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Abstract. Let M=

(
A B

C 0

)
be a complex square matrix where A is square. When BCBΩ =

0, rank(BC) = rank(B) and the group inverse of

(
BΩABΩ 0

CBΩ 0

)
exists, the group inverse of M

exists if and only if rank(BC + A
(
BΩABΩ

)
π

BΩA) = rank(B). In this case, a representation of

M# in terms of the group inverse and Moore-Penrose inverse of its subblocks is given. Let A be a

real matrix. The sign pattern of A is a (0,+,−)-matrix obtained from A by replacing each entry

by its sign. The qualitative class of A is the set of the matrices with the same sign pattern as A,

denoted by Q(A). The matrix A is called S2GI, if the group inverse of each matrix Ã ∈ Q(A) exists

and its sign pattern is independent of Ã. By using the group inverse representation, a necessary

and sufficient condition for a real block matrix




A ∆1 Y1

∆2 0 0

Y2 0 0



 to be an S2GI-matrix is given,

where A is square, ∆1 and ∆2 are invertible, Y1 and Y2 are sign orthogonal.
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1. Introduction. Let Cm×n and Rm×n be the sets of m× n complex matrices

and m × n real matrices, respectively. For A ∈ Cn×n, the group inverse of A is a

matrix X ∈ Cn×n satisfying

AXA = A, XAX = X, AX = XA.
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It is well-known that the group inverse exists if and only if rank(A) = rank(A2);

in this case, the group inverse is unique (see [1]). As is customary, we denote the

group inverse of A by A#. When A is nonsingular, A# = A−1. For A ∈ Cm×n, the

matrix X ∈ Cn×m is called the Moore-Penrose inverse of A if AXA = A, XAX =

X, (AX)∗ = AX and (XA)∗ = XA, where A∗ is the conjugate transpose of A. Let

A+ denote the Moore-Penrose inverse of A. It is well-known that A+ exists and

is unique (see [9]). Throughout this paper, AΩ = I − AA+, AZ = I − A+A and

Aπ = I − AA#, where I is the identity matrix.

There are many applications of the group inverse of matrices in algebraic con-

nectivity and algebraic bipartiteness of graphs (see [15, 19]), Markov chains (see [9]),

and resistance distance (see [6]). In 1979, Campbell and Meyer proposed the open

problem of finding explicit formulas for the Drazin or group inverse of a 2 × 2 block

matrix

(
A B

C D

)
in terms of its subblocks, where A and D are square (see [9]).

At present, the problem of finding explicit representations for the group inverse of(
A B

C 0

)
have not been completely solved. Recently, the existence and the repre-

sentations for the group inverse of block matrices were given under some conditions

(see [8, 11, 13, 14, 18]).

Let sgn(a) be the sign of a real number a, which is defined to be −, 0 or +

depending on a < 0, a = 0 or a > 0. The sign pattern of A ∈ Rm×n is a (0,+,−)-

matrix obtained from A by replacing each entry by its sign, denoted by sgn(A), i.e.,

for matrix A = (aij)m×n, sgn(A) = (sgn(aij))m×n. The qualitative class of the real

matrix A is the set of the matrices with the same sign pattern as A, denoted by

Q(A) (see [23]). For A ∈ Rn×n, A is called an SNS-matrix if each Ã ∈ Q(A) is

nonsingular. The matrix A is called an S2NS-matrix if A is an SNS-matrix and

sgn(Ã−1) = sgn(A−1) for each Ã ∈ Q(A) (see [4]). The matrix A ∈ Rn×n is called an

SGI-matrix if Ã# exists for each Ã ∈ Q(A). If A is an SGI-matrix and sgn(Ã#) =

sgn(A#) for each Ã ∈ Q(A), then A is an S2GI-matrix, sometimes we say A has

signed generalized inverse to indicate that A is an S2GI-matrix (see [25]).

The sign pattern of matrix has important applications in the qualitative economics

(see [4, 16, 17, 20, 21, 23]). The monograph of Brualdi and Shader introduces many

results on S2NS-matrices (see [4]). In 1995, Shader gave a description for the structure

of matrices with signed Moore-Penrose inverse (see [22]). In 2001, Shao and Shan

completely characterized the matrices with signed Moore-Penrose inverse (see [23]).

