

REPRESENTATIONS AND SIGN PATTERN OF THE GROUP INVERSE FOR SOME BLOCK MATRICES*

LIZHU SUN†, WENZHE WANG‡, CHANGJIANG BU§, YIMIN WEI¶, AND BAODONG ZHENG†

Abstract. Let $M = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix}$ be a complex square matrix where A is square. When $BCB^{\Omega} = 0$, rank $(BC) = \operatorname{rank}(B)$ and the group inverse of $\begin{pmatrix} B^{\Omega}AB^{\Omega} & 0 \\ CB^{\Omega} & 0 \end{pmatrix}$ exists, the group inverse of M exists if and only if $\operatorname{rank}(BC + A (B^{\Omega}AB^{\Omega})^{\pi} B^{\Omega}A) = \operatorname{rank}(B)$. In this case, a representation of $M^{\#}$ in terms of the group inverse and Moore-Penrose inverse of its subblocks is given. Let A be a real matrix. The sign pattern of A is a (0, +, -)-matrix obtained from A by replacing each entry by its sign. The qualitative class of A is the set of the matrices with the same sign pattern as A, denoted by Q(A). The matrix A is called S²GI, if the group inverse of each matrix $\widetilde{A} \in Q(A)$ exists and its sign pattern is independent of \widetilde{A} . By using the group inverse representation, a necessary and sufficient condition for a real block matrix $\begin{pmatrix} A & \Delta_1 & Y_1 \\ \Delta_2 & 0 & 0 \\ Y_2 & 0 & 0 \end{pmatrix}$ to be an S²GI-matrix is given, where A is square, Δ_1 and Δ_2 are invertible, Y_1 and Y_2 are sign orthogonal.

Key words. Group inverse, Moore-Penrose inverse, Sign pattern, S²GI-matrix.

AMS subject classifications. 15A09, 15B35.

1. Introduction. Let $\mathbb{C}^{m \times n}$ and $\mathbb{R}^{m \times n}$ be the sets of $m \times n$ complex matrices and $m \times n$ real matrices, respectively. For $A \in \mathbb{C}^{n \times n}$, the group inverse of A is a matrix $X \in \mathbb{C}^{n \times n}$ satisfying

$$AXA = A, \quad XAX = X, \quad AX = XA.$$

^{*}Received by the editors on August 13, 2013. Accepted for publication on September 23, 2015. Handling Editor: Bryan L. Shader.

[†]School of Science, Harbin Institute of Technology, Harbin 150001, PR China (sunlizhu678876@126.com, zbd@hit.edu.cn).

[‡]College of Science, Harbin Engineering University, Harbin 150001, PR China (690564734@qq.com).

[§]College of Science, College of Automation, Harbin Engineering University, Harbin 150001, PR China (buchangjiang@hrbeu.edu.cn). Supported by the National Natural Science Foundation of China (No. 11371109) and the Natural Science Foundation of the Heilongjiang Province (No. QC2014C001).

[¶]School of Mathematical Sciences, Shanghai Key Laboratory of Contemporary Applied Mathematics, Fudan University, Shanghai 200433, PR China (ymwei@fudan.edu.cn). Supported by the National Natural Science Foundation of China (No. 11271084).

ELA

Representations and Sign Pattern of the Group Inverse for Some Block Matrices 745

It is well-known that the group inverse exists if and only if $\operatorname{rank}(A) = \operatorname{rank}(A^2)$; in this case, the group inverse is unique (see [1]). As is customary, we denote the group inverse of A by $A^{\#}$. When A is nonsingular, $A^{\#} = A^{-1}$. For $A \in \mathbb{C}^{m \times n}$, the matrix $X \in \mathbb{C}^{n \times m}$ is called the Moore-Penrose inverse of A if AXA = A, XAX =X, $(AX)^* = AX$ and $(XA)^* = XA$, where A^* is the conjugate transpose of A. Let A^+ denote the Moore-Penrose inverse of A. It is well-known that A^+ exists and is unique (see [9]). Throughout this paper, $A^{\Omega} = I - AA^+$, $A^Z = I - A^+A$ and $A^{\pi} = I - AA^{\#}$, where I is the identity matrix.

There are many applications of the group inverse of matrices in algebraic connectivity and algebraic bipartiteness of graphs (see [15, 19]), Markov chains (see [9]), and resistance distance (see [6]). In 1979, Campbell and Meyer proposed the open problem of finding explicit formulas for the Drazin or group inverse of a 2×2 block matrix $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ in terms of its subblocks, where A and D are square (see [9]). At present, the problem of finding explicit representations for the group inverse of $\begin{pmatrix} A & B \\ C & 0 \end{pmatrix}$ have not been completely solved. Recently, the existence and the representations for the group inverse of block matrices were given under some conditions (see [8, 11, 13, 14, 18]).

Let $\operatorname{sgn}(a)$ be the sign of a real number a, which is defined to be -, 0 or + depending on a < 0, a = 0 or a > 0. The sign pattern of $A \in \mathbb{R}^{m \times n}$ is a (0, +, -)-matrix obtained from A by replacing each entry by its sign, denoted by $\operatorname{sgn}(A)$, i.e., for matrix $A = (a_{ij})_{m \times n}$, $\operatorname{sgn}(A) = (\operatorname{sgn}(a_{ij}))_{m \times n}$. The qualitative class of the real matrix A is the set of the matrices with the same sign pattern as A, denoted by Q(A) (see [23]). For $A \in \mathbb{R}^{n \times n}$, A is called an SNS-matrix if each $\widetilde{A} \in Q(A)$ is nonsingular. The matrix A is called an S^2NS -matrix if A is an SNS-matrix and $\operatorname{sgn}(\widetilde{A}^{-1}) = \operatorname{sgn}(A^{-1})$ for each $\widetilde{A} \in Q(A)$ (see [4]). The matrix $A \in \mathbb{R}^{n \times n}$ is called an SGI-matrix if $\widetilde{A}^{\#}$ exists for each $\widetilde{A} \in Q(A)$. If A is an SGI-matrix and $\operatorname{sgn}(\widetilde{A}^{\#}) = \operatorname{sgn}(A^{\#})$ for each $\widetilde{A} \in Q(A)$, then A is an S^2 GI-matrix, sometimes we say A has signed generalized inverse to indicate that A is an S^2 GI-matrix (see [25]).

The sign pattern of matrix has important applications in the qualitative economics (see [4, 16, 17, 20, 21, 23]). The monograph of Brualdi and Shader introduces many results on S²NS-matrices (see [4]). In 1995, Shader gave a description for the structure of matrices with signed Moore-Penrose inverse (see [22]). In 2001, Shao and Shan completely characterized the matrices with signed Moore-Penrose inverse (see [23]). In 2004, Britz, Olesky and Driessche researched the signed Moore-Penrose inverse for the matrices with an acyclic bipartite graph (see [3]). In 2010, M. Catral et al. proved that a nonnegative matrix corresponding to a broom graph has a signed group inverse (see [12]). In 2014, Bapat and Ghorbani gave some results on the zero

746

ELA

L. Sun, W. Wang, C. Bu, Y. Wei, and B. Zheng

pattern of the inverse of lower triangular matrices (see [2]). In [25], a real block matrix $M = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix}$ was shown to be an SGI-matrix if $\operatorname{sgn}(B^{\top}) = \operatorname{sgn}(C)$ and C has signed Moore-Penrose inverse, and M is an S²GI-matrix with an additional condition A = 0. In [7, 26], some results on real block matrices $\begin{pmatrix} A & B \\ C & 0 \end{pmatrix}$ with signed Drazin inverse were given under the condition $\operatorname{sgn}(B^{\top}) = \operatorname{sgn}(C)$ and other conditions.

