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Abstract. The spectral behavior of regular Hermitian matrix pencils is examined under certain

structure-preserving rank-1 and rank-2 perturbations. Since Hermitian pencils have signs attached

to real (and infinite) blocks in canonical form, it is not only the Jordan structure but also this so-

called sign characteristic that needs to be examined under perturbation. The observed effects are

as follows: Under a rank-1 or rank-2 perturbation, generically the largest one or two, respectively,

Jordan blocks at each eigenvalue λ are destroyed, and if λ is an eigenvalue of the perturbation, also

one new block of size one is created at λ. If λ is real (or infinite), additionally all signs at λ but

one or two, respectively, that correspond to the destroyed blocks, are preserved under perturbation.

Also, if the potential new block of size one is real, its sign is in most cases prescribed to be the sign

that is attached to the eigenvalue λ in the perturbation.

Key words. Matrix pencil, Hermitian matrix pencil, Sign characteristic, Rank one perturbation,

Rank two perturbation, Generic perturbation.
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1. Introduction. It is well-established that when a matrix is subjected to a

generic rank-1 perturbation, its largest Jordan block at each eigenvalue is destroyed

[13, 22, 23, 24, 25]. However, different results were obtained for matrices that are

structured with respect to some indefinite inner product restricting the perturbations

to structure-preserving ones in [7, 17, 18, 19, 20] for various classes of structured ma-

trices. In particular, since H-selfadjoint matrices have additional algebraic invariants

to the sizes of their Jordan blocks called the sign characteristic, the variation of this

sign characteristic was studied under structured perturbations in [18].

In this work, we will consider regular Hermitian matrix pencils under low-rank

perturbations, since it is well-known that they also have signs attached to their Jordan

blocks. In fact, any H-selfadjoint matrix A gives rise to the equivalent Hermitian

matrix pencil λH−HA, but the converse is in general false, since given an Hermitian

matrix pencil λE −A, the matrix E may well be singular.
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In particular, we will tackle the following open problem: It was shown in [6] that

when regular matrix pencils are subjected to low-rank perturbations, generically not

only the largest Jordan blocks at each eigenvalue will be destroyed under perturbation,

but also new blocks of size one may be created at certain eigenvalues. Now, when the

perturbed pencil and the perturbation are both Hermitian, then in the case of real

eigenvalues the newly created blocks will have signs attached to them, but it is not

known by what factors these signs can be determined. This question (among others)

will be answered in Section 3 in the case of rank-1 perturbations.

Analyzing the sign characteristic under perturbations is especially relevant as it

relates to the properties of control systems. Since enforcing the desired property of

passivity on a control system can be achieved by moving eigenvalues of a certain

Hamiltonian matrix off the imaginary axis, this question has been investigated in [1,

21] using Hamiltonian perturbations with small norm. Interestingly, the norm of the

required perturbation is strongly linked to the sign characteristic of the corresponding

eigenvalues, see also [11, 12].

From the canonical form of Hermitian matrix pencils (see Theorem 2.11), we

extract that a Hermitian matrix pencil of (normal) rank 1 is bound to have the form

(λβ − α)uu∗, where β and α are real parameters. Also, from the same canonical

form, we read off that a Hermitian matrix pencil of (normal) rank 2 (that cannot be

decomposed into the sum of Hermitian rank-1 pencils) either has the form

[
u v w

]



0 0 λ

0 0 1

λ 1 0






u∗

v∗

w∗


 , (1.1)

i.e., two paired singular blocks of minimal index one, or it has the form

[
u v

] [ 0 λ− µ

λ− µ 0

] [
u∗

v∗

]
, (1.2)

i.e., a pair of nonreal eigenvalues µ and µ. In our perturbation analysis, we will

consider rank-1 perturbations of the form (λβ − α)uu∗ and rank-2 perturbations of

the form (1.2), since the class of rank-2 perturbations (1.1) with nontrivial singular

part will be more difficult to handle. A different approach that leads to these types

of Hermitian perturbations will be given in Section 2.3.

The next section will cover preliminaries as versions of the partial Brunovsky

form and results on the canonical form and the sign characteristic of Hermitian ma-

trix pencils. In Section 3, we will determine the generic Jordan structure and sign

characteristic of Hermitian regular matrix pencils under the above type of Hermitian

rank-1 perturbations. Then, in Section 4 we repeat these steps for Hermitian rank-2

perturbations and in the final section, a brief conclusion will be presented.
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Throughout this paper, we will identify matrix pencils λE −A with matrix pairs

(E,A) using whichever notion is more convenient. Also, the rank of a pencil (E,A)

will refer to the normal rank of (E,A), i.e., the highest rank of the matrix λE − A

for any λ ∈ C. Further, for square matrices X and Y (not necessarily of the same

dimension), define X ⊕Y := diag(X,Y ) and let X⊕p := X ⊕ · · · ⊕X (p times). Also,

denote by ej,n the jth standard basis vector in Cn, where the second index will be

omitted whenever clear from the context. Finally, let us denote by Jn(λ) the n × n

Jordan block corresponding to the eigenvalue λ and denote by Rn the n× n reverse

identity matrix (i.e., the matrix with ones on the leftbottom-topright diagonal and

zeros elsewhere).

2. Preliminaries. In this paper, the following notion of genericity will be em-

ployed, letting F = R or F = C.

Definition 2.1.

1) A set A ⊆ Fn is called algebraic if there exist pj : Fn → F, j = 1, . . . , k,

depending polynomially on (the real and imaginary parts of) its arguments

such that a ∈ A if and only if

pj(a) = 0 for j = 1, . . . , k.

2) An algebraic set A ⊆ Fn is called proper if A 6= Fn.

3) A set Ω ⊆ Fn is called generic if Fn \Ω is contained in a proper algebraic set.

Then, the intersection of finitely many generic sets is again generic and for an invert-

ible matrix X ∈ Fn,n the set XΩ is generic if Ω ⊆ Fn is generic. Subsets of Fn,m

or Fn,m × Fn,m are called generic if they can be canonically identified with generic

subsets of Fnm or F2nm, respectively.

2.1. Low-rank perturbations and partial Brunovsky forms. In this sec-

tion, we will recap condensed forms for matrix pencils under rank-1 and rank-2 per-

turbations. But first, let us review the canonical form of regular matrix pencils,

i.e., matrix pencils (E,A) with det(λE − A) 6≡ 0, under equivalence: the Weierstraß

canonical form [9, Chapter 12].

Theorem 2.2 (Weierstraß canonical form). Let (E,A) ∈ Cn,n×Cn,n be a regular

matrix pencil. Then, there exist invertible matrices V,W ∈ Cn,n and an r ∈ N so that

V (E,A)W =
(
Ir ⊕N, J ⊕ In−r

)
,

where J ∈ Cr,r and N ∈ C(n−r),(n−r) are in Jordan canonical form and N is nilpo-

tent.
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Jordan chains of regular matrix pencils are defined as follows [10].

Definition 2.3. Let (E,A) ∈ Cn,n × Cn,n be a regular matrix pencil. The

ordered set of vectors {x1, . . . , xp} ⊆ Cn is called a Jordan chain of length p corre-

sponding to an eigenvalue λ̂ ∈ C of (E,A) if x1 6= 0 and:

(λ̂E −A)x1 = 0 and (λ̂E −A)xj = −Exj−1, j = 2, . . . , p. (2.1)

Similarly, {x1, . . . , xp} is called a Jordan chain of length p corresponding to ∞ if

x1 6= 0 and:

Ex1 = 0 and Exj = Axj−1, j = 2, . . . , p.

Then, the following theorem is crucial for characterizing regular matrix pencils

under rank-1 perturbations.

Theorem 2.4 (Partial Brunovsky form [2, Theorem 2.7]). Let (E,A) ∈ Cn,n ×

Cn,n be regular and λ̂ ∈ C an eigenvalue of (E,A) with

E = In1 ⊕ · · · ⊕ Inm
⊕ Ẽ ∈ C

n,n, (2.2)

A = Jn1(λ̂)⊕ · · · ⊕ Jnm
(λ̂)⊕ Ã ∈ C

n,n,

where n1 ≥ · · · ≥ nm > 0 such that λ̂ is not an eigenvalue of (Ẽ, Ã). Further, set

a := n1 + · · ·+ nm and let α, β ∈ C and u, v ∈ C
n with

vT =
[
(v(1))T , . . . , (v(m))T , ṽ T

]
, (v(j))T =

[
v
(j)
1 , . . . , v(j)nj

]
∈ C

1,nj , j = 1, . . . ,m.

If we define kj := 0 whenever v
(j)
1 6= 0 and otherwise

kj := max
{
k | v

(j)
1 = v

(j)
2 = · · · = v

(j)
k = 0

}
, j = 1, . . . ,m,

then the following statements hold:

1) There is an invertible matrix S ∈ Cn,n such that

S(E + βuvT , A+ αuvT )S−1 = (E + βweT , A+ αweT ) (2.3)

holds, where w = Su and

eT =
[
eTk1+1,n1

, . . . , eTkm+1,nm
, ẽ T

]

for a suitable ẽ ∈ Cn−a defining ekj+1,nj
= 0 if kj = nj. A matrix pencil (2.3)

with E and A as in (2.2) and eT as above is said to be in partial Brunovsky

form.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 760-794, November 2015



ELA

764 L. Batzke

2) If (2.3) is regular, then it has at least m − 1 linearly independent Jordan

chains of lengths at least n2, . . . , nm corresponding to λ̂. If the (generic)

condition that the first component of v(j) is nonzero for j = 1, . . . ,m holds,

then they are given by:

e1 − en1+1, e2 − en1+2, . . . , en2 − en1+n2 ;

e1 − en1+n2+1, e2 − en1+n2+2, . . . , en3 − en1+n2+n3 ;
...

...
...

e1 − en1+···+nm−1+1, e2 − en1+···+nm−1+2, . . . , enm
− en1+···+nm

.

(2.4)

Remark 2.5. If the generic condition from 2) is satisfied (i.e., if v
(1)
1 , . . . , v

(m)
1 6=

0), then the matrix S from 1) is given by

S := Toep(v(1))⊕ · · · ⊕ Toep(v(m))⊕ In−a,

where Toep(v(j)) is the upper triangular nj × nj Toeplitz matrix with the first row

(v(j))T .

The following theorem is a generalization of Theorem 2.4 to rank-2 perturbations.

Theorem 2.6 (Rank-2 partial Brunovsky form). Let (E,A) ∈ Cn,n × Cn,n be

regular and λ̂ ∈ C an eigenvalue of (E,A) with

E = In1 ⊕ · · · ⊕ Inm
⊕ Ẽ ∈ C

n,n,

A = Jn1(λ̂)⊕ · · · ⊕ Jnm
(λ̂)⊕ Ã ∈ C

n,n,

such that n1 ≥ · · · ≥ nm > 0 and λ̂ is not an eigenvalue of (Ẽ, Ã). Let us also set

a := n1+· · ·+nm. Then, there is a generic set Ω ⊆ C
n×C

n so that for all (v1, v2) ∈ Ω,

for all α1, α2, β1, β2 ∈ C, and for all u1, u2 ∈ Cn, the following statements hold for

the rank-2 perturbation (∆E,∆A) = (β1, α1)u1v
T
1 + (β2, α2)u2v

T
2 :

1) There exists an invertible matrix S ∈ Cn,n such that

S(E+∆E,A+∆A)S−1 =
(
E+

[
β1w1 β2w2

]
L,A+

[
α1w1 α2w2

]
L
)
, (2.5)

where wj = Suj for j = 1, 2, and where L is given by

L =

[
eT1,n1

0 eT1,n3
0 eT1,n5 . . .

σeT1,nm M
xT eT1,n2

0 eT1,n4
0 ρeT1,nm

]

for some x = [x1, . . . , xn1 ]
T ∈ Cn1 ;M ∈ C2,(n−a), where (σ, ρ) = (1, 0) if m

is odd and (σ, ρ) = (0, 1) otherwise. A matrix pencil of the form (2.5) with L

as above is said to be in rank-2 partial Brunovsky form.
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2) If S(E+∆E,A+∆A)S−1 is regular, it has at least m−2 linearly independent

Jordan chains corresponding to λ̂ that have at least the lengths n3, n4, . . . , nm.