In 2004, Britz, Olesky and Driessche researched the signed Moore-Penrose inverse

for the matrices with an acyclic bipartite graph (see [3]). In 2010, M. Catral et

al. proved that a nonnegative matrix corresponding to a broom graph has a signed

group inverse (see [12]). In 2014, Bapat and Ghorbani gave some results on the zero
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pattern of the inverse of lower triangular matrices (see [2]). In [25], a real block matrix

M =

(
A B

C 0

)
was shown to be an SGI-matrix if sgn(B⊤) = sgn(C) and C has

signed Moore-Penrose inverse, and M is an S2GI-matrix with an additional condition

A = 0. In [7, 26], some results on real block matrices

(
A B

C 0

)
with signed Drazin

inverse were given under the condition sgn(B⊤) = sgn(C) and other conditions.

Let M=

(
A B

C 0

)
be a complex square matrix, where A is square. When

BCBΩ = 0, rank(BC) = rank(B) and the group inverse of

(
BΩABΩ 0

CBΩ 0

)
exists,

we obtain the group inverse ofM exists if and only if rank(BC +A
(
BΩABΩ

)π
BΩA) =

rank(B). In this case, we give the representation of M# in terms of the group inverse

and Moore-Penrose inverse of its subblocks. By using this representation, we give a

necessary and sufficient condition for a real block matrix




A ∆1 Y1

∆2 0 0

Y2 0 0


 to be

an S2GI-matrix, where A is square, ∆1 and ∆2 are invertible, Ỹ1Ỹ2 = 0 for each

Ỹi ∈ Q(Yi), i = 1, 2.

2. Some lemmas. Before our main results, some lemmas on the group inverse

of 2× 2 block matrix and the matrix sign pattern are presented. First, we define the

notion of sign orthogonality and introduce other notations.

Lemma 2.1. [5] Let M =

(
A B

C D

)
be a complex square matrix, where A is

nonsingular. If the group inverse of S = D − CA−1B exists, then

(i) M# exists if and only if R = A2 + BSπC is nonsingular; (ii) If M# exists,

then M# =

(
X Y

Z W

)
, where

X = AR−1(A+BS#C)R−1A,

Y = AR−1(A+BS#C)R−1BSπ −AR−1BS#,

Z = SπCR−1(A+BS#C)R−1A− S#CR−1A,

W = SπCR−1(A+BS#C)R−1BSπ − S#CR−1BSπ − SπCR−1BS# + S#.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 744-759, November 2015



ELA

Representations and Sign Pattern of the Group Inverse for Some Block Matrices 747

Lemma 2.2. [10] Let M=

(
A 0

B 0

)
∈ Cn×n and let A ∈ Cr×r. Then M#

exists if and only if A# exists and rank (A) = rank

(
A

B

)
. If M# exists, then

M# =

(
A# 0

B
(
A#
)2

0

)
.

Lemma 2.3. [24] Let M=

(
A B

C D

)
∈ Cn×n. If A−BD−1C is invertible, then

M−1=

(
(M/D)

−1
− (M/D)

−1
BD−1

−D−1C (M/D)
−1

D−1 +D−1C (M/D)
−1

BD−1

)
,

where M/D = D − CA−1B.

The term rank of a matrix, denoted by ρ(A), is the maximal cardinality of the

sets of nonzero entries of A no two of which lie in the same row or same column. It

is easy to see that ρ(A) = n when A is an invertible matrix of order n. Let A be an

m× n matrix, and let [m] = {1, . . . ,m}, [n] = {1, . . . , n}. If S and T are the subsets

of [m] and [n] respectively, then A[S|T ] denotes the submatrix of A, whose rows index

set is S and columns index set is T . If S = [m] or T = [n], we abbreviate A[S|T ] by

A[: |T ] or A[S| :]. Let (A)i,j , Nr(A) and Nc(A) denote the (i, j) entry of matrix A,

the number of rows and the number of columns of the matrix A, respectively.

Definition 2.4. If sgn(ÃB̃) = 0 for all the matrices Ã ∈ Q(A), B̃ ∈ Q(B)

(Nc(A) = Nr(B)), then the matrices A and B are called sign orthogonal.

Lemma 2.5. [23] Let A be a real matrix of order n such that ρ(A) = n and A is

not an SNS matrix. Then there exist invertible matrices A1 and A2 in Q(A), and

integers p, q with 1 ≤ p, q ≤ n, such that (A−1
1 )q,p(A

−1
2 )q,p < 0.

In [23, Theorem 4.2], Shao and Shan gave a result on sgn(Ã+B̃C̃+) for all matrices

Ã ∈ Q(A), B̃ ∈ Q(B) and C̃ ∈ Q(C). By using the similar methods as [23, Theorem

4.2], we establish a result on sgn(ABC), for all matrices Ã ∈ Q(A), B̃ ∈ Q(B) and

C̃ ∈ Q(C).