Let $M = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix}$ be a complex square matrix, where A is square. When $BCB^{\Omega} = 0$, rank $(BC) = \operatorname{rank}(B)$ and the group inverse of $\begin{pmatrix} B^{\Omega}AB^{\Omega} & 0 \\ CB^{\Omega} & 0 \end{pmatrix}$ exists, we obtain the group inverse of M exists if and only if rank $(BC + A (B^{\Omega}AB^{\Omega})^{\pi} B^{\Omega}A) = \operatorname{rank}(B)$. In this case, we give the representation of $M^{\#}$ in terms of the group inverse and Moore-Penrose inverse of its subblocks. By using this representation, we give a necessary and sufficient condition for a real block matrix $\begin{pmatrix} A & \Delta_1 & Y_1 \\ \Delta_2 & 0 & 0 \\ Y_2 & 0 & 0 \end{pmatrix}$ to be

an S²GI-matrix, where A is square, Δ_1 and Δ_2 are invertible, $\widetilde{Y_1}\widetilde{Y_2} = 0$ for each $\widetilde{Y_i} \in Q(Y_i), i = 1, 2$.

2. Some lemmas. Before our main results, some lemmas on the group inverse of 2×2 block matrix and the matrix sign pattern are presented. First, we define the notion of sign orthogonality and introduce other notations.

LEMMA 2.1. [5] Let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ be a complex square matrix, where A is nonsingular. If the group inverse of $S = D - CA^{-1}B$ exists, then

(i) $M^{\#}$ exists if and only if $R = A^2 + BS^{\pi}C$ is nonsingular; (ii) If $M^{\#}$ exists, then $M^{\#} = \begin{pmatrix} X & Y \\ Z & W \end{pmatrix}$, where

$$\begin{split} X &= AR^{-1}(A + BS^{\#}C)R^{-1}A, \\ Y &= AR^{-1}(A + BS^{\#}C)R^{-1}BS^{\pi} - AR^{-1}BS^{\#}, \\ Z &= S^{\pi}CR^{-1}(A + BS^{\#}C)R^{-1}A - S^{\#}CR^{-1}A, \\ W &= S^{\pi}CR^{-1}(A + BS^{\#}C)R^{-1}BS^{\pi} - S^{\#}CR^{-1}BS^{\pi} - S^{\pi}CR^{-1}BS^{\#} + S^{\#}. \end{split}$$

Representations and Sign Pattern of the Group Inverse for Some Block Matrices 747

LEMMA 2.2. [10] Let $M = \begin{pmatrix} A & 0 \\ B & 0 \end{pmatrix} \in \mathbb{C}^{n \times n}$ and let $A \in \mathbb{C}^{r \times r}$. Then $M^{\#}$ exists if and only if $A^{\#}$ exists and rank $(A) = \operatorname{rank} \begin{pmatrix} A \\ B \end{pmatrix}$. If $M^{\#}$ exists, then

$$M^{\#} = \left(\begin{array}{cc} A^{\#} & 0\\ B\left(A^{\#}\right)^2 & 0 \end{array}\right).$$

LEMMA 2.3. [24] Let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathbb{C}^{n \times n}$. If $A - BD^{-1}C$ is invertible, then

$$M^{-1} = \begin{pmatrix} (M/D)^{-1} & -(M/D)^{-1} BD^{-1} \\ -D^{-1}C (M/D)^{-1} & D^{-1} + D^{-1}C (M/D)^{-1} BD^{-1} \end{pmatrix}$$

where $M/D = D - CA^{-1}B$.

The term rank of a matrix, denoted by $\rho(A)$, is the maximal cardinality of the sets of nonzero entries of A no two of which lie in the same row or same column. It is easy to see that $\rho(A) = n$ when A is an invertible matrix of order n. Let A be an $m \times n$ matrix, and let $[m] = \{1, \ldots, m\}, [n] = \{1, \ldots, n\}$. If S and T are the subsets of [m] and [n] respectively, then A[S|T] denotes the submatrix of A, whose rows index set is S and columns index set is T. If S = [m] or T = [n], we abbreviate A[S|T] by A[: |T] or A[S|:]. Let $(A)_{i,j}, N_r(A)$ and $N_c(A)$ denote the (i, j) entry of matrix A, the number of rows and the number of columns of the matrix A, respectively.

DEFINITION 2.4. If $\operatorname{sgn}(\widetilde{AB}) = 0$ for all the matrices $\widetilde{A} \in Q(A)$, $\widetilde{B} \in Q(B)$ $(N_c(A) = N_r(B))$, then the matrices A and B are called sign orthogonal.

LEMMA 2.5. [23] Let A be a real matrix of order n such that $\rho(A) = n$ and A is not an SNS matrix. Then there exist invertible matrices A_1 and A_2 in Q(A), and integers p, q with $1 \le p, q \le n$, such that $(A_1^{-1})_{q,p}(A_2^{-1})_{q,p} < 0$.

In [23, Theorem 4.2], Shao and Shan gave a result on $\operatorname{sgn}(\widetilde{A}^+ \widetilde{B} \widetilde{C}^+)$ for all matrices $\widetilde{A} \in Q(A), \ \widetilde{B} \in Q(B)$ and $\widetilde{C} \in Q(C)$. By using the similar methods as [23, Theorem 4.2], we establish a result on $\operatorname{sgn}(ABC)$, for all matrices $\widetilde{A} \in Q(A), \ \widetilde{B} \in Q(B)$ and $\widetilde{C} \in Q(C)$.

LEMMA 2.6. Let A, B, C be real matrices with $N_c(A) = N_r(B)$ and $N_c(B) = N_r(C)$. If $\operatorname{sgn}(A\widetilde{B}C) = \operatorname{sgn}(ABC)$ for all matrices $\widetilde{B} \in Q(B)$, then $\operatorname{sgn}(\widetilde{A}\widetilde{B}\widetilde{C}) = \operatorname{sgn}(ABC)$ for all matrices $\widetilde{A} \in Q(A)$, $\widetilde{B} \in Q(B)$ and $\widetilde{C} \in Q(C)$.

Proof. Let D = ABC. Then

(2.1)
$$(D)_{i,j} = \sum_{k_2=1}^{N_c(B)} \sum_{k_1=1}^{N_r(B)} (A)_{i,k_1}(B)_{k_1,k_2}(C)_{k_2,j}.$$

L. Sun, W. Wang, C. Bu, Y. Wei, and B. Zheng

If there exist matrices $\widetilde{A} \in Q(A)$, $\widetilde{B} \in Q(B)$ and $\widetilde{C} \in Q(C)$ such that $\operatorname{sgn}(\widetilde{A}\widetilde{B}\widetilde{C}) \neq \operatorname{sgn}(ABC)$, then there exist integers $i_1, j_1, p_1, p_2, q_1, q_2$ and $(p_1, q_1) \neq (p_2, q_2)$ such that

$$\operatorname{sgn}((A)_{i_1,p_1}(B)_{p_1,q_1}(C)_{q_1,j_1}) = +$$

$$\operatorname{sgn}((A)_{i_1,p_2}(B)_{p_2,q_2}(C)_{q_2,j_1}) = -.$$

For k = 1, 2, let

748

$$(B_k)_{p,q} = \begin{cases} \frac{1}{\varepsilon}(B)_{p,q}, & p = p_k, q = q_k \\ (B)_{p,q}, & otherwise \end{cases}$$