The chain of length n3 is given by

ej − en1+n2+j −
[
en1+j · · · en1+1

] [
x1 · · · xj

]T
, j = 1, . . . , n3, (2.6)

whereas for k = 4, 6, . . . , there are chains of length nk given by

en1+j − en1+···+nk−1+j, j = 1, . . . , nk, (2.7)

and for k = 5, 7, . . . , there are chains of lengths nk given by

en1+n2+j − en1+···+nk−1+j , j = 1, . . . , nk. (2.8)

Remark 2.7. Let (E,A) be a regular matrix pencil, and let (∆E,∆A) be a

rank-2 perturbation, so that S(E +∆E,A+∆A)S−1 is in rank-2 partial Brunovsky

form as in Theorem 2.6. Then, the first n1 + · · · + nm columns of the transformed

perturbation S(∆E,∆A)S−1 are given by
[

(β1,α1)w1e
T
1,n1

+(β2,α2)w2x
T

(β2, α2)w2e
T
1,n2

(β1, α1)w1e
T
1,n3

· · ·
σ(β1,α1)w1e

T
1,nm

+ρ(β2,α2)w2e
T
1,nm

]
, (2.9)

where the notation (β, α) stands for the 1× 1 matrix pencil λβ − α.

Proof. We target for a transformation matrix S of the form

S :=




T1

[
T̃2

0

]

T2

[
T̃3

0

]

T3
. . .

. . .
[
T̃m

0

]

Tm




⊕ In−a, (2.10)

where T1 ∈ C
n1,n1 and T̃j, Tj ∈ C

nj ,nj for j = 2, . . . ,m are suitable upper triangular

Toeplitz matrices. Then, by [8, Chapter 8], a matrix S of this form commutes with

both E and A since their leading a × a diagonal blocks are in Jordan form and

their partitioning is conformal with that of S. It remains to show that under a

generic condition on (v1, v2), this S can be chosen to be invertible and such that

[v1, v2]
TS−1 = L holds for some x ∈ Cn1 . Partitioning vj as in

vTj =
[
(v

(1)
j )T · · · (v

(m)
j )T ṽ T

j

]
, v

(i)
j ∈ C

ni , i = 1, . . . ,m, (2.11)

for j = 1, 2 and denoting by (v
(i)
j )ℓ the ℓth component of v

(i)
j , then [v1, v2]

TS−1 = L
is equivalent to

[

e
T
1,n1

T1 e
T
1,n1

[

T̃2
0

]

e
T
1,n3

T3
. . .

x
T
T1 x

T
[

T̃2
0

]

+ e
T
1,n2

T2 e
T
1,n2

[

T̃3
0

]

]

=

[

(v
(1)
1 )T (v

(2)
1 )T (v

(3)
1 )T

. . .
(v

(1)
2 )T (v

(2)
2 )T (v

(3)
2 )T

]

. (2.12)
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To satisfy this equation, consider that for an upper triangular Toeplitz matrix T ,

the condition eT1 T = vT immediately implies T = Toep(v). Therefore, from the

(1, 1) and the (1, 2) block of (2.12) we obtain T1 = Toep(v
(1)
1 ) and T̃2 = Toep(v

(2)
1 ),

respectively. Then, assuming the generic condition (v
(1)
1 )1 6= 0 for invertibility of T1,

from the (2, 1) block of (2.12) we infer xT = (v
(1)
2 )TT−1

1 , where the first entry of x

is given by x1 = (v
(1)
2 )1/(v

(1)
1 )1. Now, the equation in the (2, 2) block reduces to

T2 = Toep
(
v
(2)
2 − [T̃ T

2 , 0]x
)
and all other block equations are easily soluble as well.

Finally, S is invertible if and only if the diagonal entries of T1, . . . , Tm are nonzero.

Letting (v
(1)
1 )1 6= 0 as above, we require the diagonal entry of Tj to be nonzero, i.e.,

(v
(2)
2 )1 − (v

(2)
1 )1 x1 = (v

(2)
2 )1 −

(v
(2)
1 )1(v

(1)
2 )1

(v
(1)
1 )1

6= 0 (2.13)

in the case of T2 and otherwise

(
v
(j)
((j−1)mod2)+1

)
1
6= 0 for j = 3, . . . ,m. (2.14)

We observe that S being invertible is a generic condition on (v1, v2), i.e., the set

Ω ⊆ Cn × Cn, such that for all (v1, v2) ∈ Ω the conditions (v
(1)
1 )1 6= 0, (2.13),

and (2.14) hold, is generic.

Let us now consider 2). If (2.5) is regular, it can be confirmed by straightfor-

ward computation that the vectors from (2.7) and (2.8) are Jordan chains of lengths

n4, . . . , nm corresponding to λ̂. Also, one validates that all vectors from (2.6)-(2.8) are

linearly independent; it remains to consider (2.6) denoting the jth given vector by cj .

In order to verify that {c1, . . . , cn3} is indeed a Jordan chain of (2.5) corresponding

to λ̂, we will check that the conditions in (2.1) are satisfied recalling the following:

By hypothesis, λ̂E −A has the form

(
− Jn1(0)

)
⊕ · · · ⊕

(
− Jnm

(0)
)
⊕
(
λ̂Ẽ − Ã

)
,

whereas the form of the transformed perturbation
[
(λ̂β1 − α1)w1, (λ̂β2 − α2)w2

]
L is

given by (2.9). Keeping this in mind, we compute that the first condition in (2.1) is

satisfied:

(
λ̂E −A+

[
(λ̂β1 − α1)w1, (λ̂β2 − α2)w2

]
L
)
c1

=
(
λ̂E −A+

[
(λ̂β1 − α1)w1, (λ̂β2 − α2)w2

]
L
)(

e1 − en1+n2+1 − x1en1+1

)

= (λ̂β1 − α1)w1 + x1(λ̂β2 − α2)w2 − (λ̂β1 − α1)w1 − x1(λ̂β2 − α2)w2 = 0.
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Then, it remains to show that also the second condition in (2.1) is satisfied for j =

2, . . . , n3 using the same prerequisites as above:

(
λ̂E −A+

[
(λ̂β1 − α1)w1, (λ̂β2 − α2)w2

]
L
)
cj

=
(
λ̂E −A+

[
(λ̂β1 − α1)w1, (λ̂β2 − α2)w2

]
L
)

·
(
ej − en1+n2+j −

[
en1+j , . . . , en1+1

][
x1, . . . , xj

]T)

=− ej−1 + xj(λ̂β2 − α2)w2 + en1+n2+j−1

+
[
en1+j−1, . . . , en1+1

][
x1, . . . , xj−1

]T
− xj(λ̂β2 − α2)w2

=− ej−1 − xj−1β2w2 + en1+n2+j−1

+
[
en1+j−1, . . . , en1+1

][
x1, . . . , xj−1

]T
+ xj−1β2w2

=−
(
E + [β1w1, β2w2]L

)

·
(
ej−1 − en1+n2+j−1 −

[
en1+j−1, . . . , en1+1

][
x1, . . . , xj−1

]T)

=−
(
E + [β1w1, β2w2]L

)
cj−1. �

To illustrate the above theorem, let us consider an example.

Example 2.8. Consider the matrix pencil (E,A) =
(
I9, J3(0)⊕ J2(0)⊕ J2(0)⊕

J2(0)
)
, i.e., we have λ̂ = 0 and (n1, n2, n3, n4) = (3, 2, 2, 2), and a perturbation

(∆E,∆A) = (u1v
T
1 , u2v

T
2 ), where

vT1 =
[
1 2 3 0 0 1 0 0 0

]
and

vT2 =
[
1 −1 −2 1 0 0 0 1 0

]
,

and u1, u2 ∈ C9 are arbitrary. Then, the generic conditions on (v1, v2) from the proof

of Theorem 2.6 are satisfied. Thus, setting S =
[
1 2 3
1 2
1

]
⊕I6, the pencil S(E+∆E,A+

∆A)S−1 is in partial Brunovsky form as in Theorem 2.6 given by




























































w1+1 w1

w2 1 w2

w3 1 w3

w4 1 w4

w5 1 w5

w6 w6+1

w7 w7 1

w8 w8 1

w9 w9 1































,































z1 −3z1+1 z1 z1 z1

z2 −3z2 z2+1 z2 z2

z3 −3z3 z3 z3 z3

z4 −3z4 z4 z4 1 z4

z5 −3z5 z5 z5 0 z5

z6 −3z6 z6 z6 0 1 z6

z7 −3z7 z7 z7 0 z7

z8 −3z8 z8 z8 z8 1

z9 −3z9 z9 z9 z9 0





























































,

where w = Su1, z = Su2, and xT = [1,−3, 1]. The linearly independent chains of

lengths n3 and n4 constructed in (2.6) and (2.7) are given by e1 − e6 − e4, e2 − e7 +

3e4 − e5 and e4 − e8, e5 − e9.
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Before proceeding, we introduce the following phrase: A regular matrix pencil is

said to have partial multiplicities greater than or equal to a certain list of multiplicities,

e.g., (n1, . . . , nk), at some eigenvalue λ̂ if it has at least k linearly independent Jordan

chains at λ̂ that have at least the lengths n1, . . . , nk. We continue with a remark.

Remark 2.9. For any regular matrix pencil (E,A) ∈ Cn,n × Cn,n with partial

multiplicities n1 ≥ · · · ≥ nm > 0 at some eigenvalue λ̂, there exist invertible V,W ∈

Cn,n such that V (E,A)W is in Weierstraß canonical form as in Theorem 2.2 with the

λ̂ blocks coming first and ordered decreasingly with respect to their size. Then, if

(∆E,∆A) is a perturbation of rank 1 or 2 as in Theorem 2.4 or 2.6, the transformed

perturbed pencil

V (E,A)W + V (∆E,∆A)W

can be transformed to partial Brunovsky form as in (2.3) or (2.5), depending on

(∆E,∆A) having rank 1 or 2. Thus, if (E + ∆E,A + ∆A) is regular, it generically

has partial multiplicities greater than or equal to (n2, . . . , nm) or (n3, . . . , nm), re-

spectively, at λ̂. We note that this lower bound on the block sizes of the perturbed

pencil can also be obtained from [6, Lemma 2.1], but that the Theorems 2.4 and 2.6

will still be essential for constructing the desired Jordan chains.

In the following Lemma, we denote the algebraic multiplicity of (E+∆E,A+∆A)

at λ̂ with the symbol a(λ̂).

Lemma 2.10. Let (E,A) ∈ C
n,n×C

n,n be regular and consider a perturbation of

the form

(∆E,∆A) =
[
u1 · · · uk

] (
δE, δA

) [
u1 · · · uk

]∗
, (2.15)

where (δE, δA) is an arbitrary but fixed k × k pencil. Then, the following statements

hold:

1) There exists a generic set Λ ⊆ (Cn)k, so that the perturbed pencil (E +

∆E,A+∆A) is regular for all (u1, . . . , uk) ∈ Λ.

2) Suppose that for all (u1, . . . , uk) ∈ Λ from 1) we have a(λ̂) ≥ a0. If there

exists a (u1, . . . , uk) ∈ Λ with a(λ̂) = a0, then a(λ̂) = a0 holds on some

generic subset of (Cn)k.

This Lemma is identical to [3, Lemma 2.4] except for the transpose ‘T ’ instead of

the conjugate transpose ‘∗’ in equation (2.15), but since the proof is analogous in both

cases, it will be omitted. Our final tool for examining the effects of perturbations is

the following set of inequalities. For all matrix pencils (E,A), (∆E,∆A) ∈ Cn,n×Cn,n

we have by [6, Section 1]:

rank(λ̂E −A)− rank(λ̂∆E −∆A) ≤ rank(λ̂(E +∆E)− (A+∆A)) (2.16)

≤ rank(λ̂E −A) + rank(λ̂∆E −∆A)
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for any λ̂ ∈ C. Therefore, if (E,A) and (E+∆E,A+∆A) are both regular, the geomet-

ric multiplicity of (E,A) at an eigenvalue λ̂ cannot change by more than rank(λ̂∆E−

∆A) under perturbation. Note that only the rank of the matrix λ̂∆E −∆A matters

for this estimate and that this number can be zero even for nonzero perturbations.