Lemma 2.6. Let A,B,C be real matrices with Nc(A) = Nr(B) and Nc(B) =

Nr(C). If sgn(AB̃C) = sgn(ABC) for all matrices B̃ ∈ Q(B), then sgn(ÃB̃C̃) =

sgn(ABC) for all matrices Ã ∈ Q(A), B̃ ∈ Q(B) and C̃ ∈ Q(C).

Proof. Let D = ABC. Then

(D)i,j =

Nc(B)∑

k2=1

Nr(B)∑

k1=1

(A)i,k1
(B)k1,k2

(C)k2,j.(2.1)
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If there exist matrices Ã ∈ Q(A), B̃ ∈ Q(B) and C̃ ∈ Q(C) such that sgn(ÃB̃C̃) 6=

sgn(ABC), then there exist integers i1, j1, p1, p2, q1, q2 and (p1, q1) 6= (p2, q2) such

that

sgn((A)i1,p1
(B)p1,q1(C)q1,j1) = + ,

sgn((A)i1,p2
(B)p2,q2(C)q2,j1) = − .

For k = 1, 2, let

(Bk)p,q =

{
1
ε
(B)p,q, p = pk, q = qk
(B)p,q, otherwise

,

where ε > 0, p = 1, . . . , Nr(B) and q = 1, . . . , Nc(B). Clearly, B1, B2 ∈ Q(B) and

sgn(AB1C) = sgn(AB2C).(2.2)

Let D1 = AB1C, D2 = AB2C. By (2.1),

(D1)i1,j1 =

Nc(B)∑

k2=1

Nr(B)∑

k1=1

(A)i1,k1
(B1)k1,k2

(C)k2,j1 +

(
1

ε
− 1

)
(A)i1,p1

(B1)p1,q1(C)q1,j1 ,

(D2)i1,j1 =

Nc(B)∑

k2=1

Nr(B)∑

k1=1

(A)i1,k1
(B2)k1,k2

(C)k2,j1 +

(
1

ε
− 1

)
(A)i1,p2

(B2)p2,q2(C)q2,j1 .

When ε is sufficiently small,

sgn((D1)i1,j1) = sgn((A)i1,p1
(B1)p1,q1(C)q1,j1) = + ,

sgn((D2)i1,j1) = sgn((A)i1,p2
(B2)p2,q2(C)q2,j1) = − .

Thus, sgn((D1)i1,j1) 6= sgn((D2)i1,j1), which contradicts (2.2). So sgn(ÃB̃C̃) =

sgn(ABC) for all matrices Ã ∈ Q(A), B̃ ∈ Q(B) and C̃ ∈ Q(C).

3. Main results. In this section, some results on the existence, representations

and sign pattern for the group inverse of anti-triangular block matrices are given.

Theorem 3.1. Let M=

(
A B

C 0

)
∈ C(n+m)×(n+m) such that the group inverse

of

(
BΩABΩ 0

CBΩ 0

)
exists. Let Γ = BC + A

(
BΩABΩ

)π
BΩA, where A ∈ Cn×n. If

BCBΩ = 0 and rank(BC) = rank(B), then
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(i) M# exists if and only if rank(Γ) = rank(B);

(ii) If M# exists, then M# =

(
X Y

Z W

)
, where

X = JAGAH − JAH −GAH − JAG+G+H + J,

Y = Γ+B + JAGAΓ+B − JAΓ+B −GAΓ+B,

Z = (C − CGA) Γ+ (I +AGAH −AH −AG) + CG2 (I −AH) ,

W = (C − CGA) Γ+A
(
GAΓ+B − Γ+B

)
− CG2AΓ+B,

J =
(
BΩABΩ

)π
BΩAΓ+, H = Γ+A

(
BΩABΩ

)π
BΩ, G =

(
BΩABΩ

)#
.

Proof. By the singular value decomposition (see [1]), there exist unitary matrices

U ∈ Cn×n and V ∗ ∈ Cm×m such that

UBV ∗ =

(
∆ 0

0 0

)
,(3.1)

where ∆ is an r × r invertible diagonal matrix and r = rank (B). Let

UAU∗ =

(
A1 A2

A3 A4

)
, V CU∗ =

(
C1 C2

C3 C4

)
,(3.2)

where A1, C1 ∈ Cr×r. ThenM = ΦM̃Φ∗, where Φ =

(
U∗ 0

0 V ∗

)



I 0 0 0

0 0 I 0

0 I 0 0

0 0 0 I




is a unitary matrix, and

M̃ =




A1 ∆ A2 0

C1 0 C2 0

A3 0 A4 0

C3 0 C4 0


 .(3.3)