,

where $\varepsilon > 0$, $p = 1, \ldots, N_r(B)$ and $q = 1, \ldots, N_c(B)$. Clearly, $B_1, B_2 \in Q(B)$ and

(2.2)
$$\operatorname{sgn}(AB_1C) = \operatorname{sgn}(AB_2C).$$

Let $D_1 = AB_1C$, $D_2 = AB_2C$. By (2.1),

$$(D_1)_{i_1,j_1} = \sum_{k_2=1}^{N_c(B)} \sum_{k_1=1}^{N_r(B)} (A)_{i_1,k_1}(B_1)_{k_1,k_2}(C)_{k_2,j_1} + \left(\frac{1}{\varepsilon} - 1\right) (A)_{i_1,p_1}(B_1)_{p_1,q_1}(C)_{q_1,j_1},$$

$$(D_2)_{i_1,j_1} = \sum_{k_2=1}^{N_c(B)} \sum_{k_1=1}^{N_r(B)} (A)_{i_1,k_1}(B_2)_{k_1,k_2}(C)_{k_2,j_1} + \left(\frac{1}{\varepsilon} - 1\right) (A)_{i_1,p_2}(B_2)_{p_2,q_2}(C)_{q_2,j_1}.$$

When ε is sufficiently small,

$$\operatorname{sgn}((D_1)_{i_1,j_1}) = \operatorname{sgn}((A)_{i_1,p_1}(B_1)_{p_1,q_1}(C)_{q_1,j_1}) = +,$$

$$\operatorname{sgn}((D_2)_{i_1,j_1}) = \operatorname{sgn}((A)_{i_1,p_2}(B_2)_{p_2,q_2}(C)_{q_2,j_1}) = -.$$

Thus, $\operatorname{sgn}((D_1)_{i_1,j_1}) \neq \operatorname{sgn}((D_2)_{i_1,j_1})$, which contradicts (2.2). So $\operatorname{sgn}(\widetilde{A}\widetilde{B}\widetilde{C}) = \operatorname{sgn}(ABC)$ for all matrices $\widetilde{A} \in Q(A)$, $\widetilde{B} \in Q(B)$ and $\widetilde{C} \in Q(C)$. \Box

3. Main results. In this section, some results on the existence, representations and sign pattern for the group inverse of anti-triangular block matrices are given.

THEOREM 3.1. Let $M = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix} \in \mathbb{C}^{(n+m)\times(n+m)}$ such that the group inverse of $\begin{pmatrix} B^{\Omega}AB^{\Omega} & 0 \\ CB^{\Omega} & 0 \end{pmatrix}$ exists. Let $\Gamma = BC + A (B^{\Omega}AB^{\Omega})^{\pi} B^{\Omega}A$, where $A \in \mathbb{C}^{n \times n}$. If $BCB^{\Omega} = 0$ and $\operatorname{rank}(BC) = \operatorname{rank}(B)$, then

Representations and Sign Pattern of the Group Inverse for Some Block Matrices 749

(i)
$$M^{\#}$$
 exists if and only if rank(Γ) = rank(B);
(ii) If $M^{\#}$ exists, then $M^{\#} = \begin{pmatrix} X & Y \\ Z & W \end{pmatrix}$, where
 $X = JAGAH - JAH - GAH - JAG + G + H + J$,
 $Y = \Gamma^{+}B + JAGA\Gamma^{+}B - JA\Gamma^{+}B - GA\Gamma^{+}B$,
 $Z = (C - CGA)\Gamma^{+}(I + AGAH - AH - AG) + CG^{2}(I - AH)$,
 $W = (C - CGA)\Gamma^{+}A(GA\Gamma^{+}B - \Gamma^{+}B) - CG^{2}A\Gamma^{+}B$,
 $J = (B^{\Omega}AB^{\Omega})^{\pi}B^{\Omega}A\Gamma^{+}$, $H = \Gamma^{+}A(B^{\Omega}AB^{\Omega})^{\pi}B^{\Omega}$, $G = (B^{\Omega}AB^{\Omega})^{\#}$

Proof. By the singular value decomposition (see [1]), there exist unitary matrices $U \in \mathbb{C}^{n \times n}$ and $V^* \in \mathbb{C}^{m \times m}$ such that

(3.1)
$$UBV^* = \begin{pmatrix} \Delta & 0\\ 0 & 0 \end{pmatrix},$$

where Δ is an $r \times r$ invertible diagonal matrix and $r = \operatorname{rank}(B)$. Let

(3.2)
$$UAU^* = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}, \quad VCU^* = \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix},$$

where $A_1, C_1 \in \mathbb{C}^{r \times r}$. Then $M = \Phi \widetilde{M} \Phi^*$, where $\Phi = \begin{pmatrix} U^* & 0 \\ 0 & V^* \end{pmatrix} \begin{pmatrix} I & 0 & 0 & 0 \\ 0 & 0 & I & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & 0 & I \end{pmatrix}$
is a unitary matrix and

is a unitary matrix, and

(3.3)
$$\widetilde{M} = \begin{pmatrix} A_1 & \Delta & A_2 & 0 \\ C_1 & 0 & C_2 & 0 \\ A_3 & 0 & A_4 & 0 \\ C_3 & 0 & C_4 & 0 \end{pmatrix}.$$

Hence, if $M^{\#}$ exists, then

(3.4)
$$M^{\#} = \Phi\left(\widetilde{M}\right)^{\#} \Phi^*.$$

Since $BCB^{\Omega} = 0$, rank(BC) = rank(B), (3.1) and (3.2) imply that $C_2 = 0$ and C_1 is invertible. Partition (3.3) into the following form

$$\widetilde{M} = \begin{pmatrix} A_1 & \Delta & A_2 & 0\\ C_1 & 0 & 0 & 0\\ A_3 & 0 & A_4 & 0\\ C_3 & 0 & C_4 & 0 \end{pmatrix} =: \begin{pmatrix} N_1 & N_2\\ N_3 & N_4 \end{pmatrix},$$

L. Sun, W. Wang, C. Bu, Y. Wei, and B. Zheng

where

750

$$N_1 = \begin{pmatrix} A_1 & \Delta \\ C_1 & 0 \end{pmatrix}, N_2 = \begin{pmatrix} A_2 & 0 \\ 0 & 0 \end{pmatrix}, N_3 = \begin{pmatrix} A_3 & 0 \\ C_3 & 0 \end{pmatrix}, N_4 = \begin{pmatrix} A_4 & 0 \\ C_4 & 0 \end{pmatrix}.$$

It is easy to see that $(N_1)^{-1} = \begin{pmatrix} 0 & (C_1)^{-1} \\ \Delta^{-1} & -\Delta^{-1}A_1 (C_1)^{-1} \end{pmatrix}$. Calculations show that $\widetilde{M}/N_1 = N_4 - N_3 (N_1)^{-1} N_2 = N_4$. It follows from (3.1) and (3.2) that $\begin{pmatrix} B^{\Omega}AB^{\Omega} & 0 \\ CB^{\Omega} & 0 \end{pmatrix}$

 $= \Phi \begin{pmatrix} 0 & 0 \\ 0 & N_4 \end{pmatrix} \Phi^*.$ Note that the group inverse of $\begin{pmatrix} B^{\Omega}AB^{\Omega} & 0 \\ CB^{\Omega} & 0 \end{pmatrix}$ exists, so the group inverse of \widetilde{M}/N_1 exists. Since N_1 is invertible and the group inverse of \widetilde{M}/N_1 exists, by Lemma 2.1, $\widetilde{M}^{\#}$ exists if and only if $R = (N_1)^2 + N_2 (\widetilde{M}/N_1)^{\pi} N_3$ is invertible.

