

dG(vi)xi +
∑

vj∼vi
xj

xi

≤ dG(vi) +
1 + 3(dG(vi)−1)

n−1
3

n−1

≤ n+ 2.
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By the above discussion, we get Q(G)X ≤ (n+2)X . The proof is now completed

by applying Lemma 3.3.

Lemma 3.10. Let G be a maximal planar graph of order n ≥ 461 with dG(v1) =

∆(G) = n− 1 and n− 81 ≤ ∆
′

(G) ≤ n− 4. Then q(G) ≤ n+ 2.

Proof. Without loss of generality suppose that dG(v2) = ∆
′

(G). Let X =

(x1, x2, x3, . . . , xn)
T ∈ R

n be a positive vector, where

xi =



























1, i = 1;

4
7 , i = 2;

17
7(n−2) , 3 ≤ i ≤ n.

For v1, we have

(n− 1)x1 +
∑

vj∼v1
xj

x1
= n+ 2.

For v2, since dG(v2) ≤ n− 4, we have

dG(v2)x2 +
∑

vj∼v2
xj

x2
≤ dG(v2) +

1 + 17(dG(v2)−1)
7(n−2)

4
7

< n+ 2.

Without loss of generality suppose that v1 is in the outer face of G◦
v1
, Cv1 =

v2v3 · · · vn−1vnv2 is the Hamiltonian cycle in G◦
v1
, vis (2 ≤ i ≤ n) are distributed

along the clockwise direction on Cv1 , and suppose NG◦

v1
(v2) = {v21 , v22 , . . . , v2t},

where for 1 ≤ i ≤ t − 1, 2i < 2i+1, v21 = v3, v2t = vn. On Cv1 , along the clockwise

direction, for 1 ≤ j ≤ t, suppose that there are lj−1 vertices between v2j−1 and v2j ,

where if j = 1, we let v20 = v2. Along the clockwise direction on Cv1 , suppose that

there are lt vertices between v2t and v2.

For each v2j (1 ≤ j ≤ t), noting that lj−1+lj ≤ n−2−dG(v2) and dG(v2) ≥ n−81,

we have

dG(v2j ) ≤ lj−1 + lj + 4 ≤ n+ 2− dG(v2) ≤ 83

and

dG(v2j )x2j +
∑

vk∼v2j
xk

x2j

≤ dG(v2j ) +

11
7 +

17(dG(v2j )−2)

7(n−2)

17
7(n−2)

≤ n+ 2.
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For each vf ∈ (NG(v1)\{v2, v21 , v22 , . . . , v2t}), along the clockwise direction, there

exists 0 ≤ s ≤ t such that vf is between v2s and v2s+1 on Cv1 . Then

dG(vf ) ≤ ls + 2 ≤ n− dG(v2) ≤ 81

and

dG(vf )xf +
∑

vk∼vf
xk

xf

≤ dG(vf ) +

11
7 +

17(dG(vf )−2)
7(n−2)

17
7(n−2)

≤ n+ 2.

By the above discussion, we get Q(G)X ≤ (n + 2)X . Applying Lemma 3.3

completes the proof.

Lemma 3.11. Let G be a maximal planar graph of order n ≥ 15 with dG(v1) =

∆(G) = n− 1.

(i) If ∆
′

(G) = n− 2, then q(G) < q(Hn);

(ii) If ∆
′

(G) = n− 3, then q(G) < q(Hn).

q
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q

q

q

q
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q
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Fig. 3.6. D1 −D4.
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q

q
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q

q

q
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vk+1

vk+2

vn−1

vn
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q

q

q

q

q

q

q

q

q

q q q

q q

q

q

q

q

q

q

q

v2
v3

v4

vk−1

vk

vk+1

vk+2
vl−2

vl−1

vl
vl+1

vn−1

vn

D4

Proof. Without loss of generality suppose that dG(v2) = ∆
′

(G), v1 is in the outer

face of G◦
v1
, and suppose that Cv1 = v2v3 · · · vn−1vnv2 is the Hamiltonian cycle in G◦

v1

(see Fig. 3.6).

(i) dG(v2) = n − 2 and vk /∈ NG(v2) (4 ≤ k ≤ n − 1). Then G◦
v1

∼= D1 (see Fig.

3.6). For convenience, we suppose G◦
v1

= D1. By Lemma 2.3, we get that q(G) > 15.
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Let X = (x1, x2, . . . , xn)
T ∈ R

n be the Perron eigenvector of Q(G).