Hence, if M# exists, then

M# = Φ
(
M̃
)#

Φ∗.(3.4)

Since BCBΩ = 0, rank(BC) = rank(B), (3.1) and (3.2) imply that C2 = 0 and

C1 is invertible. Partition (3.3) into the following form

M̃ =




A1 ∆ A2 0

C1 0 0 0

A3 0 A4 0

C3 0 C4 0


 =:

(
N1 N2

N3 N4

)
,
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where

N1 =

(
A1 ∆

C1 0

)
, N2 =

(
A2 0

0 0

)
, N3 =

(
A3 0

C3 0

)
, N4 =

(
A4 0

C4 0

)
.

It is easy to see that (N1)
−1 =

(
0 (C1)

−1

∆−1 −∆−1A1 (C1)
−1

)
. Calculations show

that M̃/N1 = N4 − N3 (N1)
−1

N2 = N4. It follows from (3.1) and (3.2) that(
BΩABΩ 0

CBΩ 0

)

= Φ

(
0 0

0 N4

)
Φ∗. Note that the group inverse of

(
BΩABΩ 0

CBΩ 0

)
exists, so the

group inverse of M̃/N1 exists. Since N1 is invertible and the group inverse of M̃/N1

exists, by Lemma 2.1, M̃# exists if and only if R = (N1)
2 +N2(M̃/N1)

πN3 is invert-

ible.

According to Lemma 2.2, it yields that (M̃/N1)
# =




A#
4 0

C4

(
A#

4

)2
0


. Calcu-

lations yield

R = (N1)
2 +N2(M̃/N1)

πN3

= (N1)
2 +N2

(
I − (M/N1) (M/N1)

#
)
N3

=

(
A2

1 +A2A3 − A2A4A
#
4 A3 +∆C1 A1∆

C1A1 C1∆

)
.

Note that C1 is invertible, so

rank(R) = rank

(
A2

1 +A2A3 −A2A4A
#
4 A3 +∆C1 A1∆

C1A1 C1∆

)

= rank

(
A2A3 −A2A4A

#
4 A3 +∆C1 A1∆

0 C1∆

)
.

Hence, R invertible implies that A2A3 −A2A4A
#
4 A3 +∆C1 be invertible, that is

rank(A2A3 −A2A4A
#
4 A3 +∆C1) = r = rank(B).

By simple computations, we have

Γ = BC +A
(
BΩABΩ

)π
BΩA =

(
A2A3 −A2A4A

#
4 A3 +∆C1 0

0 0

)
.

Thus, R is invertible if and only if rank (Γ) = rank (B). Applying Lemma 2.1, we get

(
M̃
)#

=

(
X̃ Ỹ

Z̃ W̃

)
,
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where

X̃ = N1R
−1KR−1N1,

Ỹ = N1R
−1KR−1N2(M̃/N1)

π −N1R
−1N2(M̃/N1)

#,

Z̃ = (M̃/N1)
πN3R

−1KR−1N1 − (M̃/N1)
#N3R

−1N1,

W̃ = (M̃/N1)
πN3R

−1KR−1N2(M̃/N1)
π − (M̃/N1)

#N3R
−1N2(M̃/N1)

π

− (M̃/N1)
πN3R

−1N2(M̃/N1)
#+(M̃/N1)

#,

K = N1 +N2(M̃/N1)
#N3.

By (3.4),

M# = Φ
(
M̃
)#

Φ∗ = Φ

(
X̃ Ỹ

Z̃ W̃

)
Φ∗.(3.5)

From (3.1), we get

BB+ = U∗

(
I 0

0 0

)
U, Bπ = U∗

(
0 0

0 I

)
U,

B+B = V ∗

(
I 0

0 0

)
V, BΩ = V ∗

(
0 0

0 I

)
V.

So by the above BB+, Bπ, B+B, BΩ and (3.2), it yields

Φ

(
N1 0

0 0

)
Φ∗ =

(
U∗ 0

0 V ∗

)



A1 0 ∆ 0

0 0 0 0

C1 0 0 0

0 0 0 0



(

U 0

0 V

)

=

(
BB+ABB+ B

B+BC 0

)
.(3.6)

Similarly, we have

Φ

(
0 N2

0 0

)
Φ∗ =

(
BB+ABΩ 0

0 0

)
,(3.7)

Φ

(
0 0

N3 0

)
Φ∗ =

(
BΩABB+ 0

BZCBB+ 0

)
,(3.8)

Φ

(
0 0

0 (M̃/N1)