According to Lemma 2.2, it yields that $(\widetilde{M}/N_1)^{\#} = \begin{pmatrix} A_4^{\#} & 0 \\ C_4 \left(A_4^{\#}\right)^2 & 0 \end{pmatrix}$. Calcu-

lations yield

$$R = (N_1)^2 + N_2 (\widetilde{M}/N_1)^{\pi} N_3$$

= $(N_1)^2 + N_2 \left(I - (M/N_1) (M/N_1)^{\#} \right) N_3$
= $\begin{pmatrix} A_1^2 + A_2 A_3 - A_2 A_4 A_4^{\#} A_3 + \Delta C_1 & A_1 \Delta \\ C_1 A_1 & C_1 \Delta \end{pmatrix}$.

Note that C_1 is invertible, so

$$\operatorname{rank}(R) = \operatorname{rank}\left(\begin{array}{cc} A_{1}^{2} + A_{2}A_{3} - A_{2}A_{4}A_{4}^{\#}A_{3} + \Delta C_{1} & A_{1}\Delta \\ C_{1}A_{1} & C_{1}\Delta \end{array}\right)$$
$$= \operatorname{rank}\left(\begin{array}{cc} A_{2}A_{3} - A_{2}A_{4}A_{4}^{\#}A_{3} + \Delta C_{1} & A_{1}\Delta \\ 0 & C_{1}\Delta \end{array}\right).$$

Hence, R invertible implies that $A_2A_3 - A_2A_4A_4^{\#}A_3 + \Delta C_1$ be invertible, that is

$$\operatorname{rank}(A_2A_3 - A_2A_4A_4^{\#}A_3 + \Delta C_1) = r = \operatorname{rank}(B)$$

By simple computations, we have

$$\Gamma = BC + A \left(B^{\Omega} A B^{\Omega} \right)^{\pi} B^{\Omega} A = \begin{pmatrix} A_2 A_3 - A_2 A_4 A_4^{\#} A_3 + \Delta C_1 & 0 \\ 0 & 0 \end{pmatrix}$$

Thus, R is invertible if and only if rank $(\Gamma) = \operatorname{rank}(B)$. Applying Lemma 2.1, we get

$$\left(\widetilde{M}\right)^{\#} = \left(\begin{array}{cc} \widetilde{X} & \widetilde{Y} \\ \widetilde{Z} & \widetilde{W} \end{array}\right),$$

Representations and Sign Pattern of the Group Inverse for Some Block Matrices 751

where

$$\begin{split} \widetilde{X} &= N_1 R^{-1} K R^{-1} N_1, \\ \widetilde{Y} &= N_1 R^{-1} K R^{-1} N_2 (\widetilde{M}/N_1)^{\pi} - N_1 R^{-1} N_2 (\widetilde{M}/N_1)^{\#}, \\ \widetilde{Z} &= (\widetilde{M}/N_1)^{\pi} N_3 R^{-1} K R^{-1} N_1 - (\widetilde{M}/N_1)^{\#} N_3 R^{-1} N_1, \\ \widetilde{W} &= (\widetilde{M}/N_1)^{\pi} N_3 R^{-1} K R^{-1} N_2 (\widetilde{M}/N_1)^{\pi} - (\widetilde{M}/N_1)^{\#} N_3 R^{-1} N_2 (\widetilde{M}/N_1)^{\pi} \\ &- (\widetilde{M}/N_1)^{\pi} N_3 R^{-1} N_2 (\widetilde{M}/N_1)^{\#} + (\widetilde{M}/N_1)^{\#}, \\ K &= N_1 + N_2 (\widetilde{M}/N_1)^{\#} N_3. \end{split}$$

By (3.4),

(3.5)
$$M^{\#} = \Phi\left(\widetilde{M}\right)^{\#} \Phi^{*} = \Phi\left(\begin{array}{cc} \widetilde{X} & \widetilde{Y} \\ \widetilde{Z} & \widetilde{W} \end{array}\right) \Phi^{*}.$$

From (3.1), we get

$$BB^{+} = U^{*} \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} U, \quad B^{\pi} = U^{*} \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix} U,$$
$$B^{+}B = V^{*} \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} V, \quad B^{\Omega} = V^{*} \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix} V.$$

So by the above BB^+ , B^{π} , B^+B , B^{Ω} and (3.2), it yields

$$\Phi \begin{pmatrix} N_1 & 0 \\ 0 & 0 \end{pmatrix} \Phi^* = \begin{pmatrix} U^* & 0 \\ 0 & V^* \end{pmatrix} \begin{pmatrix} A_1 & 0 & \Delta & 0 \\ 0 & 0 & 0 & 0 \\ C_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} U & 0 \\ 0 & V \end{pmatrix}$$
(3.6)
$$= \begin{pmatrix} BB^+ABB^+ & B \\ B^+BC & 0 \end{pmatrix}.$$

Similarly, we have

(3.7)
$$\Phi \begin{pmatrix} 0 & N_2 \\ 0 & 0 \end{pmatrix} \Phi^* = \begin{pmatrix} BB^+ A B^\Omega & 0 \\ 0 & 0 \end{pmatrix},$$

(3.8)
$$\Phi \begin{pmatrix} 0 & 0 \\ N_3 & 0 \end{pmatrix} \Phi^* = \begin{pmatrix} B^{\Omega} A B B^+ & 0 \\ B^Z C B B^+ & 0 \end{pmatrix},$$

(3.9)
$$\Phi\left(\begin{array}{cc} 0 & 0\\ 0 & (\widetilde{M}/N_1) \end{array}\right)\Phi^* = \left(\begin{array}{cc} B^{\Omega}AB^{\Omega} & 0\\ CB^{\Omega} & 0 \end{array}\right).$$

,

L. Sun, W. Wang, C. Bu, Y. Wei, and B. Zheng

Note that $BCB^{\Omega} = 0$. Since the group inverse of \widetilde{M}/N_1 exists, Lemma 2.2 and (3.9) imply that

where $G = (B^{\Omega}AB^{\Omega})^{\#}$. Similarly,

(3.11)
$$\Phi\left(\begin{array}{cc} 0 & 0\\ 0 & (\widetilde{M}/N_1)^{\pi} \end{array}\right)\Phi^* = \left(\begin{array}{cc} \left(B^{\Omega}AB^{\Omega}\right)^{\pi}B^{\Omega} & 0\\ -CB^{\Omega}G & B^{Z} \end{array}\right).$$

It follows from (3.6)-(3.8) and (3.10) that

Note that

752

$$R = \begin{pmatrix} A_1^2 + A_2 A_3 - A_2 A_4 A_4^{\#} A_3 + \Delta C_1 & A_1 \Delta \\ C_1 A_1 & C_1 \Delta \end{pmatrix}.$$

Computations yield that the Schur complement of R is

$$R/(C_1\Delta) = A_2A_3 - A_2A_4A_4^{\#}A_3 + \Delta C_1.$$

Since $R/(C_1\Delta)$ is invertible, by Lemma 2.3, we have

$$R^{-1} = \begin{pmatrix} S^{-1} & -S^{-1}A_1C_1^{-1} \\ -\Delta^{-1}A_1S^{-1} & \Delta^{-1}C_1^{-1} + \Delta^{-1}A_1S^{-1}A_1C_1^{-1} \end{pmatrix},$$

where $S = R/(C_1\Delta)$. Computation shows that

Representations and Sign Pattern of the Group Inverse for Some Block Matrices 753