2.2. Hermitian Kronecker canonical form and sign characteristic. We

continue with reviewing a Kronecker-like canonical form for Hermitian matrix pencils

that was deduced in [15]. For that, we recall that Rn denotes the n×n reverse identity

matrix, and we introduce the following notation:

Fn :=
[
en, . . . , e1, 0

]
∈ C

n,n+1 and Gn :=
[
0, en, . . . , e1

]
∈ C

n,n+1,

where in the case n = 0, the above matrices have dimension 0× 1.

Theorem 2.11 (Hermitian Kronecker form). Let (E,A) ∈ Cn,n × Cn,n be a

Hermitian matrix pencil. Then, there is a nonsingular matrix X ∈ Cn,n, such that

X(E,A)X∗ =

(
p⊕

i=1

σi

(
Rγi

, Rγi
Jγi

(λi)
)
)

⊕




q⊕

j=1

ηj
(
RδjJδj (0), Rδj

)

⊕

(
r⊕

k=1

([
0 Rφk

Rφk
0

]
,

[
0 Rφk

Jφk
(µk)

Rφk
Jφk

(µk) 0

]))
⊕

(
s⊕

ℓ=1

([
0 FT

κℓ

Fκℓ
0

]
,

[
0 GT

κℓ

Gκℓ
0

]))
,

where λi ∈ R for i = 1, . . . , p, µk ∈ C\R for k = 1, . . . , r, and all σi and ηj are signs,

i.e., either −1 or +1.

Hereby, the entirety of the signs corresponding to Jordan blocks associated with

some real (or infinite) eigenvalue λ̂ is called the sign characteristic of (E,A) at λ̂.

Based on the above canonical form, we can characterize the sign characteristic of

Hermitian pencils analogously to the sign characteristic of H-selfadjoint matrices

in [12]. We let λ̂ ∈ R be a fixed eigenvalue of (E,A) and Ψ1 ⊆ Cn be its eigenspace at

λ̂. For x ∈ Ψ1 \ {0}, denote by ν(x) the maximal length of a Jordan chain of (E,A)

beginning with the eigenvector x and define Ψs := {x ∈ Ψ1 | x = 0 or ν(x) ≥ s}.

Setting γ := max{ν(x) | x ∈ Ψ1 \ {0}}, it is

Ker(λ̂E −A) = Ψ1 ⊇ Ψ2 ⊇ · · · ⊇ Ψγ ⊇ Ψγ+1 = {0}

and the following theorem is obtained parallel to [12, Theorem 5.8.1], to which we

refer the reader for the proof.

Theorem 2.12. Let (E,A) ∈ Cn,n × Cn,n be regular and Hermitian and λ̂ ∈ R

an eigenvalue. For s = 1, . . . , γ, let

fs(x, y) = x∗Ey(s); x ∈ Ψs, y ∈ Ψs \ {0},
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where y = y(1), y(2), . . . , y(s) is a Jordan chain of (E,A) corresponding to λ̂ with

eigenvector y. Letting fs(x, 0) = 0, then:

(i) fs(x, y) does not depend on the choice of y(2), . . . , y(s).

(ii) There is a selfadjoint linear transformation Gs : Ψs → Ψs with

fs(x, y) = x∗Gsy; x, y ∈ Ψs.

(iii) For this Gs, we have KerGs = Ψs+1.

(iv) The number of positive (or negative) eigenvalues of Gs, counting multiplici-

ties, coincides with the number of positive (or negative, respectively) signs in

the sign characteristic of (E,A) associated with Jordan blocks of size s at λ̂.

By this theorem, the sign characteristic of a Hermitian matrix pencil can be described

as the number of positive and negative eigenvalues of some selfadjoint linear map.

Therefore, it will be crucial how the number of positive and negative eigenvalues of

an Hermitian matrix is altered under rank-1 perturbations. The following lemma is

obtained by applying well-known results on the eigenvalues of Hermitian matrices and

extracted from the proof of [18, Theorem 3.3].

Lemma 2.13. Let A ∈ Cn,n be Hermitian and invertible with the eigenvalues

λ1, . . . , λn. Then, for any λn+1 ∈ R and u ∈ Cn, so that A + λn+1uu
∗ is invertible,

the signs of its eigenvalues are obtained by removing either exactly one sign −1 or

exactly one sign +1 from the list {sgn(λ1), . . . , sgn(λn+1)}.

Proof. Let us assume that λ1 ≤ · · · ≤ λk < 0 < λk+1 ≤ · · · ≤ λn for some

k ∈ {0, 1, . . . , n} and that λn+1 > 0 (in the case λn+1 = 0 there is nothing to show).

Further, letting λ̃1 ≤ · · · ≤ λ̃n be the eigenvalues of A + λn+1uu
∗, by [14, Corollary

4.3.3] we have λj ≤ λ̃j for j = 1, . . . , n; in particular A+ λn+1uu
∗ has at least n− k

positive eigenvalues. Now, from [14, Theorem 4.3.4] we obtain

λj ≤ λ̃j+1 ≤ λj+2, j = 1, 2, . . . , n− 2,

which in particular yields λ̃k−1 ≤ λk < 0, i.e, A+λn+1uu
∗ hat at least k− 1 negative

eigenvalues. Since A + λn+1uu
∗ is invertible, its kth eigenvalue can only have sign

+1 = sgn(λn+1) or sign −1 = sgn(λk).

2.3. Properties of Hermitian perturbations. It is our motivation to con-

sider Hermitian rank-k perturbations of the form

[
ũ1 · · · ũk

] (
δE, δA

) [
ũ1 · · · ũk

]∗
, (2.17)

where (δE, δA) is a generic Hermitian k × k pencil and ũ1, . . . , ũk ∈ Cn are certain

generic vectors. Since the set of Hermitian k × k pencils

Hk := {(E,A) ∈ C
k,k × C

k,k | (E,A) is Hermitian}
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is an R-vector space of dimension 2k2, we consider a subset of Hk to be generic if it

can canonically be identified with a generic subset of R2k2

. Hence, we denote with

[(E,A)]B ∈ R2k2

the coordinates of the Hermitian matrix pencil (E,A) with respect

to an R-basis B of Hk. Then, the following lemma holds.

Lemma 2.14. The set Γ of regular Hermitian matrix pencils with distinct eigen-

values is a generic subset of Hk.

Proof. We follow the procedure laid out in the proof of [2, Theorem 2.3]. Let

(E,A) ∈ Hk and consider its characteristic polynomial
∑k

j=0 cjλ
j := χ(E,A)(λ) =

det(λE − A). We observe that the coefficients cj = cj(E,A) for j = 0, 1, . . . , n

depend polynomially on the coordinates [(E,A)]B and that cj(E,A) 6= 0 for at least

one j if (E,A) is regular.

Recall that the Sylvester resultant matrix of two polynomials s(λ) and t(λ), de-

noted by S
(
s(λ), t(λ)

)
, is a square matrix of dimension deg(s) + deg(t). It is well-

known that its entries are coefficients of s(λ) and t(λ) and that the rank defect of

S
(
s(λ), t(λ)

)
is exactly the degree of the greatest common divisor of s(λ) and t(λ)

(see, e.g., [16]). We define

p(E,A) := detS

(
χ(E,A)(λ),

∂χ(E,A)(λ)

∂λ

)
and

q(E,A) := detS

(
χ(A,E)(λ),

∂χ(A,E)(λ)

∂λ

)
,

and observe that p(E,A) and q(E,A) both depend polynomially on the coordinates

[(E,A)]B and that the pencil (E,A) does not have multiple eigenvalues (neither finite

nor infinite) if and only if p(E,A)q(E,A) 6= 0. Clearly, p(E,A)q(E,A) is not con-

stantly zero since there exist regular Hermitian pencils with distinct eigenvalues, so

that the set

Γ := {(E,A) ∈ Hk | p(E,A)q(E,A) 6= 0 and ∃j ∈ {0, 1, . . . , k} with cj(E,A) 6= 0}

of regular Hermitian matrix pencils with distinct eigenvalues is a generic subset of

Hk.

Now, for (δE, δA) in (2.17) there exists an invertible X ∈ Ck,k such that

X(δE, δA)X∗ is in Hermitian Kronecker form as in Theorem 2.11; thus (2.17) can be

transformed to

[
u1 · · · uk

]
X
(
δE, δA

)
X∗ [ u1 · · · uk

]∗

setting [u1, . . . , uk] := [ũ1, . . . , ũk]X
−1. Hereby, considering all [ũ1, . . . , ũk] that are

elements of some generic subset of Cn,k is equivalent to considering all [u1, . . . , uk]
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that are elements of some generic subset of Cn,k, since the respective generic sets

can be transformed into one another by multiplication with an invertible matrix.

Additionally, assuming (δE, δA) ∈ Γ with Γ as in Lemma 2.14, then X(δE, δA)X∗

can only consist of the following types of blocks:

• [λβ − α] − a 1 × 1 block corresponding to the real eigenvalue α/β with the

sign sgn(β) (and corresponding to ∞ with sign sgn(α) if β = 0),

•
[

λ−µ
λ−µ

]
− two paired 1× 1 blocks corresponding to the eigenvalues µ, µ ∈

C \ R,

as all other blocks in Hermitian Kronecker form have multiple eigenvalues or are

singular. Therefore, the perturbation (2.17) is the sum of, on the one hand, rank-1

perturbations of the form

(λβ − α)uu∗, (2.18)

that we study in Section 3, and on the other hand of rank-2 perturbations of the form

[
u v

] [ 0 λ− µ

λ− µ 0

] [
u∗

v∗

]
, (2.19)

subject of Section 4. We close this section with a discussion of the genericity of these

classes of perturbations. While for generic (δE, δA), we have shown that perturbations

of the form (2.17) consist of pencils of the forms (2.18) and (2.19), this does not imply

that the above perturbations are generic within the set of Hermitian matrix pencils

with low rank. However, in the rank-1 case, the set of Hermitian pencils with rank

one only consists of pencils of the form (2.18), since all other possible canonical forms

from Theorem 2.11 have rank two or higher (in particular, Hermitian pencils with

rank one are forced to have a trivial singular part).

Still, for rank-2 perturbations, from Theorem 2.11 it is visible that there are

three different types of Hermitian matrix pencils: Either sums of two pencils of the

form (2.18), or pencils of the form (2.19), or pencils of the form (1.1) with a nontrivial

singular structure, so it is a natural question to ask which one is generic within the set

of Hermitian pencils with rank two. A result of this form does not exist for Hermitian

pencils; even though for unstructured matrix pencils, it was shown in [5, Theorem

3.2], that a generic Kronecker form of a matrix pencil with low rank consists of

singular blocks corresponding to left or right minimal indices (using a different notion

of genericity than the one from Definition 2.1).

Since, (in contrast to the rank-1 case) a Hermitian canonical form with nontrivial

singular part of rank two does exist, perturbations of the form (1.1) are also a likely

candidate for a generic Hermitian canonical form of rank two. However, in order to

determine this generic canonical form, we would need a notion of genericity that is
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applicable to the set of Hermitian pencils of rank two, but since this set is not a vector

space, we cannot use the one in Definition 2.1. In the main sections of this paper, we

will only consider perturbations of the forms (2.18) and (2.19), and the investigation

of perturbations of the form (1.1) is referred to future research.

3. Hermitian rank-1 perturbations. We will now turn to our main results,

remarking that since the potential infinite eigenvalue of a Hermitian pencil (E,A) is

the zero eigenvalue of the reverse pencil (A,E), it is sufficient to state these theorems

in terms of the finite eigenvalues of (E,A).