)
Φ∗ =

(
BΩABΩ 0

CBΩ 0

)
.(3.9)
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Note that BCBΩ = 0. Since the group inverse of M̃/N1 exists, Lemma 2.2 and (3.9)

imply that

Φ

(
0 0

0 (M̃/N1)
#

)
Φ∗ = Φ




0 0 0 0

0 0 0 0

0 0 A#
4 0

0 0 C4

(
A#

4

)2
0




Φ∗

=

(
U∗ 0

0 V ∗

)



0 0 0 0

0 A#
4 0 0

0 0 0 0

0 C4

(
A#

4

)2
0 0




(
U 0

0 V

)
=

(
G 0

CG2 0

)
,(3.10)

where G =
(
BΩABΩ

)#
. Similarly,

Φ

(
0 0

0 (M̃/N1)
π

)
Φ∗ =

( (
BΩABΩ

)π
BΩ 0

−CBΩG BZ

)
.(3.11)

It follows from (3.6)-(3.8) and (3.10) that

Φ

(
K 0

0 0

)
Φ∗

=Φ

(
N1 0

0 0

)
Φ∗ +Φ

(
0 N2

0 0

)(
0 0

0 (M/N1)
#

)(
0 0

N3 0

)
Φ∗

=

(
BB+AGABB+ +BB+ABB+ B

B+BC 0

)
.(3.12)

Note that

R =

(
A2

1 +A2A3 −A2A4A
#
4 A3 +∆C1 A1∆

C1A1 C1∆

)
.

Computations yield that the Schur complement of R is

R/(C1∆) = A2A3 −A2A4A
#
4 A3 +∆C1.

Since R/(C1∆) is invertible, by Lemma 2.3, we have

R−1 =

(
S−1 −S−1A1C

−1
1

−∆−1A1S
−1 ∆−1C−1

1 +∆−1A1S
−1A1C

−1
1

)
,

where S = R/(C1∆). Computation shows that

Φ




S−1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Φ∗ =

(
Γ+ 0

0 0

)
,(3.13)
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Φ




0 −S−1A1C
−1
1 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Φ∗

=

(
−Γ+ 0

0 0

)(
A 0

0 0

)[(
0 0

0 B+B

)(
0 0

C 0

)]+

=

(
0 −Γ+A (B+BC)

+

0 0

)
,(3.14)

Φ




0 0 0 0

−∆−1A1S
−1 0 0 0

0 0 0 0

0 0 0 0


Φ∗ =

(
0 0

B+ 0

)(
A 0

0 0

)(
−Γ+ 0

0 0

)

=

(
0 0

−B+AΓ+ 0

)
.(3.15)

Similarly, we have

Φ




0 0 0 0

0 ∆−1C−1
1 +∆−1A1S

−1A1C
−1
1 0 0

0 0 0 0

0 0 0 0


Φ∗

=

(
0 0

0 B+AΓ+A (B+BC)
+
+B+ (B+BC)

+

)
.

(3.16)

Adding (3.13)-(3.16) yields

Φ

(
R−1 0

0 0

)
Φ∗ =

(
Γ+ −Γ+A (B+BC)

+

−B+AΓ+ B+AΓ+A (B+BC)
+
+B+ (B+BC)

+

)
.

(3.17)

Substituting the equations (3.6)-(3.12) and (3.17) into (3.5) gives that

M# =

(
X Y

Z W

)
,

where

X = JAGAH − JAH −GAH − JAG+G+H + J,

Y = Γ+B + JAGAΓ+B − JAΓ+B −GAΓ+B,

Z = (C − CGA) Γ+ (I +AGAH −AH −AG) + CG2 (I −AH) ,

W = (C − CGA) Γ+A
(
GAΓ+B − Γ+B

)
− CG2AΓ+B,

J =
(
BΩABΩ

)π
BΩAΓ+, H = Γ+A

(
BΩABΩ

)π
BΩ.
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For the matrix M=

(
A B

C 0

)
in Theorem 3.1, when C = B∗ , we have the

following result.

Corollary 3.2. Let M=

(
A B

B∗ 0

)
, where A ∈ Cn×n and B ∈ Cn×m. If the

group inverse of BΩABΩ exists, and let Γ = BB∗ +A
(
BΩABΩ

)π
BΩA. Then

(i) M# exists if and only if rank (Γ) = rank (B);

(i) If M# exists, then M# =

(
X Y

Z W

)
, where

X = JAGAH − JAH −GAH − JAG+G+H + J,

Y = Γ+B + JAGAΓ+B − JAΓ+B −GAΓ+B,

Z = B∗Γ+ +B∗Γ+AGAH −B∗Γ+AH −B∗Γ+AG,

W = B∗Γ+AGAΓ+B −B∗Γ+AΓ+B, G =
(
BΩABΩ

)#
,

J =
(
BΩABΩ

)π
BΩAΓ+, H = Γ+A

(
BΩABΩ

)π
BΩ.