(3.15)
$$= \begin{pmatrix} 0 & 0 \\ -B^{+}A\Gamma^{+} & 0 \end{pmatrix}.$$

Similarly, we have

Adding (3.13)-(3.16) yields

(3.17)

$$\Phi \begin{pmatrix} R^{-1} & 0 \\ 0 & 0 \end{pmatrix} \Phi^* = \begin{pmatrix} \Gamma^+ & -\Gamma^+ A (B^+ B C)^+ \\ -B^+ A \Gamma^+ & B^+ A \Gamma^+ A (B^+ B C)^+ + B^+ (B^+ B C)^+ \end{pmatrix}.$$

Substituting the equations (3.6)-(3.12) and (3.17) into (3.5) gives that

$$M^{\#} = \begin{pmatrix} X & Y \\ Z & W \end{pmatrix},$$

where

$$\begin{split} X &= JAGAH - JAH - GAH - JAG + G + H + J, \\ Y &= \Gamma^{+}B + JAGA\Gamma^{+}B - JA\Gamma^{+}B - GA\Gamma^{+}B, \\ Z &= (C - CGA)\Gamma^{+}(I + AGAH - AH - AG) + CG^{2}(I - AH), \\ W &= (C - CGA)\Gamma^{+}A(GA\Gamma^{+}B - \Gamma^{+}B) - CG^{2}A\Gamma^{+}B, \\ J &= (B^{\Omega}AB^{\Omega})^{\pi}B^{\Omega}A\Gamma^{+}, \quad H = \Gamma^{+}A(B^{\Omega}AB^{\Omega})^{\pi}B^{\Omega}. \quad \Box \end{split}$$

754

L. Sun, W. Wang, C. Bu, Y. Wei, and B. Zheng

For the matrix $M = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix}$ in Theorem 3.1, when $C = B^*$, we have the following result.

COROLLARY 3.2. Let $M = \begin{pmatrix} A & B \\ B^* & 0 \end{pmatrix}$, where $A \in \mathbb{C}^{n \times n}$ and $B \in \mathbb{C}^{n \times m}$. If the group inverse of $B^{\Omega}AB^{\Omega}$ exists, and let $\Gamma = BB^* + A \left(B^{\Omega}AB^{\Omega}\right)^{\pi} B^{\Omega}A$. Then

- (i) $M^{\#}$ exists if and only if rank $(\Gamma) = \operatorname{rank}(B);$
- (i) If $M^{\#}$ exists, then $M^{\#} = \begin{pmatrix} X & Y \\ Z & W \end{pmatrix}$, where

$$\begin{aligned} X &= JAGAH - JAH - GAH - JAG + G + H + J, \\ Y &= \Gamma^{+}B + JAGA\Gamma^{+}B - JA\Gamma^{+}B - GA\Gamma^{+}B, \\ Z &= B^{*}\Gamma^{+} + B^{*}\Gamma^{+}AGAH - B^{*}\Gamma^{+}AH - B^{*}\Gamma^{+}AG, \\ W &= B^{*}\Gamma^{+}AGA\Gamma^{+}B - B^{*}\Gamma^{+}A\Gamma^{+}B, \ G &= \left(B^{\Omega}AB^{\Omega}\right)^{\#}, \\ J &= \left(B^{\Omega}AB^{\Omega}\right)^{\pi}B^{\Omega}A\Gamma^{+}, \ H &= \Gamma^{+}A\left(B^{\Omega}AB^{\Omega}\right)^{\pi}B^{\Omega}. \end{aligned}$$

Let Δ be a nonsingular matrix. If $\operatorname{sgn}(\widetilde{\Delta}^{-1}\widetilde{Y}_1) = \operatorname{sgn}(\Delta^{-1}Y_1)$ and $\operatorname{sgn}(\widetilde{Y}_2\widetilde{\Delta}^{-1}) = \operatorname{sgn}(Y_2\Delta^{-1})$ for all the matrices $\widetilde{\Delta} \in Q(\Delta)$, $\widetilde{Y}_1 \in Q(Y_1)$ and $\widetilde{Y}_2 \in Q(Y_2)$ $(N_c(\Delta) = N_r(Y_1), N_c(Y_2) = N_r(\Delta))$, then $\Delta^{-1}Y_1$ and $Y_2\Delta^{-1}$ are called *sign unique*.

THEOREM 3.3. Let $N = \begin{pmatrix} A & \Delta_1 & Y_1 \\ \Delta_2 & 0 & 0 \\ Y_2 & 0 & 0 \end{pmatrix}$ be a real square matrix, where A

is square, Δ_1 and Δ_2 are invertible, Y_1 and Y_2 are sign orthogonal. Then N is an S²GI-matrix if and only if the following hold:

(i)
$$\Delta_1^{-1}Y_1$$
 and $Y_2\Delta_2^{-1}$ are sign unique;
(ii) $U = \begin{pmatrix} I & Y_2\Delta_2^{-1} & 0 & 0 \\ 0 & \Delta_1 & A & 0 \\ 0 & 0 & \Delta_2 & \Delta_1^{-1}Y_1 \\ 0 & 0 & 0 & I \end{pmatrix}$ is S²NS-matrix.

Proof. Let $B = \begin{pmatrix} \Delta_1 & Y_1 \end{pmatrix}$ and $C = \begin{pmatrix} \Delta_2 \\ Y_2 \end{pmatrix}$. Then $N = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix}$. Since Δ_1 and Δ_2 are invertible, Y_1 and Y_2 are sign orthogonal, we get that $B^{\Omega} = 0$ and rank $(BC) = \operatorname{rank}(B)$. By computing, we get $BCB^{\Omega} = 0$, $\begin{pmatrix} B^{\Omega}AB^{\Omega} & 0 \\ CB^{\Omega} & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and $\operatorname{rank}(BC + A(B^{\Omega}AB^{\Omega})^{\pi}B^{\Omega}A) = \operatorname{rank}(BC) = \operatorname{rank}(B)$. By Theo-

Representations and Sign Pattern of the Group Inverse for Some Block Matrices 755

rem 3.1, the group inverse of N exists and

(3.18)
$$N^{\#} = \begin{pmatrix} 0 & \Delta_2^{-1} & \Delta_2^{-1} \Delta_1^{-1} Y_1 \\ \Delta_1^{-1} & -X_1 & -X_2 \\ Y_2 \Delta_2^{-1} \Delta_1^{-1} & -X_3 & -X_4 \end{pmatrix},$$

where

$$\begin{aligned} X_1 &= \Delta_1^{-1} A \Delta_2^{-1}, & X_2 &= \Delta_1^{-1} A \Delta_2^{-1} \Delta_1^{-1} Y_1, \\ X_3 &= Y_2 \Delta_2^{-1} \Delta_1^{-1} A \Delta_2^{-1}, & X_4 &= Y_2 \Delta_2^{-1} \Delta_1^{-1} A \Delta_2^{-1} \Delta_1^{-1} Y_1. \end{aligned}$$

Next, we show that the condition is necessary. Since Δ_1 is invertible, $\rho(\Delta_1) = N_r(\Delta_1)$.