In this section, we consider rank-1 perturbations of the form (2.18) with α, β ∈ R,

since otherwise the perturbation would not be Hermitian. In the next two theorems,

we will characterize the generic canonical form of regular Hermitian matrix pencils

under rank-1 perturbations as follows: In Theorem 3.1 we will analyze the Jordan

structure (i.e., the sizes of the Jordan blocks) and in Theorem 3.3 the sign character-

istic will be determined under perturbation.

Theorem 3.1. Let (E,A) ∈ Cn,n × Cn,n be regular and Hermitian with the

partial multiplicities n1 ≥ · · · ≥ nm > 0 associated with some eigenvalue λ̂ ∈ C.

Then, for each (α, β) ∈ (R×R) \ {0} there exists a generic set Ω′
α,β ⊆ Cn, such that

for all u ∈ Ω′
α,β, (E + βuu∗, A + αuu∗) is regular and has the partial multiplicities

(n2, . . . , nm) if λ̂β 6= α and (n2, . . . , nm, 1) otherwise at λ̂.

Proof. Because of Theorem 2.4 (cf. Remark 2.9) and (2.16), the perturbed

pencil (E + βuu∗, A + αuu∗) generically has partial multiplicities greater than or

equal to the above given multiplicities in each case. In view of Lemma 2.10, it will be

sufficient to present one particular perturbation in each case that creates these partial

multiplicities to conclude the proof. We assume that (E,A) is in Hermitian Kronecker

form as in Theorem 2.11 and that the blocks corresponding to λ̂ are coming first and

in nonincreasing order with respect to their size.

Case λ̂ ∈ C \ R. Consider the first block of (E,A) corresponding to λ̂ (and the

paired complex conjugate block) and set u := e1 + en1+1. Then the first two blocks

of (E + βuu∗, A+ αuu∗) are given by

[
(λβ − α)e1e

T
1 −Rn1Jn1(λ̂− λ) + (λβ − α)e1e

T
1

−Rn1Jn1(λ̂ − λ) + (λβ − α)e1e
T
1 (λβ − α)e1e

T
1

]

clearly having full rank at λ̂. Since all other blocks are unchanged, this particular

perturbation clearly creates the partial multiplicities (n2, . . . , nm) at λ̂.

Case λ̂ ∈ R. Consider the first block of (E,A) at λ̂ having the sign ǫ ∈ {±1} and
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set u := e1. Then, the first block of (E + βuu∗, A+ αuu∗) is given by

−ǫRn1Jn1(λ̂ − λ) + (λβ − α)e1e
T
1

not having the eigenvalue λ̂ if βλ̂ 6= α and having the simple eigenvalue λ̂ if βλ̂ = α,

which creates the desired multiplicities as no other blocks are perturbed.

This theorem shows that the generic Jordan structure of regular Hermitian ma-

trix pencils under Hermitian rank-1 perturbations is the same as under unstructured

rank-1 perturbations, cf. [2, Theorem 2.10]. However, in the case of Hermitian per-

turbations, the perturbed pencil still has a sign characteristic associated with its real

eigenvalues that we will analyze in the following. Let us first consider an example.

Example 3.2. The Hermitian 4× 4 matrix pencil

(E,A) =







0 1

1 0

0 −1

−1 0


 ,




0 0

0 1

0 0

0 −1





 ∈ C

4,4 × C
4,4

clearly consists of two Jordan blocks of size two corresponding to 0, where the first one

has sign +1 and the second one has sign−1. We consider a Hermitian rank-1 perturba-

tion of the form (βuu∗, 0), where β is a real parameter and u = [u1, u2, u3, u4]
T ∈ C4.

By Theorem 3.1 the perturbed pencil (E+βuu∗, A) is generically (with respect to u)

regular and has two linearly independent Jordan chains of lengths two and one at 0.

To extract the 2 signs of the perturbed pencil, we need to construct these Jordan

chains. Clearly, E(E,A) is in Weierstraß canonical form and whenever the generic

condition u1, u3 6= 0 is satisfied, the matrix S := Toep(u1, u2) ⊕ Toep(u3, u4) is

invertible; hence, the pencil SE(E + βuu∗, A)S−1 is in partial Brunovsky form as

in Theorem 2.4, i.e., u∗S−1 = [eT1,2, e
T
1,2]. Thus, its chain of length two is given by

e1 − e3, e2 − e4 and also, the linearly independent chain of length one is e1. Now, we

consider the matrix pencil

S−∗(E + βuu∗, A)S−1, (3.1)

that has the Jordan chains given above (left-multiplication with an invertible matrix

does not change the Jordan chains of a matrix pencil) and also the sign characteristic

of (E+ βuu∗, A) since it is perserved under ∗-congruence transformations. To obtain

the sign characteristic of (3.1), the matrix

F := S−∗(E + βuu∗)S−1 =




β 1/ |u1|
2

β 0

1/ |u1|
2

∗ 0 0

β 0 β −1/ |u3|
2

0 0 −1 |u3|
2 ∗



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is crucial: By Theorem 2.12, the sign corresponding to the block of size one of (3.1)

is given by the sign of (the eigenvalue of) eT1 Fe1 = β, i.e., the sign that is attached

to the eigenvalue 0 in the perturbation (βuu∗, 0) and the sign attached to the block

of size two of (3.1) is the sign of

(e1 − e3)
TF (e2 − e4) =

1

|u1|
2 −

1

|u3|
2 .

In particular, this sign cannot generically be determined to be +1 or −1.

Now, we turn to the general case employing similar methods. Thereby, for a given

eigenvalue λ̂, let us group together Jordan blocks of the same size, i.e.,

(n1, n2, . . . , nm) = (s1, . . . , s1︸ ︷︷ ︸
t1

, . . . , sν , . . . , sν︸ ︷︷ ︸
tν

), (3.2)

where s1 > s2 > · · · > sν > 0. Then, for s = 1, 2, . . . , we denote by Ls the list of signs

associated with blocks of size s; if (E,A) does not have a block of size s, let Ls be

the empty list. Using this convention, we achieve a concise phrasing of the following

theorem. Recall that Ω′
α,β denotes the generic set from Theorem 3.1.

Theorem 3.3. Let (E,A) ∈ Cn,n × Cn,n be regular and Hermitian and at some

eigenvalue λ̂ ∈ R, let (E,A) have the partial multiplicities (3.2) and let the list of signs

Ls be attached to blocks of size s = 1, 2, . . . Then, for each (α, β) ∈ (R × R) \ {0}

there exists a generic set Ωα,β ⊆ Ω′
α,β, such that for all u ∈ Ωα,β, the list of signs L′′

s

attached to the blocks of size s of (E+βuu∗, A+αuu∗) at λ̂ is obtained by subsequently

executing the following steps:

• If s = 1 and λ̂β = α, then L′
s is obtained from Ls by adding sgn(β), else

L′
s := Ls.

• If s = s1, then L′′
s is obtained from L′

s by removing either exactly one sign

−1 or exactly one sign +1, else L′′
s := L′

s.

Proof. We assume (E,A) to be in Hermitian Kronecker form as in Theorem 2.11

with the λ̂ blocks coming first and ordered by their size. Let a := s1t1 + · · · + sνtν ,

then the top-left a× a block of (E,A), that we denote by (P, J), includes all blocks

corresponding to λ̂. We observe that P 2 = Ia holds and that PJ is in Jordan canonical

form. Therefore, left-multiplying (E,A) with E′ := P ⊕ In−a, the top-left a × a

block of E′(E,A) is in Weierstraß canonical form. In order to transform the pencil

E′(E+βuu∗, A+αuu∗) to partial Brunovsky form as in Theorem 2.4, let us partition

u as follows

u =




u(1)

...

u(ν)

ũ


 , u(i) =



u(i,1)

...

u(i,ti)


 , u(i,j) =




u
(i,j)
1
...

u
(i,j)
si


 ∈ C

si , j = 1, . . . , ti, i = 1, . . . , ν.
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Assuming the generic condition u
(i,j)
1 6= 0 to be satisfied for all i, j, the matrix S from

Remark 2.5 is invertible and given by

S :=

( ν⊕

i=1

ti⊕

j=1

Toep(u(i,j))

)
⊕ In−a.

Since for this S holds

u∗S−1 =
[

eT1,s1 · · · eT1,s1︸ ︷︷ ︸
t1

· · · eT1,sν · · · eT1,sν︸ ︷︷ ︸
tν

ũ∗ ]
=: e∗, (3.3)

clearly SE′(E + βuu∗, A+αuu∗)S−1 is in partial Brunovsky form as in Theorem 2.4

and thus has the Jordan chains in (2.4) associated with its eigenvalue λ̂. Then, the

matrix pencil

S−∗(E + βuu∗, A+ αuu∗)S−1 (3.4)

also has these chains and additionally, it has the same sign characteristic as (E +

βuu∗, A+ αuu∗). To extract this sign characteristic of (3.4), we proceed similarly to

the proof of [18, Theorem 3.3]. Of great importance will be the matrix

F := F1 + F2 := S−∗ES−1 + βS−∗uu∗S−1. (3.5)

Letting Lsi = {ǫi,1, . . . , ǫi,ti} for i = 1, . . . , ν, the topleft a× a block of F1 is given by

ν⊕

i=1

ti⊕

j=1

Ti,j, where Ti,j =




0
ǫi,j

|u(i,j)
1 |2

. .
. ...

ǫi,j

|u(i,j)
1 |2

. . . ∗


 ∈ C

si,si ,

and by (3.3), clearly F2 = βee∗. Now, by Theorem 2.12 the sign characteristic of (3.4)

at blocks of size s at λ̂ is given by the signs of the eigenvalues of some selfadjoint

linear map Gs : Ψs → Ψs, where we have

Ψs =
{
x ∈ C

n \ {0} | λ̂(E + βuu∗)x = (A+ αuu∗)x and x can be extended to

a chain of (E + βuu∗, A+ αuu∗) of at least length s
}
∪ {0}.

We will obtain these signs by computing the inertia of a matrix representation of the

map

fs : Ψs ×Ψs → C, (x, y) 7→ x∗Gsy = x∗Fy(s)

with respect to a suitable basis of Ψs. To construct this basis of Ψs, recall that of the

Jordan chains of (3.4) from (2.4), the following ones have length si:

x
(j)
i,k := ej − eκi+(k−1)si+j , j = 1, . . . , si, k =

{
2, . . . , t1 if i = 1,

1, . . . , ti else,
(3.6)
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whereby κi := t1s1+· · ·+si−1ti−1, i.e., for each pair of indices (i, k) there is the Jordan

chain x
(1)
i,k , . . . , x

(si)
i,k . In the remainder of this paper, we will usually distinguish the

vectors of one chain by their superscript and for brevity omit the superscript if equal

to one, e.g., xi,k := x
(1)
i,k in (3.6). Also, in the case βλ̂ = α, there exists one more chain

of (3.4) that has exactly length one (cf. Theorem 3.1) and is linearly independent from

all chains in (3.6). It is straightforward to verify that this chain always consists of the

first standard basis vector e1 (recall that in this case the perturbation (λβ−α)uu∗ is

equal to 0 at λ̂).

Since under a rank-1 perturbation of the matrix pencil (E,A) by Theorem 3.1

generically one block of size s1 is destroyed and one block of size one is created if

βλ̂ = α, we consider the following (mutually exclusive) classes of Jordan blocks:

(i) blocks of size si < s1 if either si > 1 or βλ̂ 6= α,

(ii) blocks of size 1 < s1 if βλ̂ = α,

(iii) blocks of size s1 if either s1 > 1 or βλ̂ 6= α,

(iv) blocks of size 1 = s1 if βλ̂ = α.

Blocks of type (i): To extract the signs of the nonzero eigenvalues of a matrix

representation of fsi , we consider a basis of Ψsi , whose last dim(Ψsi+1) vectors form

a basis of Ψsi+1. Since by Theorem 3.1 the pencil (3.4) generically has ti linearly

independent Jordan chains of length si at λ̂, the first ti = dim(Ψsi) − dim(Ψsi+1)

vectors of this basis can be chosen as xi,1, . . . , xi,ti as in (3.6). Then, as basis vectors

in Ψsi+1 lie in KerGsi , we do not need to consider them since they correspond to the

zero part of the matrix representation of fsi .