Let ∆ be a nonsingular matrix. If sgn(∆̃−1Ỹ1) = sgn(∆−1Y1) and sgn(Ỹ2∆̃
−1) =

sgn(Y2∆
−1) for all the matrices ∆̃ ∈ Q(∆), Ỹ1 ∈ Q(Y1) and Ỹ2 ∈ Q(Y2) (Nc(∆) =

Nr(Y1), Nc(Y2) = Nr(∆)), then ∆−1Y1 and Y2∆
−1 are called sign unique.

Theorem 3.3. Let N =




A ∆1 Y1

∆2 0 0

Y2 0 0


 be a real square matrix, where A

is square, ∆1 and ∆2 are invertible, Y1 and Y2 are sign orthogonal. Then N is an

S2GI-matrix if and only if the following hold:

(i) ∆−1
1 Y1 and Y2∆

−1
2 are sign unique;

(ii) U =




I Y2∆
−1
2 0 0

0 ∆1 A 0

0 0 ∆2 ∆−1
1 Y1

0 0 0 I


 is S2NS-matrix.

Proof. Let B =
(
∆1 Y1

)
and C =

(
∆2

Y2

)
. Then N =

(
A B

C 0

)
. Since

∆1 and ∆2 are invertible, Y1 and Y2 are sign orthogonal, we get that BΩ = 0 and

rank(BC) = rank(B). By computing, we get BCBΩ = 0,

(
BΩABΩ 0

CBΩ 0

)
=

(
0 0

0 0

)
and rank(BC + A(BΩABΩ)πBΩA) = rank(BC) = rank(B). By Theo-
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rem 3.1, the group inverse of N exists and

N# =




0 ∆−1
2 ∆−1

2 ∆−1
1 Y1

∆−1
1 −X1 −X2

Y2∆
−1
2 ∆−1

1 −X3 −X4


 ,(3.18)

where

X1 = ∆−1
1 A∆−1

2 , X2 = ∆−1
1 A∆−1

2 ∆−1
1 Y1,

X3 = Y2∆
−1
2 ∆−1

1 A∆−1
2 , X4 = Y2∆

−1
2 ∆−1

1 A∆−1
2 ∆−1

1 Y1.

Next, we show that the condition is necessary. Since ∆1 is invertible, ρ(∆1) =

Nr(∆1).

Next, we show that ∆1 and ∆2 are SNS-matrices. If ∆1 is not an SNS-matrix.

By Lemma 2.5, there exist matrices ∆̃1,
˜̃
∆1 ∈ Q(∆1) such that (∆̃−1

1 )q,p(
˜̃
∆

−1

1 )q,p < 0,

where the integers p, q with 1 ≤ p, q ≤ Nr(∆1). Let

N1 =




A ∆̃1 Y1

∆2 0 0

Y2 0 0


 , N2 =




A
˜̃
∆1 Y1

∆2 0 0

Y2 0 0


 .

Clearly, N1, N2 ∈ Q(N) and N1
#, N2

# exist. From (3.18) and (∆̃−1
1 )q,p(

˜̃
∆

−1

1 )q,p < 0,

we have (N#
1 )Nr(A)+q,p(N

#
2 )Nr(A)+q,p < 0. This is contrary to N being an S2GI-

matrix. Thus, we have ∆1 is an SNS-matrix. Similarly, ∆2 is an SNS-matrix.

Therefore, for each matrix N̂ =




Â ∆̂1 Ŷ1

∆̂2 0 0

Ŷ2 0 0


 ∈ Q(N), we have

N̂# =




0 ∆̂−1
2 ∆̂−1

2 ∆̂−1
1 Ŷ1

∆̂−1
1 −X̂1 −X̂2

Ŷ2∆̂
−1
2 ∆̂−1

1 −X̂3 −X̂4


 ,

where

X̂1 = ∆̂−1
1 Â∆̂−1

2 , X̂2 = ∆̂−1
1 Â∆̂−1

2 ∆̂−1
1 Ŷ1,

X̂3 = Ŷ2∆̂
−1
2 ∆̂−1

1 Â∆̂−1
2 , X̂4 = Ŷ2∆̂

−1
2 ∆̂−1

1 Â∆̂−1
2 ∆̂−1

1 Ŷ1.