Next, we show that Δ_1 and Δ_2 are SNS-matrices. If Δ_1 is not an SNS-matrix. By Lemma 2.5, there exist matrices $\widetilde{\Delta}_1, \widetilde{\widetilde{\Delta}}_1 \in Q(\Delta_1)$ such that $(\widetilde{\Delta}_1^{-1})_{q,p}(\widetilde{\widetilde{\Delta}}_1^{-1})_{q,p} < 0$, where the integers p, q with $1 \leq p, q \leq N_r(\Delta_1)$. Let

$$N_{1} = \begin{pmatrix} A & \widetilde{\Delta}_{1} & Y_{1} \\ \Delta_{2} & 0 & 0 \\ Y_{2} & 0 & 0 \end{pmatrix}, \quad N_{2} = \begin{pmatrix} A & \widetilde{\widetilde{\Delta}}_{1} & Y_{1} \\ \Delta_{2} & 0 & 0 \\ Y_{2} & 0 & 0 \end{pmatrix}.$$

Clearly, $N_1, N_2 \in Q(N)$ and $N_1^{\#}, N_2^{\#}$ exist. From (3.18) and $(\widetilde{\Delta}_1^{-1})_{q,p}(\widetilde{\widetilde{\Delta}}_1^{-1})_{q,p} < 0$, we have $(N_1^{\#})_{N_r(A)+q,p}(N_2^{\#})_{N_r(A)+q,p} < 0$. This is contrary to N being an S²GImatrix. Thus, we have Δ_1 is an SNS-matrix. Similarly, Δ_2 is an SNS-matrix.

Therefore, for each matrix
$$\widehat{N} = \begin{pmatrix} \widehat{A} & \widehat{\Delta}_1 & \widehat{Y}_1 \\ \widehat{\Delta}_2 & 0 & 0 \\ \widehat{Y}_2 & 0 & 0 \end{pmatrix} \in Q(N)$$
, we have

$$\widehat{N}^{\#} = \begin{pmatrix} 0 & \widehat{\Delta}_2^{-1} & \widehat{\Delta}_2^{-1} \widehat{\Delta}_1^{-1} \widehat{Y}_1 \\ \widehat{\Delta}_1^{-1} & -\widehat{X}_1 & -\widehat{X}_2 \\ \widehat{Y}_2 \widehat{\Delta}_2^{-1} \widehat{\Delta}_1^{-1} & -\widehat{X}_3 & -\widehat{X}_4 \end{pmatrix},$$

where

$$\begin{split} \widehat{X}_1 &= \widehat{\Delta}_1^{-1} \widehat{A} \widehat{\Delta}_2^{-1}, \qquad \qquad \widehat{X}_2 &= \widehat{\Delta}_1^{-1} \widehat{A} \widehat{\Delta}_2^{-1} \widehat{\Delta}_1^{-1} \widehat{Y}_1, \\ \widehat{X}_3 &= \widehat{Y}_2 \widehat{\Delta}_2^{-1} \widehat{\Delta}_1^{-1} \widehat{A} \widehat{\Delta}_2^{-1}, \qquad \widehat{X}_4 &= \widehat{Y}_2 \widehat{\Delta}_2^{-1} \widehat{\Delta}_1^{-1} \widehat{A} \widehat{\Delta}_2^{-1} \widehat{\Delta}_1^{-1} \widehat{Y}_1. \end{split}$$

Since N is an S²GI-matrix, we have

$$\begin{split} & \text{sgn}(\widehat{\Delta}_{1}^{-1}) = \text{sgn}(\Delta_{1}^{-1}), & \text{sgn}(\widehat{\Delta}_{2}^{-1}) = \text{sgn}(\Delta_{2}^{-1}), \\ & \text{sgn}(\widehat{\Delta}_{2}^{-1}\widehat{\Delta}_{1}^{-1}\widehat{Y}_{1}) = \text{sgn}(\Delta_{2}^{-1}\Delta_{1}^{-1}Y_{1}), & \text{sgn}(\widehat{Y}_{2}\widehat{\Delta}_{2}^{-1}\widehat{\Delta}_{1}^{-1}) = \text{sgn}(Y_{2}\Delta_{2}^{-1}\Delta_{1}^{-1}), \\ & \text{sgn}(\widehat{X}_{1}) = \text{sgn}(X_{1}), & \text{sgn}(\widehat{X}_{2}) = \text{sgn}(X_{2}), \\ & \text{sgn}(\widehat{X}_{3}) = \text{sgn}(X_{3}), & \text{sgn}(\widehat{X}_{4}) = \text{sgn}(X_{4}), \end{split}$$

L. Sun, W. Wang, C. Bu, Y. Wei, and B. Zheng

for all matrices $\widehat{\Delta}_1 \in Q(\Delta_1)$, $\widehat{\Delta}_2 \in Q(\Delta_2)$, $\widehat{Y}_1 \in Q(Y_1)$ and $\widehat{Y}_2 \in Q(Y_2)$. Since $\operatorname{sgn}(\widehat{\Delta}_1^{-1}) = \operatorname{sgn}(\Delta_2^{-1})$, $\operatorname{sgn}(\widehat{\Delta}_2^{-1}) = \operatorname{sgn}(\Delta_2^{-1})$, both Δ_1 and Δ_2 are S²NS-matrices. Hence, there exists permutation matrix P_1 such that $(P_1\Delta_2)_{i,i} \neq 0$ $(i = 1, 2, \ldots, N_r(P_1\Delta_2))$.

Let
$$Q_1 = \begin{pmatrix} I & 0 & 0 \\ 0 & P_1 & 0 \\ 0 & 0 & I \end{pmatrix}$$
 and $W_1 = Q_1 N Q_1^T = \begin{pmatrix} A & \Delta_1 P_1^T & Y_1 \\ P_1 \Delta_2 & 0 & 0 \\ Y_2 & 0 & 0 \end{pmatrix}$. It

follows from Theorem 3.1 that

756

$$W_1^{\#} = \begin{pmatrix} 0 & \Delta_2^{-1} P_1^T & \Delta_2^{-1} P_1^T P_1 \Delta_1^{-1} Y_1 \\ P_1 \Delta_1^{-1} & -P_1 X_1 P_1^T & -P_1 X_2 \\ Y_2 \Delta_2^{-1} P_1^T P_1 \Delta_1^{-1} & -X_3 P_1^T & -X_4 \end{pmatrix}.$$

Note that N is S²GI-matrix. Thus, W_1 is an S²GI-matrix. So $\operatorname{sgn}(\widetilde{\Delta}_2^{-1}P_1^T P_1 \widetilde{\Delta}_1^{-1} \widetilde{Y}_1)$ = $\operatorname{sgn}(\Delta_2^{-1}P_1^T P_1 \Delta_1^{-1} Y_1)$ for all the matrices $\widetilde{\Delta}_1 \in Q(\Delta_1), \ \widetilde{\Delta}_2 \in Q(\Delta_2)$ and $\widetilde{Y}_1 \in Q(Y_1)$.