Thus, it remains to compute fsi(xi,k, xi,ℓ) = x∗
i,kFx

(si)
i,ℓ for k, ℓ = 1, . . . , ti.

From (3.5) we observe that the first needed term is x∗
i,kF1x

(si)
i,ℓ , which is given as

follows:

e∗1F1esi︸ ︷︷ ︸
=0

− e∗1F1eκi+ℓsi︸ ︷︷ ︸
=0

− e∗κi+(k−1)si+1F1esi︸ ︷︷ ︸
=0

+e∗κi+(k−1)si+1F1eκi+ℓsi

=





ǫi,k

|u(i,k)
1 |2

if k = ℓ,

0 if k 6= ℓ,

where the first terms were simplified using si < s1. Then, the second term x∗
i,kF2x

(si)
i,ℓ

is given by

e∗1F2esi︸ ︷︷ ︸
=βδ1,si

− e∗1F2eκi+ℓsi︸ ︷︷ ︸
=βδ1,si

− e∗κi+(k−1)si+1F2esi︸ ︷︷ ︸
=βδ1,si

+ e∗κi+(k−1)si+1F2eκi+ℓsi︸ ︷︷ ︸
=βδ1,si

= 0,

where δi,j denotes the Kronecker delta. In conclusion, the nonzero part of the matrix
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representation of fsi with respect to the above constructed basis of Ψsi is given by

diag

(
ǫi,1

|u
(i,1)
1 |2

, . . . ,
ǫi,ti

|u
(i,ti)
1 |2

)
.

Thus, the signs of the perturbed pencil associated with λ̂ at blocks of size si are given

by L′′
si

= {ǫi,1, . . . , ǫi,ti} by Theorem 2.12, i.e., the signs associated with blocks of size

si are unchanged under perturbation in this case.

Blocks of type (ii): We consider blocks of size 1 < s1 whenever βλ̂ = α, where we

distinguish between the subcases of sν being equal to one or not.

First, let sν = 1. We construct a basis of the subspace Ψ1 similar to (i). Since

by Theorem 3.1, the pencil (3.4) generically has tν + 1 linearly independent Jordan

chains of length 1 at λ̂, clearly xν,1, . . . , xν,tν , e1 as in (3.6) can be chosen as the first

vectors of a basis of Ψ1. (We obtain a basis of Ψ1 by adding a basis of Ψ2 that is

ignored here since Ker(G1) = Ψ2.) Similarly to (i), we compute that f1(xν,k, xν,ℓ) is

the sum of on the one hand

x∗
ν,kF1xν,ℓ = e∗1F1e1︸ ︷︷ ︸

=0

− e∗1F1eκν+ℓ︸ ︷︷ ︸
=0

− e∗κν+kF1e1︸ ︷︷ ︸
=0

+e∗κν+kF1eκν+ℓ

=





ǫν,k

|u(ν,k)
1 |2

if k = ℓ,

0 if k 6= ℓ,

where we have made use of 1 < s1, and on the other hand

x∗
ν,kF2xν,ℓ = e∗1F2e1 − e∗1F2eκν+ℓ − e∗κν+kF2e1 + e∗κν+kF2eκν+ℓ = 2β − 2β = 0

for k, ℓ = 1, . . . , tν . Additionally, in this case we have

f1(xν,k, e1) = e∗1F1e1︸ ︷︷ ︸
=0

− e∗κν+kF1e1︸ ︷︷ ︸
=0

+ e∗1F2e1︸ ︷︷ ︸
=β

− e∗κν+kF2e1︸ ︷︷ ︸
=β

= 0

and similarly f1(e1, xν,ℓ) = 0 for k, ℓ = 1, . . . , tν . Finally, with f1(e1, e1) = β we

obtain that the nonzero part of the matrix representation of f1 with respect to the

above constructed basis is given by

diag

(
ǫν,1

|u
(ν,1)
1 |2

, . . . ,
ǫν,tν

|u
(ν,tν)
1 |2

, β

)
.

From this, we read off L′′
1 = {ǫν,1, . . . , ǫν,tν , sgn(β)}, i.e., the new block of size one

that is created in this case (cf. Theorem 3.1) leads to the sign sgn(β) being added to

the list of signs at blocks of size one (recall that β 6= 0 is prescribed since (α, β) 6= 0).
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Now, the subcase sν > 1 is similar: Using Theorem 3.1, a basis of Ψ1 can be

constructed by from the vector e1 by adding a basis of Ψ2. We compute the nonzero

part of the matrix representation to be given by [e∗1Fe1] = [β]; thus L′′
1 = {sgn(β)},

i.e., the sign sgn(β) will be attached to the new block of size one.

Blocks of type (iii): Generically, by Theorem 3.1 the pencil (3.4) has t1−1 linearly

independent Jordan chains of length s1 at λ̂, and thus, {x1,2, . . . , x1,t1} is a basis of

Ψs1 (recall that Ψs1+1 = {0}). To compute the matrix representation of fs1 with

respect to this basis, consider for k, ℓ = 2, . . . , t1 that fs1(x1,k, x1,ℓ) is the sum of on

the one hand x∗
1,kF1x

(s1)
1,ℓ given by

e∗1F1es1 − e∗1F1eℓs1︸ ︷︷ ︸
=0

− e∗(k−1)s1+1F1es1︸ ︷︷ ︸
=0

+e∗(k−1)s1+1F1eℓs1

=





ǫ1,k

|u(1,k)
1 |2

+
ǫ1,1

|u(1,1)
1 |2

if k = ℓ,

ǫ1,1

|u(1,1)
1 |2

if k 6= ℓ,

and on the other hand x∗
1,kF2x

(s1)
1,ℓ equal to

e∗1F2es1 − e∗1F2eℓs1 − e∗(k−1)s1+1F2es1 + e∗(k−1)s1+1F2eℓs1 = 2βδ1,s1 − 2βδ1,s1 = 0.

Therefore, the matrix representation of fs1 with respect to the above basis is given

by

Ms1 = diag

(
ǫ1,2

|u
(1,2)
1 |2

, . . . ,
ǫ1,t1

|u
(1,t1)
1 |2

)
+

ǫ1,1

|u
(1,1)
1 |2




1 · · · 1
...

. . .
...

1 · · · 1


 .

Clearly, the first term in Ms1 (i.e., the diagonal matrix) is invertible. Also, it is a

generic condition with respect to the entries of u to assume that also Ms1 itself is

invertible. Therefore, by Lemma 2.13 the signs of the eigenvalues of Ms1 , that are

equal to the list of signs of the perturbed pencil at blocks of size s1 (denoted by L′′
s1
)

is generically given by removing either exactly one sign −1 or one sign +1 from the

list Ls1 = {ǫ1,1, . . . , ǫ1,t1}.

Blocks of type (iv): Generically, by Theorem 3.1 the pencil (3.4) has t1 linearly

independent eigenvectors at λ̂ and therefore {x1,2, . . . , x1,t1 , e1} is a basis of Ψ1 (recall

that Ψ2 = {0} in this case). We aim to compute the matrix representation of f1 with

respect to this basis as before. For k, ℓ = 2, . . . , t1, clearly f1(x1,k, x1,ℓ) is the sum of

on the one hand

x∗
1,kF1x1,ℓ = e∗1F1e1 − e∗1F1eℓ︸ ︷︷ ︸

=0

− e∗kF1e1︸ ︷︷ ︸
=0

+e∗kF1eℓ =





ǫ1,k

|u(1,k)
1 |2

+
ǫ1,1

|u(1,1)
1 |2

if k = ℓ,

ǫ1,1

|u(1,1)
1 |2

if k 6= ℓ,
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and on the other hand

x∗
1,kF2x1,ℓ = e∗1F2e1 − e∗1F2eℓ − e∗kF2e1 + e∗kF2eℓ = 2β − 2β = 0.

Additionally, we need to compute

f1(x1,k, e1) = e∗1F1e1 − e∗kF1e1︸ ︷︷ ︸
=0

+ e∗1F2e1︸ ︷︷ ︸
=β

− e∗kF2e1︸ ︷︷ ︸
=β

=
ǫ1,1

|u
(1,1)
1 |2

and similarly f1(e1, x1,ℓ) = ǫ1,1/|u
(1,1)
1 |2 for k, ℓ = 2, . . . , t1. Finally, we have

f1(e1, e1) = e∗1F1e1 + e∗1F2e1 = ǫ1,1/|u
(1,1)
1 |2 + β

and therefore the matrix representation of f1 with respect to the above basis is given

by

M1 = diag

(
ǫ1,2

|u
(1,2)
1 |2

, . . . ,
ǫ1,t1

|u
(1,t1)
1 |2

, β

)
+

ǫ1,1

|u
(1,1)
1 |2




1 · · · 1
...

. . .
...

1 · · · 1


 .

Now, applying Lemma 2.13 as in the previous case (iii), the list of signs L′′
1 of (3.4)

at blocks of size one is generically obtained by removing either exactly one sign −1

or exactly one sign +1 from the list L′
1 = {ǫ1,1, . . . , ǫ1,t1 , sgn(β)}.

Remark 3.4. We note that there are results hidden in the statement and proof

of Theorem 3.3 that are not at all obvious. First, consider blocks of type (ii): By

Theorem 3.1 one such block is generically created under perturbation, and by Theo-

rem 3.3 the sign consequently added to the list of signs L1 is generically sgn(β). But

then, sgn(β) is exactly the sign that is attached to the eigenvalue λ̂ in the perturba-

tion (βλ−α)uu∗ in this case, i.e., the sign added due to one new block being created

is generically the sign that is attached to λ̂ in the perturbation.

Then again, if blocks of type (iv) exist, by Theorem 3.1 the partial multiplicities

of the perturbed pencil are generically unchanged, since both effects, one block being

destroyed and a new block being created, neutralize one another. However, the list

of signs L1 is generically unchanged under perturbation if no sign sgn(−β) exists in

L1, and otherwise, generically either one sign sgn(−β) is replaced by sgn(β) or again

L1 is unchanged. Consequently, the perturbed pencil is not generically prescribed to

have the sign attached to λ̂ in the perturbation at one of its blocks in this case, which

is again different from (ii).

To illustrate this remark, we consider the following example.

Example 3.5. The Hermitian 2× 2 matrix pencil

(E,A) =

([
1 0

0 1

]
,

[
0 0

0 0

])
∈ C

2,2 × C
2,2
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clearly consists of two Jordan blocks of size one with positive sign corresponding to

0. We consider a Hermitian rank-1 perturbation of the form (βuu∗, 0), where u =

[u1, u2]
T ∈ C2 and β ∈ R \ {0}. By Theorem 3.1 the perturbed pencil (E + βuu∗, A)

is generically regular and has two linearly independent Jordan chains of length one

at 0.

Clearly, a basis of the eigenspace of (E + βuu∗, A) at 0 is given by {e1, e2} and

the matrix representation of the map f1 with respect to that basis is given by

M1 =

[
1 + β |u1|

2
β u1u2

β u1u2 1 + β |u2|
2

]
.

Now, an elementary computation reveals that the eigenvalues ofM1 are given by 1 and

1+β(|u1|
2
+|u2|

2
). Thus, if either β ≥ 0 or β < 0 and −1/β > |u1|

2
+|u2|

2
, the signs of

the perturbed pencil at 0 are given by {+1,+1} and if β < 0 and −1/β < |u1|
2
+|u2|

2
,

these signs are given by {−1,+1}, which is in line with Theorem 3.3 and the above

remark.

4. Hermitian rank-2 perturbations. Before analyzing Hermitian rank-2 per-

turbations, we consider a further preliminary result. The following lemma deals with

a class of matrices that includes the transformation matrix S from Theorem 2.6.

Lemma 4.1. Let n1 ≥ · · · ≥ nm > 0 be a series of integers and set a :=

n1 + · · ·+ nm. Further, let S have the shape

S =




S1,1 S1,2 · · · S1,m

S2,2
. . .