Note that

q(G)xk = 3xk + xk−1 + xk+1 + x1,(3.6)

q(G)x2 = (n− 2)x2 + x1 +
∑

3≤i≤n,i6=k

xi.(3.7)

Equations (3.6) and (3.7) imply that (q(G)−3)(x2−xk) = (n−5)x2+
∑

3≤i≤k−2 xi+
∑

k+2≤i≤n xi. Because n ≥ 15, it follows immediately that x2 > xk.

Note that

q(G)xk−1 = 5xk−1 + x1 + x2 + xk−2 + xk + xk+1,

q(G)xk+1 = 5xk+1 + x1 + x2 + xk−1 + xk + xk+2.

Thus,

q(G)(xk−1 + xk+1) = 6(xk−1 + xk+1) + 2(x1 + xk + x2) + xk−2 + xk+2.(3.8)

From (3.6) and (3.7), we also get that

q(G)(x2 + xk) = (n− 2)x2 + 3xk + 2x1 + 2xk−1 + 2xk+1 +
∑

3≤i≤k−2

xi +
∑

k+2≤i≤n

xi.(3.9)

From (3.8) and (3.9), we have

(q(G) − 4)[x2 + xk − (xk−1 + xk+1)]

= (n− 11)x2 + 3(x2 − xk) +
∑

3≤i≤k−3

xi +
∑

k+3≤i≤n

xi.(3.10)

The fact that n ≥ 15 and (3.10) holding imply that x2 + xk > xk−1 + xk+1.

Let F = G − vk−1vk+1 + v2vk. Note the relation between the Rayleigh quotient

and the largest eigenvalue of a non-negative real symmetric matrix, and note that

XTQ(F )X −XTQ(G)X = (x2 + xk)
2 − (xk−1 + xk+1)

2.

It follows that when n ≥ 15, then q(F ) > XTQ(F )X > XTQ(G)X = q(G). Because

F ∼= Hn, it follows that q(Hn) > q(G). Then (i) follows.

(ii) dG(v2) = n − 3. Since v1 is adjacent to v2, among v2, v3, . . . , vn−1, vn, there

must be two vertices nonadjacent to v2. Thus, there are three cases for G, that is,
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G ∼= D2, G ∼= D3 or G ∼= D4 (see Fig. 3.6). Without loss of generality suppose

that in D2, neither vk nor vk+1 are adjacent to v2; in D3, neither vk−1 nor vk+1 are

adjacent to v2; in D4, neither vk nor vl are adjacent to v2. By Lemma 2.3, we know

that q(G) > 15.

Case 1. G ∼= D2. For convenience, we suppose that G = D2. Because dG(v2) =

n − 3, it follows that 4 ≤ k ≤ n − 2. Let X = (x1, x2, . . . , xn)
T ∈ R

n be the Perron

eigenvector of Q(G).

Note that

q(G)xk+1 = 3xk+1 + x1 + xk + xk+2,(3.11)

q(G)xk = 4xk + x1 + xk−1 + xk+1 + xk+2.(3.12)

From (3.11) and (3.12), we get

(q(G) − 2)(xk − xk+1) = xk + xk−1.(3.13)

Since n ≥ 15 and (3.13) holds, we conclude that xk > xk+1.

Note that

q(G)x2 = (n− 3)x2 + x1 +
∑

3≤i≤k−1

xi +
∑

k+2≤i≤n

xi.(3.14)

From (3.12) and (3.14), we get

q(G)(x2 + xk)

= (n− 3)x2 + 2x1 + 4xk + 2xk−1 + xk+1 + 2xk+2 +
∑

3≤i≤k−2

xi +
∑

k+3≤i≤n

xi.(3.15)

Note that

q(G)xk−1 = 5xk−1 + x1 + x2 + xk−2 + xk + xk+2.(3.16)

From (3.11) and (3.16), we get that

q(G)(xk−1 + xk+1) = 5xk−1 + xk−2 + 2x1 + x2 + 2xk + 3xk+1 + 2xk+2.(3.17)

From (3.12) and (3.17), we get that

(q(G)− 2)(xk−1 + xk+1 − xk) = x1 + x2 + xk−2 + 2xk−1 + xk+2 > 0.(3.18)
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Since n ≥ 15 and (3.18) holds, we conclude that xk−1 + xk+1 > xk.