Next, we prove $\Delta_1^{-1}Y_1$ and $Y_2\Delta_2^{-1}$ are sign unique. If $\Delta_1^{-1}Y_1$ is not sign unique. Let $Z_1 = \Delta_1 P_1^T$ and let $Z_2 = P_1\Delta_2$. Then $Z_1^{-1}Y_1 = P_1\Delta_1^{-1}Y_1$ is not sign unique, i.e., there exist integers i_1, i_2 and matrices $\widetilde{Y}_1, \widetilde{\widetilde{Y}}_1 \in Q(Y_1)$ such that $(Z_1^{-1}\widetilde{Y}_1)_{i_1,i_2} > 0$ and $(Z_1^{-1}\widetilde{\widetilde{Y}}_1)_{i_1,i_2} < 0$. For $1 \leq i \leq N_r(Z_2), \varepsilon > 0$, let

$$\widetilde{Z}_2[i|:] = \begin{cases} Z_2[i|:] & i \neq i_1, \\ \varepsilon Z_2[i|:] & i = i_1. \end{cases}$$

Clearly, $\widetilde{Z}_2 \in Q(Z_2)$. It is easy to see that

$$(\widetilde{Z}_2^{-1})_{i_1,i} = \begin{cases} (Z_2^{-1})_{i_1,i} & i \neq i_1 \\ \frac{1}{\varepsilon}(Z_2^{-1})_{i_1,i} & i = i_1 \end{cases} (1 \le i \le N_r(Z_2)).$$

Note that

$$(\widetilde{Z}_2^{-1}Z_1^{-1}\widetilde{Y}_1)_{i_1,i_2} = \frac{1}{\varepsilon}(Z_2^{-1})_{i_1,i_1}(Z_1^{-1}\widetilde{Y}_1)_{i_1,i_2} + \sum_{i=1,i\neq i_1}^{N_c(Z_2)} (Z_2^{-1})_{i_1,i}(Z_1^{-1}\widetilde{Y}_1)_{i,i_2},$$

$$(\widetilde{Z}_2^{-1}Z_1^{-1}\widetilde{\widetilde{Y}}_1)_{i_1,i_2} = \frac{1}{\varepsilon}(Z_2^{-1})_{i_1,i_1}(Z_1^{-1}\widetilde{\widetilde{Y}}_1)_{i_1,i_2} + \sum_{i=1,i\neq i_1}^{N_c(Z_2)}(Z_2^{-1})_{i_1,i}(Z_1^{-1}\widetilde{\widetilde{Y}}_1)_{i,i_2}.$$

When ε is sufficiently small, we get

$$\operatorname{sgn}((\widetilde{Z}_2^{-1}Z_1^{-1}\widetilde{Y}_1)_{i_1,i_2}) = \operatorname{sgn}(\frac{1}{\varepsilon}(Z_2^{-1})_{i_1,i_1}(Z_1^{-1}\widetilde{Y}_1)_{i_1,i_2}),$$

Representations and Sign Pattern of the Group Inverse for Some Block Matrices 757

$$\operatorname{sgn}((\widetilde{Z}_2^{-1}Z_1^{-1}\widetilde{\widetilde{Y}}_1)_{i_1,i_2}) = \operatorname{sgn}(\frac{1}{\varepsilon}(Z_2^{-1})_{i_1,i_1}(Z_1^{-1}\widetilde{\widetilde{Y}}_1)_{i_1,i_2}).$$

Since

$$\operatorname{sgn}((Z_1^{-1}\widetilde{Y}_1)_{i_1,i_2}) = -\operatorname{sgn}((Z_1^{-1}\widetilde{\widetilde{Y}}_1)_{i_1,i_2}),$$

we have

$$\operatorname{sgn}((\widetilde{Z}_2^{-1}Z_1^{-1}\widetilde{Y}_1)_{i_1,i_2}) = -\operatorname{sgn}((\widetilde{Z}_2^{-1}Z_1^{-1}\widetilde{\widetilde{Y}}_1)_{i_1,i_2})$$

This contradicts the assumption that W_1 is an S²GI-matrix. So $\Delta_1^{-1}Y_1$ is sign unique and $\operatorname{sgn}(\widetilde{\Delta}_2^{-1}\widetilde{H}_1) = \operatorname{sgn}(\Delta_2^{-1}\Delta_1^{-1}Y_1)$ for all matrices $\widetilde{\Delta}_2 \in Q(\Delta_2)$, $\widetilde{H}_1 \in Q(\Delta_1^{-1}Y_1)$. Similarly, $Y_2\Delta_2^{-1}$ is sign unique, and $\operatorname{sgn}(\widetilde{H}_2\widetilde{\Delta}_1^{-1}) = \operatorname{sgn}(Y_2\Delta_2^{-1}\Delta_1^{-1})$ for all matrices $\widetilde{H}_2 \in Q(Y_2\Delta_2^{-1})$, $\widetilde{\Delta}_1 \in Q(\Delta_1)$.

Next, we prove that part (ii) of the theorem holds. Let

$$L_1 = \Delta_1^{-1}, \quad L_2 = \Delta_2^{-1}, \quad L_3 = \Delta_2^{-1} \Delta_1^{-1} Y_1, \quad L_4 = Y_2 \Delta_2^{-1} \Delta_1^{-1}.$$

Then

$$X_1 = L_1 A L_2, \quad X_2 = L_1 A L_3, \quad X_3 = L_4 A L_2, \quad X_4 = L_4 A L_3.$$

Since $\operatorname{sgn}(\widehat{\Delta}_1^{-1}\widehat{A}\widehat{\Delta}_2^{-1}) = \operatorname{sgn}(X_1)$ for all matrices $\widehat{\Delta}_1 \in Q(\Delta_1)$, $\widehat{A} \in Q(A)$ and $\widehat{\Delta}_2 \in Q(\Delta_2)$, we have $\operatorname{sgn}(L_1\widehat{A}L_2) = \operatorname{sgn}(L_1AL_2)$ for each matrix $\widetilde{A} \in Q(A)$. It follows from Lemma 2.6 that $\operatorname{sgn}(\widehat{L}_1\widehat{A}\widehat{L}_2) = \operatorname{sgn}(L_1AL_2)$ for all matrices $\widehat{L}_1 \in Q(L_1)$, $\widehat{A} \in Q(A)$ and $\widehat{L}_2 \in Q(L_2)$. Similarly, $\operatorname{sgn}(\widehat{L}_1\widehat{A}\widehat{L}_3) = \operatorname{sgn}(L_1AL_3)$, $\operatorname{sgn}(\widehat{L}_4\widehat{A}\widehat{L}_2) = \operatorname{sgn}(L_4AL_2)$, $\operatorname{sgn}(\widehat{L}_4\widehat{A}\widehat{L}_3) = \operatorname{sgn}(L_4AL_3)$, $\operatorname{sgn}(\widehat{L}_4\widehat{A}\widehat{L}_3) = \operatorname{sgn}(L_4AL_3)$, $\widehat{L}_3 \in Q(L_3)$, $\widehat{L}_4 \in Q(L_4)$.

Let

$$U = \left(\begin{array}{cccc} I & Y_2 \Delta_2^{-1} & 0 & 0 \\ 0 & \Delta_1 & A & \\ 0 & 0 & \Delta_2 & \Delta_1^{-1} Y_1 \\ 0 & 0 & 0 & I \end{array} \right).$$

Since Δ_1 and Δ_2 are SNS-matrices, U is an SNS-matrix. By calculation, we have

(3.19)
$$U^{-1} = \begin{pmatrix} I & -L_4 & L_4AL_2 & -L_4AL_3 \\ 0 & L_1 & -L_1AL_2 & L_1AL_3 \\ 0 & 0 & L_2 & -L_3 \\ 0 & 0 & 0 & I \end{pmatrix}$$

758

L. Sun, W. Wang, C. Bu, Y. Wei, and B. Zheng

 $\text{Clearly, } \operatorname{sgn}(\widehat{U}^{-1}) = \operatorname{sgn}(U^{-1}) \text{ for all matrices } \widehat{U} = \begin{pmatrix} \widehat{I} & \widehat{H}_2 & 0 & 0\\ 0 & \widehat{\Delta}_1 & \widehat{A} & 0\\ 0 & 0 & \widehat{\Delta}_2 & \widehat{H}_1\\ 0 & 0 & 0 & \widehat{\widehat{I}} \end{pmatrix} \in Q(U),$

where $\widehat{I}, \widehat{\widehat{I}} \in Q(I), \ \widehat{\Delta}_1 \in Q(\Delta_1), \ \widehat{\Delta}_2 \in Q(\Delta_2), \ \widehat{A} \in Q(A), \ \widehat{H}_1 \in Q(\Delta_1^{-1}Y_1), \ \widehat{H}_2 \in Q(Y_2\Delta_2^{-1}).$ Hence, U is an S²NS-matrix. So (i) and (ii) hold.