...
. . . Sm−1,m

Sm,m



∈ C

a,a, (4.1)

whereby all Si,j ∈ Cnj ,nj are upper triangular Toeplitz matrices. Then, S−1 also has

the shape (4.1), i.e., it is upper triangular and its (i, j) block is an upper triangular

Toeplitz matrix of dimension ni × nj for all i and j.

This lemma is proven by straightforward computation using the well-known fact

that the product of two upper triangular Toeplitz matrices is again an upper triangular

Toeplitz matrix and that the inverse of an invertible upper triangular Toeplitz matrix

is again one itself [14, Chapter 3]; details are omitted here.

We go on to prove our main theorems on Hermitian rank-2 perturbations as

in (2.19), i.e., ones of the form

(∆E,∆A) =
[
u v

] ([ 0 1

1 0

]
,

[
0 µ

µ 0

])[
u∗

v∗

]
, (4.2)
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where we only consider the case µ ∈ C \ R. Indeed, if µ ∈ R in (4.2), then we

consider the matrix X = 1√
2

[
1 1
1 −1

]
and note that XR2X

∗ = I2. Hence, replacing

[u, v] by [ũ, ṽ]X , where [ũ, ṽ] := [u, v]X−1, in (4.2), we obtain that (∆E,∆A) =

(ũũ∗, µ ũũ∗) + (ṽṽ∗, µ ṽṽ∗) is the sum of Hermitian rank-1 perturbations that were

covered in the previous section. We will now analyze the Jordan structure under

perturbations (4.2) in Theorem 4.2 and the sign characteristic in Theorem 4.3.

Theorem 4.2. Let (E,A) ∈ Cn,n×Cn,n be regular and Hermitian with the partial

multiplicities n1 ≥ · · · ≥ nm > 0 associated with some eigenvalue λ̂ ∈ C. Then, for

each µ ∈ C \R there exists a generic set Ω′
µ ⊆ Cn ×Cn, such that for all (u, v) ∈ Ω′

µ,

(E+∆E,A+∆A) as in (4.2) is regular and has the partial multiplicities (n3, . . . , nm)

if λ̂ 6∈ {µ, µ} and (n3, . . . , nm, 1) otherwise at λ̂.

Proof. We proceed similar to the proof of Theorem 3.1. Since by Theorem 2.6

and (2.16) the partial multiplicities of the perturbed pencil are generically greater

than or equal to the ones given above, it again suffices to present one particular

perturbation in each case that creates these partial multiplicities by Lemma 2.10.

Let (E,A) be in Hermitian Kronecker form as in Theorem 2.11 with the blocks at λ̂

coming first and ordered by their size.

Case λ̂ ∈ C \ R. Consider the first two blocks of (E,A) associated with λ̂ (each

of which is paired to a block of the same size corresponding to the complex conjugate

eigenvalue) and set u := e1 + e2n1+n2+1 and v := en1+1 + e2n1+1. Then the first part

of the perturbed pencil is given by
[

0 −Rn1Jn1(λ̂−λ)

−Rn1Jn1(λ̂−λ) 0

]
⊕

[
0 −Rn2Jn2(λ̂−λ)

−Rn2Jn2(λ̂−λ) 0

]

+(λ− µ)uv∗ + (λ − µ)vu∗.

This matrix pencil can by permutations and multiplications with −1 of its rows be

transformed to a matrix pencil of the type from the appendix of a preprint version

of this paper [4]. Elementary but tedious computations that are omitted here show

that its determinant is equal to
[
(λ̂− λ)n1(λ− λ̂)n2 − (λ̂− λ)n1 (µ− λ)− (−1)n1(λ− λ̂)n2(µ− λ)

]

·
[
(λ− λ̂)n1(λ̂− λ)n2 + (−1)n2(λ− λ̂)n1(λ− µ) + (λ̂− λ)n2(λ − µ)

]
.

This shows that in the above given blocks of the perturbed pencil, the eigenvalue

λ̂ does not occur if λ̂ 6∈ {µ, µ} and occurs with algebraic multiplicity one otherwise.

Since no other blocks of the perturbed pencil than these are perturbed, this particular

perturbation clearly creates the desired partial multiplicities at λ̂.

Case λ̂ ∈ R. Consider the first blocks of (E,A) associated with λ̂ of sizes n1, n2

with signs ǫ1, ǫ2 ∈ {±1} and set u := e1 and v := en1+1. Then, the first blocks of the
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perturbed pencil are given by

−
(
ǫ1Rn1Jn1(λ̂− λ) ⊕ ǫ2Rn2Jn2(λ̂− λ)

)
+ (λ− µ)e1e

T
n1+1 + (λ− µ)en1+1e

T
1

clearly not having the eigenvalue λ̂. Again, as no other blocks are perturbed, this

perturbation creates the partial multiplicities (n3, . . . , nm) at λ̂.

In the following theorem concerning the sign characteristic of Hermitian matrix

pencils under rank-2 perturbations, we consider (E,A) to have Jordan blocks of the

sizes (3.2) at λ̂. Hereby, we will employ both notations, i.e., the nj ’s and the si’s

depending on which is more convenient. Finally, let Ω′
µ denote the generic set from

Theorem 4.2.

Theorem 4.3. Let (E,A) ∈ Cn,n × Cn,n be regular and Hermitian and at some

eigenvalue λ̂ ∈ R, let (E,A) have the partial multiplicities (3.2) and the list of signs

Lsi attached to blocks of size si for i = 1, . . . , ν. Then, for each µ ∈ C\R there exists

a generic set Ωµ ⊆ Ω′
µ, such that for all (u, v) ∈ Ωµ the list of signs L′′

si
at blocks of

size si associated with λ̂ of (E +∆E,A+∆A) as in (4.2) is obtained by subsequently

executing the following steps:

• If i = 1, then L′
si

is obtained from Lsi by removing either exactly one sign

−1 or exactly one sign +1, else L′
si

:= Lsi .

• If either i = 1 and t1 ≥ 2 or i = 2 and t1 = 1, then L′′
si

is obtained from L′
si

by removing exactly one sign −1 or exactly one sign +1, else L′′
si

:= L′
si
.

Proof. We proceed similarly to the proof of Theorem 3.3. Let us assume (E,A)

to be in Hermitian canonical form as in Theorem 2.11 with the blocks corresponding

to λ̂ coming first and ordered decreasingly with respect to their size. Let a := n1 +

· · · + nm, then the top-left a × a block of (E,A), denoted by (P, J), includes all

blocks corresponding to λ̂. We observe that P 2 = Ia holds and that PJ is in Jordan

canonical form, hence left-multiplying (E,A) with E′ := P ⊕ In−a, the top-left a× a

block of E′(E,A) is in Weierstraß canonical form. Now, let the generic condition from

Theorem 2.6 on u, v be satisfied, so that there is an invertible matrix S ∈ Cn,n as

in (2.10) for which we have

[
u∗

v∗

]
S−1 =

[
eT1,n1

0 eT1,n3
0 eT1,n5 . . .

σeT1,nm M
xT eT1,n2

0 eT1,n4
0 ρeT1,nm

]
(4.3)

for certain x = [x1, . . . , xn1 ]
T ∈ Cn1 and M of suitable size. Thus, SE′(E+∆E,A+

∆A)S−1 is in rank-2 partial Brunovsky form as in Theorem 2.6 and thus has the

Jordan chains (2.6)-(2.8) at λ̂. But also

S−∗(E +∆E,A+∆A)S−1, (4.4)
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has these chains at λ̂ and in addition, it has the same sign characteristic as (E +

∆E,A+∆A). By Lemma 4.1, the matrix S−1 has the structure

S−1 =




S1,1 S1,2 · · · S1,m

S2,2
. . .

...
. . . Sm−1,m

Sm,m



⊕ In−a ∈ C

n,n,

where each Si,j has dimension ni×nj but is still an upper triangular Toeplitz matrix,

i.e., if ni > nj then Si,j has ni − nj all-zero rows at the bottom. Also, let us denote

the (1, 1)-entry of each Si,j by si,j with si,i 6= 0 for i = 1, . . . ,m. Now, the sign

characteristic of (4.4) can be extracted from the following matrix

F := F1 + F2 := S−∗ES−1 + S−∗ [ u v
]
R2

[
u∗

v∗

]
S−1. (4.5)

In the remainder of this proof, we denote by ǫ1, . . . , ǫm the signs of (E,A) attached

to its blocks at λ̂, so that ǫj is the sign of the jth diagonal block of (E,A). Then, the

topleft a× a block of F1 is given by



ǫ1S
∗
1,1Rn1S1,1 ǫ1S

∗
1,1Rn1S1,2 · · · ǫ1S

∗
1,1Rn1S1,m

ǫ1S
∗
1,2Rn1S1,1

∑2
j=1 ǫjS

∗
j,2Rnj

Sj,2 · · ·
∑2

j=1 ǫjS
∗
j,2Rnj

Sj,m

ǫ1S
∗
1,3Rn1S1,1

∑2
j=1 ǫjS

∗
j,3Rnj

Sj,2
. . .

...
...

. . .
...

ǫ1S
∗
1,mRn1S1,1

∑2
j=1 ǫjS

∗
j,mRnj

Sj,2 · · ·
∑m

j=1 ǫjS
∗
j,mRnj

Sj,m




.

We note that for 1 ≤ j ≤ min(k, ℓ), the jth summand of the (k, ℓ) block of the above

matrix is given by

ǫjS
∗
j,kRnj

Sj,ℓ = ǫj

[
0 0

0 Rd Toep(w)

]
∈ C

nk,nℓ (4.6)

for some w ∈ Cd setting d := nk + nℓ − nj . In particular, its (1, nℓ) entry is zero

whenever nℓ < nj and its (nk, 1) entry is zero whenever nk < nj . Also, by (4.3) it is

clear that the topleft a× a block of F2 is equal to



e1,n1x
∗ + xeT1,n1

e1,n1e
T
1,n2

xeT1,n3
e1,n1e

T
1,n4

xeT1,n5

. . .

e1,n2e
T
1,n1

0 e1,n2e
T
1,n3

0 e1,n2e
T
1,n5

. . .

e1,n3x
∗ e1,n3e

T
1,n2

0 e1,n3e
T
1,n4

. . .

e1,n4e
T
1,n1

0 e1,n4e
T
1,n3

. . .
...

e1,n5x
∗ e1,n5e

T
1,n2

. . . 0 e1,nm−1e
T
1,nm

. . .
. . . · · · e1,nm

eT1,nm−1
0




,
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and that these topleft a× a blocks of F1 and F2 are conformably partitioned, i.e., the

(k, ℓ) block of each matrix has dimension nk × nℓ.

Now, by Theorem 2.12 for each i = 1, . . . , ν the signs of (4.4) at blocks of size si
are equal to the signs in the inertia of the selfadjoint map Gsi : Ψsi → Ψsi , where we

have

Ψsi =
{
x ∈ C

n \ {0} | λ̂(E +∆E)x = (A+∆A)x and x can be extended to

a chain of (E +∆E,A+∆A) of at least length si
}
∪ {0}.

This inertia shall be extracted by computing a matrix representation of

fsi : Ψsi ×Ψsi → C, (x, y) 7→ x∗Gsiy = x∗Fy(si)

with respect to a suitable basis of Ψsi . By Theorem 4.2, there generically exist blocks

of the following sizes in (4.4) at λ̂:

(i) blocks of size si with si < n3,

(ii) blocks of size n3.

Blocks of type (i): We consider the Jordan chains of length si of (4.4) from (2.7)-

(2.8). Letting κi = s1t1 + · · · + si−1ti−1 as before and also ηi := t1 + · · · + ti−1, we

introduce the following notation for these chains:

y
(j)
i,k :=

{
en1+j − eκi+(k−1)si+j , if k and ηi are both odd or both even,

en1+n2+j − eκi+(k−1)si+j , otherwise,
(4.7)

for j = 1, . . . , si and k = 1, . . . , ti.