From (3.11) and (3.14), we get that

(q(G)− 4)(x2 −xk+1) = (n− 7)x2 +xk−1 +xk+1−xk +
∑

3≤i≤k−2

xi +
∑

k+3≤i≤n

xi > 0.(3.19)

Since n ≥ 15 and (3.19) holds, we conclude that x2 > xk+1.

From (3.12) and (3.14), we get that

(q(G) − 4)(x2 − xk) = (n− 8)x2 + x2 − xk+1 +
∑

3≤i≤k−2

xi +
∑

k+3≤i≤n

xi > 0.(3.20)

Since n ≥ 15 and (3.20) holds, we conclude that x2 > xk.

From (3.14) and (3.16), we get that

(q(G)− 4)(x2 − xk−1) = (n− 9)x2 + x2 − xk +
∑

3≤i≤k−3

xi +
∑

k+3≤i≤n

xi.(3.21)

Since n ≥ 15 and (3.21) holds, we conclude that x2 > xk−1.

Note that

q(G)xk+2 = 6xk+2 + xk+1 + xk + xk−1 + xk+3 + x2 + x1.(3.22)

From (3.14) and (3.22), we get that

(q(G)− 5)(x2 − xk+2) = (n− 11)x2 + x2 − xk + x2 − xk+1 +
∑

3≤i≤k−2

xi +
∑

k+4≤i≤n

xi.(3.23)

Since n ≥ 15 and (3.23) holds, we conclude that x2 > xk+2.

From (3.16) and (3.22), we get that

q(G)(xk−1 + xk+2) = 2x1 + 2x2 + xk−2 + 6xk−1 + 2xk + xk+1 + 7xk+2 + xk+3.(3.24)

From (3.15) and (3.24), we get that

q(G)(x2 + xk)− q(G)(xk−1 + xk+2)

= (n− 14)x2 + 4x2 − 4xk−1 + 2xk + 5x2 − 5xk+2 +
∑

3≤i≤k−3

xi +
∑

k+4≤i≤n

xi.(3.25)

Since n ≥ 15 and (3.25) holds, we conclude that x2 + xk > xk−1 + xk+2.

Let F = G− vk−1vk+2 + v2vk. Note that

XTQ(F)X −XTQ(G)X = (x2 + xk)
2 − (xk−1 + xk+2)

2.
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It follows that when n ≥ 15, then q(F) > XTQ(F)X > XTQ(G)X = q(G). By (i), it

follows immediately that q(Hn) > q(F) > q(G).

Case 2. G ∼= D3. For convenience, we suppose that G = D3. Because dG(v2) =

n− 3, it follows that 5 ≤ k ≤ n− 2. Let F = G− vkvk+2 + v2vk+1. By an argument

similar to Case 1, it can be proved that q(G) < q(F). By (i), we get that q(F) < q(Hn).

Then q(G) < q(Hn).

Case 3. G ∼= D4. For convenience, we suppose that G = D4. Because dG(v2) =

n − 3, it follows that 4 ≤ k ≤ l − 2, l ≤ n− 1. Let F = G − vl−1vl+1 + v2vl. By an

argument similar to Case 1, it can be proven that q(G) < q(F). By (i), we get that

q(F) < q(Hn). Then q(G) < q(Hn).

From the above three cases, (ii) follows.

Theorem 3.12. Let G be a planar graph of order n ≥ 456. Then q(G) ≤ q(Hn)

with equality if and only if G ∼= Hn.

Proof. This theorem follows from the discussions in Section 2, Lemmas 3.1, 3.2,

3.8–3.11 and Theorem 3.7.

Remark 2. As for the planar graphs of order n ≤ 455, perhaps by computations

with computer, one can check and find which ones have the maximal signless Laplacian

spectral radius. By some computations and comparisons with computer, for the

planar graphs of order n ≤ 10, we find Hn has the maximal signless Laplacian spectral

radius. Based on this, for the planar graphs of order n ≤ 455, we conjecture that the

graph Hn still has the maximal signless Laplacian spectral radius.

Acknowledgment. We offer many thanks to the referees for their kind reviews

and helpful suggestions.
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[5] D. Cvetković and S. Simić. Towards a spectral theory of graphs based on the signless Laplacian,

II. Linear Algebra Appl., 432:2257–2272, 2010.
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