If (i) and (ii) hold, then by (3.18) and (3.19), N is an S²GI matrix. \Box

THEOREM 3.4. Let $N = \begin{pmatrix} A & I & Y_1 \\ I & 0 & 0 \\ Y_2 & 0 & 0 \end{pmatrix}$ be a real square matrix, where A is

square, Y_1 and Y_2 are sign orthogonal. Then N is an S²GI-matrix if and only if $\operatorname{sgn}(\widetilde{Y}_2\widetilde{A}) = \operatorname{sgn}(Y_2A)$, $\operatorname{sgn}(\widetilde{Y}_2\widetilde{A}\widetilde{Y}_1) = \operatorname{sgn}(Y_2AY_1)$ and $\operatorname{sgn}(\widetilde{AY}_1) = \operatorname{sgn}(AY_1)$ for each $\widetilde{A} \in Q(A)$, $\widetilde{Y}_1 \in Q(Y_1)$ and $\widetilde{Y}_2 \in Q(Y_2)$.

Proof. From Theorem 3.3, we have N is an S²GI-matrix if and only if $U = \begin{pmatrix} I & Y_2 & 0 & 0 \\ 0 & I & A & 0 \\ 0 & 0 & I & Y_1 \\ 0 & 0 & 0 & I \end{pmatrix}$ is an S²NS-matrix.

Clearly, U is an SNS-matrix. Calculations gives

$$U^{-1} = \begin{pmatrix} I & -Y_2 & Y_2A & -Y_2AY_1 \\ 0 & I & -A & AY_1 \\ 0 & 0 & I & -Y_1 \\ 0 & 0 & 0 & I \end{pmatrix}$$

Since $\operatorname{sgn}(\widetilde{Y_2}\widetilde{A}) = \operatorname{sgn}(Y_2A)$, $\operatorname{sgn}(\widetilde{Y_2}\widetilde{A}\widetilde{Y_1}) = \operatorname{sgn}(Y_2AY_1)$ and $\operatorname{sgn}(\widetilde{A}\widetilde{Y_1}) = \operatorname{sgn}(AY_1)$ for each $\widetilde{A} \in Q(A), \widetilde{Y_1} \in Q(Y_1)$ and $\widetilde{Y_2} \in Q(Y_2)$, we have U is an S²NS-matrix. Hence, N is an S²GI-matrix. \square

Acknowledgment. The authors would like to thank the anonymous referee for his or her very hard work and giving some valuable comments, which improved this manuscript significantly.

REFERENCES

- A. Ben-Israel and T.N.E. Greville. Generalized Inverses: Theory and Applications. John Wiley & Sons, New York, 1974.
- R.B. Bapat and E. Ghorbani. Inverses of triangular matrices and bipartite graphs. *Linear Algebra Appl.*, 447:68–73, 2014.

Representations and Sign Pattern of the Group Inverse for Some Block Matrices 759

- [3] T. Britz, D.D. Olesky, and P. van den Driessche. The Moore-Penrose inverse of matrices with an acyclic bipartite gragh. *Linear Algebra Appl.*, 390:47–60, 2004.
- [4] R.A. Brualdi and B.L. Shader. Matrices of Sign-Solvable Linear Systems. Cambridge University Press, Cambridge, UK, 1995.
- [5] C. Bu, M. Li, K. Zhang, and L. Zheng. Group inverse for the block matrices with an invertible subblock. Appl. Math. Comput., 215:132–139, 2009.
- [6] C. Bu, L. Sun, J. Zhou, and Y. Wei. A note on the block representations of the group inverse of Laplacian matrices. *Electron. J. Linear Algebra*, 23:866–876, 2012.
- [7] C. Bu, L. Sun, J. Zhou, and Y. Wei. Some results on the Drazin inverse of anti-triangular matrices. *Linear Multilinear Algebra*, 61:1568–1576, 2013.
- [8] C. Bu, K. Zhang, and J. Zhao. Some results on the group inverse of the block matrix with a sub-block of linear combination or product combination of matrices over skew fields. *Linear Multilinear Algebra*, 58:957–966, 2010.
- [9] S.L. Campbell and C.D. Meyer. Generalized Inverses of Linear Transformations. Pitman (Advanced Publishing Program), London, 1979.
- [10] C. Cao. Some results on the group inverses for partitioned matrices over skew fields. Journal of Natural Science Heilongjiang University, 18:5–7, 2001.
- [11] N. Castro-González, J. Robles, and J.Y. Vélez-Cerrada. The group inverse of 2 × 2 matrices over a ring. *Linear Algebra Appl.*, 438:3600–3609, 2013.
- [12] M. Catral, D.D. Olesky, and P. van den Driessche. Graphical description of group inverses of certain bipartite matrices. *Linear Algebra Appl.*, 432:36–52, 2010.
- [13] D.S. Cvetković-Ilić. Some results on the (2, 2, 0) Drazin inverse problem. Linear Algebra Appl., 438:4726-4741, 2013.
- [14] C. Deng and Y. Wei. Representations for the Drazin inverse of 2×2 block-operator matrix with singular Schur complement. *Linear Algebra Appl.*, 435:2766–2783, 2011.
- [15] S. Fallat and Y.Z. Fan. Bipartiteness and the least eigenvalue of signless Laplacian of graphs. Linear Algebra Appl., 436:3254–3267, 2012.
- [16] P. Fontaine, M. Garbely, and M. Gilli. Qualitative solvability in economic models. Comput. Sci. Econom. Management, 4:285–301, 1991.
- [17] F. Hall and Z. Li. Sign pattern matrices. In: L. Hogben (editor), Handbook of Linear Algebra, CRC Press, Boca Raton, 2007.
- [18] R. Hartwig, X. Li, and Y. Wei. Representations for the Drazin inverses of a 2 × 2 block matrix. SIAM J. Matrix Anal. Appl., 27:757–771, 2005.
- [19] S.J. Kirkland, M. Neumann, and B.L. Shader. On a bound on algebraic connectivity: The case of equality. *Czechoslovak Math. J.*, 48:65–76, 1998.
- [20] K. Lancaster. Partionable systems and qualitative economics. Rev. Econ. Studies., 31:69–72, 1964.
- [21] P.A. Samuelson. Foundations of Economic Analysis. Harvard University Press, Cambridge, 1947.
- [22] B.L. Shader. Least square sign-solvability. SIAM. J. Matrix Anal. Appl., 16:1056–1073, 1995.
- [23] J.Y. Shao and H.Y. Shan. Matrices with signed generalized inverse. *Linear Algebra Appl.*, 322:105–127, 2001.
- [24] F. Zhang (editor). The Schur Complement and its Applications. Springer-Verlag, New York, 2005.
- [25] J. Zhou, C. Bu, and Y. Wei. Group inverse for block matrices and some related sign analysis. Linear Multilinear Algebra, 60:669–681, 2012.
- [26] J. Zhou, C. Bu, and Y. Wei. Some block matrices with signed Drazin inverses. *Linear Algebra Appl.*, 437:1779–1792, 2012.