As in the previous section, we aim to extract the signs of a matrix representation

of fsi by considering a basis of Ψsi , whose last dim(Ψsi+1) vectors form a basis of

Ψsi+1. Since by Theorem 4.2 the pencil (4.4) generically has ti linearly independent

Jordan chains of length si at λ̂, the first ti = dim(Ψsi) − dim(Ψsi+1) vectors of this

basis can be chosen as yi,1, . . . , yi,ti as in (4.7) (omitting the superscript if equal to

one). But as basis vectors in Ψsi+1 lie in KerGsi , we ignore them when computing a

matrix representation of fsi .

For simplicity, we assume in the following that ηi is odd but the other case

is entirely analogous. In order to compute fsi(yi,k, yi,ℓ) for all k, ℓ ∈ {1, . . . , ti},

we may consider the terms y∗i,kF1y
(si)
i,ℓ and y∗i,kF2y

(si)
i,ℓ separately because of (4.5).

Recalling that the signs of (E,A) associated with blocks of size si are given by Lsi =

{ǫηi+1, ǫηi+2, . . . , ǫηi+ti}, we compute in the following subcases:
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Subcase k is odd and ℓ is even: We have that y∗i,k F1 y
(si)
i,ℓ is given by

eTn1+1 F1 en1+n2+si︸ ︷︷ ︸
=0

− eTn1+1 F1 eκi+ℓsi︸ ︷︷ ︸
=0

− eTκi+(k−1)si+1 F1 en1+n2+si︸ ︷︷ ︸
=0

+eTκi+(k−1)si+1 F1 eκi+ℓsi =

ηi+min(k,ℓ)∑

j=ηi+1

ǫj sj,ηi+k sj,ηi+ℓ.

Hereby, the first three terms were simplified using n3 > si and the last equality was

obtained by regarding the (1, si)-entry of the (ηi + k, ηi + ℓ)-block of F1, which is the

sum of matrices of the form (4.6); the lower summation bound arises as the desired

(1, si) entry is 0 whenever si < nj (whereby j is the summation index). On the other

hand, the term y∗i,k F2 y
(si)
i,ℓ from above is equal to

eTn1+1 F2 en1+n2+si︸ ︷︷ ︸
=δ1,si

− eTn1+1 F2 eκi+ℓsi︸ ︷︷ ︸
=δ1,si

− eTκi+(k−1)si+1 F2 en1+n2+si︸ ︷︷ ︸
=δ1,si

+ eTκi+(k−1)si+1 F2 eκi+ℓsi︸ ︷︷ ︸
=δ1,si

= 0,

where δi,j is the Kronecker delta and we used that ηi + k is even and ηi + ℓ is odd.

Thus, in the case that k is odd and ℓ is even, we obtain

fsi(yi,k, yi,ℓ) =

ηi+min(k,ℓ)∑

j=ηi+1

ǫj sj,ηi+k sj,ηi+ℓ. (4.8)

Then again, if k is even and ℓ is odd, the same result is obtained since the map fsi is

Hermitian (recall that Gsi is self-adjoint). However, the remaining cases that k and

ℓ are both odd or both even are treated similarly:

Subcase k and ℓ are both odd : We obtain that y∗i,k F1 y
(si)
i,ℓ is equal to

eTn1+1 F1 en1+si︸ ︷︷ ︸
=0

− eTn1+1 F1 eκi+ℓsi︸ ︷︷ ︸
=0

− eTκi+(k−1)si+1 F1 en1+si︸ ︷︷ ︸
=0

+eTκi+(k−1)si+1 F1 eκi+ℓsi

=

ηi+min(k,ℓ)∑

j=ηi+1

ǫj sj,ηi+k sj,ηi+ℓ,

where the first three terms were simplified using n3 > si and the last equality was

obtained exactly as described in the above subcase. Then, the other term y∗i,k F2 y
(si)
i,ℓ

is equal to

eTn1+1 F2 en1+si − eTn1+1 F2 eκi+ℓsi − eTκi+(k−1)si+1 F2 en1+si

+eTκi+(k−1)si+1 F2 eκi+ℓsi = 0,
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since every one of the four terms is already zero (recall that ηi+k and ηi+ ℓ are both

even). Thus, the equation (4.8) is obtained in this subcase as well.

Subcase k and ℓ are both even: Then, y∗i,k F1 y
(si)
i,ℓ is computed to be

eTn1+n2+1 F1 en1+n2+si︸ ︷︷ ︸
=0

− eTn1+n2+1 F1 eκi+ℓsi︸ ︷︷ ︸
=0

− eTκi+(k−1)si+1 F1 en1+n2+si︸ ︷︷ ︸
=0

+

eTκi+(k−1)si+1 F1 eκi+ℓsi =

ηi+min(k,ℓ)∑

j=ηi+1

ǫj sj,ηi+k sj,ηi+ℓ

just as in the previous subcases. The remaining term y∗i,k F2 y
(si)
i,ℓ is equal to

eTn1+n2+1 F2 en1+n2+si− eTn1+n2+1 F2 eκi+ℓsi− eTκi+(k−1)si+1F2 en1+n2+si

+eTκi+(k−1)si+1F2 eκi+ℓsi ,

which is equal to zero, since all of the four terms are already zero (recall that ηi + k

and ηi + ℓ are both odd). Hence, (4.8) also holds in this subcase.

Clearly, the nonzero part of the desired matrix representation of fsi is given by

Msi = [fsi(yi,k, yi,ℓ)]kℓ. We apply a series of ∗-congruence transformations to Msi :

First, add the −(sηi+1,ηi+j)/(sηi+1,ηi+1)-multiple of the first row onto the jth row

and the −(sηi+1,ηi+j)/ (sηi+1,ηi+1)-multiple of the first column onto the jth column

for j = 1, 2, . . . , ti, then repeat with the second row/column, then with the third, and

so on, which yields the matrix

diag
(
ǫηi+1 |sηi+1,ηi+1|

2
, ǫηi+2 |sηi+2,ηi+2|

2
, . . . , ǫηi+ti |sηi+ti,ηi+ti |

2 )
.

Since the signs of the perturbed pencil at blocks of size si are given by the signs of the

eigenvalues of Msi , they are read off to be equal to L′′
si

= {ǫηi+1, ǫηi+2, . . . , ǫηi+ti},

i.e., the original signs.

Blocks of type (ii): To extract the signs at blocks of size n3, we employ a different

set of chains of length n3 than the ones from Theorem 2.6 given in (2.6)-(2.8). Letting

τ be the number of linearly independent chains of (E,A) at λ̂ with length at least n3,

one can verify as in the proof of Theorem 2.6 that for each k = 3, 4, . . . , τ the vectors

z
(j)
k :=

{
ej − en1+···+nk−1+j −

[
en1+j · · · en1+1

][
x1 · · · xj

]T
, if k is odd,

en1+j − en1+···+nk−1+j , if k is even

for j = 1, . . . , n3 form a Jordan chain of (4.4) with length n3. Since by Theorem 4.2

there generically exist τ − 2 linearly independent Jordan chains of length n3 of (4.4)

at λ̂, the set {z3, . . . , zτ} is a basis of Ψn3 (recall that Ψn3+1 = {0}). Thus, in the

following we compute fn3(zk, zℓ) = z∗kF1z
(n3)
ℓ + z∗kF2z

(n3)
ℓ for k, ℓ ∈ {3, . . . , τ} to

obtain the signs of the perturbed pencil (4.4).
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First, let us compute the term z∗kF2z
(n3)
ℓ , whereby we again consider the three

subcases depending on k and ℓ being odd or even. Setting ωk := n1 + · · ·+ nk−1, in

the first subcase we assume that k and ℓ are both odd. Then, z∗kF2z
(n3)
ℓ is given by

(eT1 − eTωk+1 − x1e
T
n1+1)F2 (en3 − eωℓ+n3 − x1en1+n3 − · · · − xn3en1+1)

= eT1 F2en3 − eT1 F2eωℓ+n3 − x1e
T
1 F2en1+n3 − · · · − xn3e

T
1 F2en1+1

− eTωk+1F2en3 + eTωk+1F2eωℓ+n3 + x1e
T
ωk+1F2en1+n3 + · · ·+ xn3e

T
ωk+1F2en1+1

− x1e
T
n1+1F2en3 + x1e

T
n1+1F2eωℓ+n3

+ |x1|
2
eTn1+1F2en1+n3 + · · ·+ x1xn3e

T
n1+1F2en1+1.

The nonzero terms occurring in this computation are the ones:

eT1 F2en3 = xn3 + x1δ1,n3 , −eT1 F2eωℓ+n3 = −x1δ1,n3 ,

−xn3e
T
1 F2en1+1 = −xn3 , −eTωk+1F2en3 = −xn3 ,

xn3e
T
ωk+1F2en1+1 = xn3 , −x1e

T
n1+1F2en3 = −x1δ1,n3 ,

x1e
T
n1+1F2eωℓ+n3 = x1δ1,n3 ,

so that clearly, we obtain z∗kF2z
(n3)
ℓ = 0 in this subcase (recall that δi,j is the Kro-

necker delta). Similarly, if k is odd and ℓ is even, z∗kF2z
(n3)
ℓ is given by

(eT1 − eTωk+1 − x1e
T
n1+1)F2 (en1+n3 − eωℓ+n3) = eT1 F2en1+n3 − eT1 F2eωℓ+n3

− eTωk+1F2en1+n3 + eTωk+1F2eωℓ+n3 − x1e
T
n1+1F2en1+n3 + x1e

T
n1+1F2eωℓ+n3 = 0.

Hereby, the result z∗kF2z
(n3)
ℓ = 0 is obtained since the last two terms above are zero

(recall that ℓ is even) and the first four terms are each equal to ±δ1,n3 so that they

exactly cancel out. (We remind that the case that k is even and ℓ is odd will later

follow from this case as fn3 is Hermitian.) Finally, whenever k and ℓ are both even,

the term z∗kF2z
(n3)
ℓ is equal to

(eTn1+1 − eTωk+1)F2 (en1+n3 − eωℓ+n3) = eTn1+1F2en1+n3 − eTn1+1F2eωℓ+n3

− eTωk+1F2en1+n3 + eTωk+1F2eωℓ+n3 = 0,

where the sum is zero since each of the four terms above is zero itself.

It remains to compute the other term z∗kF1z
(n3)
ℓ for all k, ℓ ∈ {3, . . . , τ}, but in

addition to the subcases from above, we have to account for another thing. Since the

results depend the list of signs of (E,A) attached to blocks of size n3, denoted by

Ln3 , we distinguish between the following cases:

case (a): n2 > n3, since then Ln3 = {ǫ3, . . . , ǫτ},

case (b): n1 > n2 = n3, since then Ln3 = {ǫ2, . . . , ǫτ},

case (c): n1 = n2 = n3, since then Ln3 = {ǫ1, . . . , ǫτ}.
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Case (a): For odd k and ℓ we obtain that z∗kF1z
(n3)
ℓ is equal to

(eT1 − eTωk+1 − x1e
T
n1+1)F1 (en3 − eωℓ+n3 − x1en1+n3 − · · · − xn3en1+1)

= eT1 F1en3 − eT1 F1eωℓ+n3 − x1e
T
1 F1en1+n3 − · · · − xn3e

T
1 F1en1+1

− eTωk+1F1en3 + eTωk+1F1eωℓ+n3 + x1e
T
ωk+1F1en1+n3 + · · ·+ xn3e

T
ωk+1F1en1+1

− x1e
T
n1+1F1en3 + x1e

T
n1+1F1eωℓ+n3

+ |x1|
2 eTn1+1F1en1+n3 + · · ·+ x1xn3e

T
n1+1F1en1+1

=

min(k,ℓ)∑

j=3

ǫj sj,k sj,ℓ,

since all terms other than eTωk+1F1eωℓ+n3 are equal to zero. On the other hand, if k

is odd and ℓ is even, z∗kF1z
(n3)
ℓ is equal to

(eT1 − eTωk+1 − x1e
T
n1+1)F1 (en1+n3 − eωℓ+n3) = eT1 F1en1+n3 − eT1 F1eωℓ+n3

− eTωk+1F1en1+n3 + eTωk+1F1eωℓ+n3 − x1e
T
n1+1F1en1+n3 + x1e

T
n1+1F1eωℓ+n3

=

min(k,ℓ)∑

j=3

ǫj sj,k sj,ℓ,

since again only the term eTωk+1F1eωℓ+n3 contributes to the result. Finally, if k and ℓ

are both even, then z∗kF1z
(n3)
ℓ is given by

(eTn1+1 − eTωk+1)F1 (en1+n3 − eωℓ+n3)

= eTn1+1F1en1+n3 − eTn1+1F1eωℓ+n3 − eTωk+1F1en1+n3 + eTωk+1F1eωℓ+n3

=

min(k,ℓ)∑

j=3

ǫj sj,k sj,ℓ

for the same reason. Then, recalling (4.5) and that fn3 is Hermitian, we have de-

termined fn3(zk, zℓ) for all k and ℓ in this case. Thus, to extract the signs of (4.4)

at blocks of size n3, we consider that the matrix M :=
[∑min(k,ℓ)

j=3 ǫj sj,k sj,ℓ
]
kℓ

is

∗-congruent (employing the same transformations that were described detail in the

treatment of blocks of type (i)) to the diagonal matrix

diag
(
ǫ3 |s3,3|

2 , ǫ4 |s4,4|
2 , . . . , ǫτ |sτ,τ |

2 ). (4.9)

Hence, since the matrix representation of fn3 is given by M , the signs of (4.4) at

blocks of size n3 are clearly given by L′′
n3

= {ǫ3, . . . , ǫτ}, i.e., the original signs.