Since N is an S2GI-matrix, we have

sgn(∆̂−1
1 ) = sgn(∆−1

1 ), sgn(∆̂−1
2 ) = sgn(∆−1

2 ),

sgn(∆̂−1
2 ∆̂−1

1 Ŷ1) = sgn(∆−1
2 ∆−1

1 Y1), sgn(Ŷ2∆̂
−1
2 ∆̂−1

1 ) = sgn(Y2∆
−1
2 ∆−1

1 ),

sgn(X̂1) = sgn(X1), sgn(X̂2) = sgn(X2),

sgn(X̂3) = sgn(X3), sgn(X̂4) = sgn(X4),
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for all matrices ∆̂1 ∈ Q(∆1), ∆̂2 ∈ Q(∆2), Ŷ1 ∈ Q(Y1) and Ŷ2 ∈ Q(Y2). Since

sgn(∆̂−1
1 ) = sgn(∆−1

1 ), sgn(∆̂−1
2 ) = sgn(∆−1

2 ), both ∆1 and ∆2 are S2NS-matrices.

Hence, there exists permutation matrix P1 such that (P1∆2)i,i 6= 0 (i = 1, 2, . . . ,

Nr(P1∆2)).

Let Q1 =




I 0 0

0 P1 0

0 0 I


 and W1 = Q1NQT

1 =




A ∆1P
T
1 Y1

P1∆2 0 0

Y2 0 0


. It

follows from Theorem 3.1 that

W#
1 =




0 ∆−1
2 PT

1 ∆−1
2 PT

1 P1∆
−1
1 Y1

P1∆
−1
1 −P1X1P

T
1 −P1X2

Y2∆
−1
2 PT

1 P1∆
−1
1 −X3P

T
1 −X4


 .

Note that N is S2GI-matrix. Thus, W1 is an S2GI-matrix. So sgn(∆̃−1
2 PT

1 P1∆̃
−1
1 Ỹ1)

= sgn(∆−1
2 PT

1 P1∆
−1
1 Y1) for all the matrices ∆̃1 ∈ Q(∆1), ∆̃2 ∈ Q(∆2) and Ỹ1 ∈

Q(Y1).

Next, we prove ∆−1
1 Y1 and Y2∆

−1
2 are sign unique. If ∆−1

1 Y1 is not sign unique.

Let Z1 = ∆1P
T
1 and letZ2 = P1∆2. Then Z−1

1 Y1 = P1∆
−1
1 Y1 is not sign unique, i.e.,

there exist integers i1, i2 and matrices Ỹ1,
˜̃
Y 1 ∈ Q(Y1) such that (Z−1

1 Ỹ1)i1,i2 > 0 and

(Z−1
1
˜̃
Y 1)i1,i2 < 0. For 1 ≤ i ≤ Nr(Z2), ε > 0, let

Z̃2[i| :] =

{
Z2[i| :] i 6= i1,

εZ2[i| :] i = i1.

Clearly, Z̃2 ∈ Q(Z2). It is easy to see that

(Z̃−1
2 )i1,i =

{
(Z−1

2 )i1,i i 6= i1
1
ε
(Z−1

2 )i1,i i = i1
(1 ≤ i ≤ Nr(Z2)).

Note that

(Z̃−1
2 Z−1

1 Ỹ1)i1,i2 =
1

ε
(Z−1

2 )i1,i1(Z
−1
1 Ỹ1)i1,i2 +

Nc(Z2)∑

i=1,i6=i1

(Z−1
2 )i1,i(Z

−1
1 Ỹ1)i,i2 ,

(Z̃−1
2 Z−1

1
˜̃
Y 1)i1,i2 =

1

ε
(Z−1

2 )i1,i1(Z
−1
1
˜̃
Y 1)i1,i2 +

Nc(Z2)∑

i=1,i6=i1

(Z−1
2 )i1,i(Z

−1
1
˜̃
Y 1)i,i2 .

When ε is sufficiently small, we get

sgn((Z̃−1
2 Z−1

1 Ỹ1)i1,i2) = sgn(
1

ε
(Z−1

2 )i1,i1(Z
−1
1 Ỹ1)i1,i2),
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sgn((Z̃−1
2 Z−1

1
˜̃
Y 1)i1,i2) = sgn(

1

ε
(Z−1

2 )i1,i1(Z
−1
1
˜̃
Y 1)i1,i2).

Since

sgn((Z−1
1 Ỹ1)i1,i2) = −sgn((Z−1

1
˜̃
Y 1)i1,i2),

we have

sgn((Z̃−1
2 Z−1

1 Ỹ1)i1,i2) = −sgn((Z̃−1
2 Z−1

1
˜̃
Y 1)i1,i2).

This contradicts the assumption that W1 is an S2GI-matrix. So ∆−1
1 Y1 is sign unique

and sgn(∆̃−1
2 H̃1) = sgn(∆−1

2 ∆−1
1 Y1) for all matrices ∆̃2 ∈ Q(∆2), H̃1 ∈ Q(∆−1

1 Y1).

Similarly, Y2∆
−1
2 is sign unique, and sgn(H̃2∆̃

−1
1 ) = sgn(Y2∆

−1
2 ∆−1

1 ) for all matrices

H̃2 ∈ Q(Y2∆
−1
2 ), ∆̃1 ∈ Q(∆1).

Next, we prove that part (ii) of the theorem holds. Let

L1 = ∆−1
1 , L2 = ∆−1

2 , L3 = ∆−1
2 ∆−1

1 Y1, L4 = Y2∆
−1
2 ∆−1

1 .

Then

X1 = L1AL2, X2 = L1AL3, X3 = L4AL2, X4 = L4AL3.

Since sgn(∆̂−1
1 Â∆̂−1

2 ) = sgn(X1) for all matrices ∆̂1 ∈ Q(∆1), Â ∈ Q(A) and ∆̂2 ∈

Q(∆2), we have sgn(L1ÃL2) = sgn(L1AL2) for each matrix Ã ∈ Q(A). It follows from

Lemma 2.6 that sgn(L̂1ÂL̂2) = sgn(L1AL2) for all matrices L̂1 ∈ Q(L1), Â ∈ Q(A)

and L̂2 ∈ Q(L2). Similarly, sgn(L̂1ÂL̂3) = sgn(L1AL3), sgn(L̂4ÂL̂2) = sgn(L4AL2),

sgn(L̂4ÂL̂3) = sgn(L4AL3) for all matrices Â ∈ Q(A), L̂1 ∈ Q(L1), L̂2 ∈ Q(L2),

L̂3 ∈ Q(L3), L̂4 ∈ Q(L4).

Let

U =




I Y2∆
−1
2 0 0

0 ∆1 A

0 0 ∆2 ∆−1
1 Y1

0 0 0 I


 .

Since ∆1 and ∆2 are SNS-matrices, U is an SNS-matrix. By calculation, we have

U−1 =




I −L4 L4AL2 −L4AL3

0 L1 −L1AL2 L1AL3

0 0 L2 −L3

0 0 0 I


 .(3.19)
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Clearly, sgn(Û−1) = sgn(U−1) for all matrices Û =




Î Ĥ2 0 0

0 ∆̂1 Â 0

0 0 ∆̂2 Ĥ1

0 0 0
̂̂
I


 ∈ Q(U),

where Î ,
̂̂
I ∈ Q(I), ∆̂1 ∈ Q(∆1), ∆̂2 ∈ Q(∆2), Â ∈ Q(A), Ĥ1 ∈ Q(∆−1

1 Y1), Ĥ2 ∈

Q(Y2∆
−1
2 ). Hence, U is an S2NS-matrix. So (i) and (ii) hold.

If (i) and (ii) hold, then by (3.18) and (3.19), N is an S2GI matrix.

Theorem 3.4. Let N =




A I Y1

I 0 0

Y2 0 0


 be a real square matrix, where A is

square, Y1 and Y2 are sign orthogonal. Then N is an S2GI-matrix if and only if

sgn(Ỹ2Ã) = sgn(Y2A), sgn(Ỹ2ÃỸ1) = sgn(Y2AY1) and sgn(ÃỸ1) = sgn(AY1) for each

Ã ∈ Q(A), Ỹ1 ∈ Q(Y1) and Ỹ2 ∈ Q(Y2).

Proof. From Theorem 3.3, we have N is an S2GI-matrix if and only if U =


I Y2 0 0

0 I A 0

0 0 I Y1

0 0 0 I


 is an S2NS-matrix.

Clearly, U is an SNS-matrix. Calculations gives

U−1 =




I −Y2 Y2A −Y2AY1

0 I −A AY1

0 0 I −Y1

0 0 0 I


 .

Since sgn(Ỹ2Ã) = sgn(Y2A), sgn(Ỹ2ÃỸ1) = sgn(Y2AY1) and sgn(ÃỸ1) = sgn(AY1) for

each Ã ∈ Q(A), Ỹ1 ∈ Q(Y1) and Ỹ2 ∈ Q(Y2), we have U is an S2NS-matrix. Hence,

N is an S2GI-matrix.
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