Case (b): Distinguishing as before, we start assuming that k and ℓ are both odd,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 760-794, November 2015



ELA

790 L. Batzke

then z∗kF1z
(n3)
ℓ is given by:

(eT1 − eTωk+1 − x1e
T
n1+1)F1 (en3 − eωℓ+n3 − x1en1+n3 − · · · − xn3en1+1)

= eT1 F1en3 − eT1 F1eωℓ+n3 − x1e
T
1 F1en1+n3 − · · · − xn3e

T
1 F1en1+1

− eTωk+1F1en3 + eTωk+1F1eωℓ+n3 + x1e
T
ωk+1F1en1+n3 + · · ·+ xn3e

T
ωk+1F1en1+1

− x1e
T
n1+1F1en3 + x1e

T
n1+1F1eωℓ+n3

+ |x1|
2 eTn1+1F1en1+n3 + · · ·+ x1xn3e

T
n1+1F1en1+1

=

min(k,ℓ)∑

j=3

ǫj sj,k sj,ℓ + ǫ2(s2,k + x1s2,2)(s2,ℓ + x1s2,2).

This result is obtained since

eTωk+1F1eωℓ+n3 =
∑min(k,ℓ)

j=3 ǫj sj,k sj,ℓ + ǫ2 s2,ks2,ℓ,

x1e
T
ωk+1F1en1+n3 = ǫ2 x1s2,ks2,2,

x1e
T
n1+1F1eωℓ+n3 = ǫ2 x1s2,2s2,ℓ,

|x1|
2
eTn1+1F1en1+n3 = ǫ2 |x1s2,2|

2
,

and all other terms in the computation are equal to zero. Then again, if k is odd and

ℓ is even, z∗kF1z
(n3)
ℓ is equal to

(eT1 − eTωk+1 − x1e
T
n1+1)F1 (en1+n3 − eωℓ+n3) = eT1 F1en1+n3 − eT1 F1eωℓ+n3

− eTωk+1F1en1+n3 + eTωk+1F1eωℓ+n3 − x1e
T
n1+1F1en1+n3 + x1e

T
n1+1F1eωℓ+n3

=

min(k,ℓ)∑

j=3

ǫj sj,k sj,ℓ + ǫ2(s2,k + x1s2,2)(s2,ℓ − s2,2),

since

−eTωk+1F1en1+n3 = −ǫ2 s2,ks2,2,

eTωk+1F1eωℓ+n3 =
∑min(k,ℓ)

j=3 ǫj sj,k sj,ℓ + ǫ2 s2,ks2,ℓ,

−x1e
T
n1+1F1en1+n3 = −ǫ2 x1 |s2,2|

2
,

x1e
T
n1+1F1eωℓ+n3 = ǫ2 x1s2,2s2,ℓ,

and all other terms are zero. At last, if k and ℓ are both even, then z∗kF1z
(n3)
ℓ is given

by

(eTn1+1 − eTωk+1)F1 (en1+n3 − eωℓ+n3) = eTn1+1F1en1+n3 − eTn1+1F1eωℓ+n3

− eTωk+1F1en1+n3 + eTωk+1F1eωℓ+n3 = ǫ2 |s2,2|
2
− ǫ2 s2,2s2,ℓ − ǫ2 s2,ks2,2

+

min(k,ℓ)∑

j=3

ǫj sj,k sj,ℓ + ǫ2 s2,ks2,ℓ =

min(k,ℓ)∑

j=3

ǫj sj,k sj,ℓ + ǫ2(s2,k − s2,2)(s2,ℓ − s2,2).
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Again, as fn3 is Hermitian, this concludes the computation of fn3(zk, zℓ) for all k and

ℓ in this case. Now, let us define the matrix B such that the matrix representation

of fn3 with respect to the above basis is given by M + ǫ2B (where M is defined as in

case (a)). Further, we point out that B has the form ww∗ for a suitable w ∈ Cτ−2.

Thus, assuming the matrix representationM+ǫ2B to be invertible (which is a generic

condition with respect to the entries of u, v), we can apply Lemma 2.13. Recalling

that the signs of the eigenvalues of X can be read off from (4.9), by this lemma the

desired list of signs L′′
n3

attached to blocks of size n3 is obtained by removing either

exactly one sign −1 or exactly one sign +1 from the list Ln3 = {ǫ2, . . . , ǫτ}.

Case (c): Whenever k and ℓ are both odd, z∗kF1z
(n3)
ℓ is given by:

(eT1 − eTωk+1 − x1e
T
n1+1)F1 (en3 − eωℓ+n3 − x1en1+n3 − · · · − xn3en1+1)

= eT1 F1en3 − eT1 F1eωℓ+n3 − x1e
T
1 F1en1+n3 − · · · − xn3e

T
1 F1en1+1

− eTωk+1F1en3 + eTωk+1F1eωℓ+n3 + x1e
T
ωk+1F1en1+n3 + · · ·+ xn3e

T
ωk+1F1en1+1

− x1e
T
n1+1F1en3 + x1e

T
n1+1F1eωℓ+n3

+ |x1|
2 eTn1+1F1en1+n3 + · · ·+ x1xn3e

T
n1+1F1en1+1

=

min(k,ℓ)∑

j=3

ǫj sj,k sj,ℓ + ǫ2(s2,k + x1s2,2)(s2,ℓ + x1s2,2)

+ ǫ1(s1,k− s1,1+ x1s1,2)(s1,ℓ− s1,1+ x1s1,2).

To obtain this, we have to consider all nonzero terms in the above computation,

namely:

eT1 F1en3 = ǫ1 |s1,1|
2
, −eT1 F1eωℓ+n3 = −ǫ1 s1,1s1,ℓ,

−x1e
T
1 F1en1+n3 = −ǫ1 x1s1,1s1,2, −eTωk+1F1en3 = −ǫ1 s1,ks1,1,

eTωk+1F1eωℓ+n3 =
∑min(k,ℓ)

j=3 ǫj sj,k sj,ℓ + ǫ2 s2,ks2,ℓ + ǫ1 s1,ks1,ℓ,

x1e
T
ωk+1F1en1+n3 = ǫ2 x1s2,ks2,2 + ǫ1 x1s1,ks1,2,

−x1e
T
n1+1F1en3 = −ǫ1 x1s1,2s1,1

x1e
T
n1+1F1eωℓ+n3 = ǫ2 x1s2,2s2,ℓ + ǫ1 x1s1,2s1,ℓ,

|x1|
2 eTn1+1F1en1+n3 = ǫ2 |x1s2,2|

2 + ǫ1 |x1s1,2|
2 .
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Similarly, if k is odd and ℓ is even, z∗kF1z
(n3)
ℓ is equal to

(eT1 − eTωk+1 − x1e
T
n1+1)F1 (en1+n3 − eωℓ+n3) = eT1 F1en1+n3 − eT1 F1eωℓ+n3

− eTωk+1F1en1+n3 + eTωk+1F1eωℓ+n3 − x1e
T
n1+1F1en1+n3 + x1e

T
n1+1F1eωℓ+n3

= ǫ1 s1,1s1,2 − ǫ1 s1,1s1,ℓ − ǫ2 s2,ks2,2 − ǫ1 s1,ks1,2 +

min(k,ℓ)∑

j=1

ǫj sj,k sj,ℓ

− ǫ2 x1 |s2,2|
2 − ǫ1 x1 |s1,2|

2 + ǫ2 x1s2,2s2,ℓ + ǫ1 x1s1,2s1,ℓ

=

min(k,ℓ)∑

j=3

ǫj sj,k sj,ℓ + ǫ2(s2,k + x1s2,2)(s2,ℓ − s2,2)

+ ǫ1(s1,k − s1,1 + x1s1,2)(s1,ℓ − s1,2).

Finally, if k and ℓ are both even, then z∗kF1z
(n3)
ℓ is given by

(eTn1+1 − eTωk+1)F1 (en1+n3 − eωℓ+n3)

= eTn1+1F1en1+n3 − eTn1+1F1eωℓ+n3 − eTωk+1F1en1+n3 + eTωk+1F1eωℓ+n3

= ǫ2 |s2,2|
2
+ ǫ1 |s1,2|

2
− ǫ2 s2,2s2,ℓ − ǫ1 s1,2s1,ℓ − ǫ2 s2,ks2,2 − ǫ1 s1,ks1,2

+

min(k,ℓ)∑

j=1

ǫj sj,k sj,ℓ

=

min(k,ℓ)∑

j=3

ǫj sj,k sj,ℓ + ǫ2(s2,k − s2,2)(s2,ℓ − s2,2) + ǫ1(s1,k − s1,2)(s1,ℓ − s1,2).

As in the previous cases, this concludes the computation of fn3(zk, zℓ) for all k and ℓ.

Now, we define the matrix C such that the matrix representation of fn3 with respect

to the above basis is given by M + ǫ2B+ ǫ1C in this case (where M and B are defined

as before). Then, also C has the form ww∗ for some w ∈ Cτ−2. Clearly, assuming the

generic condition that both M + ǫ2B and M + ǫ2B+ ǫ1C are invertible, we may apply

Lemma 2.13 twice, so that the desired list of signs L′′
n3

is obtained by removing either

exactly two signs −1,−1 or exactly two signs −1,+1 or exactly two signs +1,+1 from

the list Ln3 = {ǫ1, . . . , ǫτ}.

5. Conclusion. The canonical form of regular Hermitian matrix pencils was in-

vestigated under generic structure-preserving rank-1 and rank-2 perturbations.

Hereby, regarding the sizes of the Jordan blocks, a generic Hermitian rank-1 or rank-2

perturbation does not differ from a generic unstructured rank-1 or rank-2 perturba-

tion: At each eigenvalue λ̂, the largest one or two, respectively, Jordan blocks are

destroyed and in addition, if λ̂ is a (simple) eigenvalue of the perturbation, a new

block of size one is created. In addition, if λ̂ is real (or infinite), under a rank-1 or

rank-2 perturbation, all but one or two, respectively, of the signs at each eigenvalue

are preserved, whereby the signs that are not preserved correspond to blocks that

have been destroyed.
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Finally, the sign of the potential new block of size one at λ̂ can be determined

as follows (in case it is real or infinite): If there exist blocks of size greater than one

in the unperturbed pencil at λ̂, then generically the sign that is attached to λ̂ in the

perturbation is added to the list of signs at blocks of size one. On the other hand, if

the largest blocks in the unperturbed pencil at λ̂ have size one, then the list of signs

at these blocks is generically changed as follows: First, the sign that is attached to

λ̂ in the perturbation is added, and then exactly one sign −1 or +1 is removed from

that list.
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