
ELA

MINIMIZATION PROBLEMS FOR

CERTAIN STRUCTURED MATRICES∗
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Abstract. For given Z,B ∈ Cn×k, the problem of finding A ∈ Cn×n, in some prescribed

class W , that minimizes ‖AZ − B‖ (Frobenius norm) has been considered by different authors for

distinct classes W . Here, this minimization problem is studied for two other classes, which include

the symmetric Hamiltonian, symmetric skew-Hamiltonian, real orthogonal symplectic and unitary

conjugate symplectic matrices. The problem of minimizing ‖A − Ã‖, where Ã is given and A is

a solution of the previous problem, is also considered (as has been done by others, for different

classes W). The key idea of this contribution is the reduction of each one of the above minimization

problems to two independent subproblems in orthogonal subspaces of Cn×n. This is possible due to

the special structures under consideration. Matlab codes are developed, and numerical results of

some tests are presented.

Key words. Least-squares approximation, Centralizer of J , Anticentralizer of J , Moore-

Penrose inverse.
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1. Introduction. Structured matrices appear in many applications and, in gen-

eral, exploiting the structure may enable the development of more accurate algo-

rithms. Such algorithms may also be more economic both in computation and storage

and, in the application where such problems do occur, the structured solutions may

have a more precise physical meaning. To mention just a few works related to this

topic, the notion of strongly stable algorithms was introduced in [1] and used in the

context of solving Toeplitz linear systems, eigensolvers for matrices of several special

structures have been given in [2], a chart of backward errors for structured eigenvalue

problems was presented in [10].
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Skew-Hamiltonian matrices and Hamiltonian matrices are two important classes

of structured matrices. In this paper, we are interested in certain classes that include

symmetric skew-Hamiltonian matrices and symmetric Hamiltonian matrices. Sym-

metric skew-Hamiltonian matrices arise in quantum mechanical problems with time

reversal symmetry. Symmetric Hamiltonian matrices appear in response theory, more

exactly in the study of closed shell Hartree-Fock wave functions, and also in solving

algebraic Riccati equations in the context of continuous time linear quadratic optimal

control problems. See [10] for references dealing with such applications.

We will be concerned with the following problems in certain structured classes W
of matrices of size n× n (to be defined in the next section):

Problem I. Given Z,B ∈ Cn×k, find

σ = min
A∈W

‖AZ −B‖

and characterize the class

S = {A ∈ W : ‖AZ −B‖ = σ} .

In particular, find necessary and sufficient conditions for the existence of A ∈ W such

that AZ = B and give a general form for A.

Problem II. Given Ã ∈ Cn×n, find

σ̃ = min
A∈S

∥∥Ã−A
∥∥

and find A ∈ S such that
∥∥Ã−A

∥∥ = σ̃.

The above problems have been studied by many authors in various contexts and

different classes of structured matrices were considered: centrosymmetric matrices

[13], centrohermitian matrices [7], hermitian R-symmetric and hermitian R-skew sym-

metric matrices [11], matrices which satisfy RAS = A and RAS = −A for R and S

nontrivial involutions, i.e., R2 = S2 = I and R,S 6= ±I (Trench referred to these

matrices as (R,S) symmetric and (R,S)-skew symmetric [12]). Some applications

that lead to the above minimization problems are also described in these references.

In [6], Problem II has also been considered for A in the set W of generalized K-

centrohermitian matrices with prescribed spectra.

In Section 2, we present the classes of structured matrices to be studied and

prove a fundamental theorem. Some more theoretical results are given in Section 3.

The derivation of the explicit solutions for our minimization problems is presented in

Section 4. In Section 5, we exhibit our structure-exploiting algorithms for computing

those solutions. In Section 6, we present results of our numerical experiments and

finish with some conclusions in Section 7.
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2. The centralizer and anticentralizer of J . Let J =

[
0 I

−I 0

]
, where I

is the identity matrix of order m. In [2], the sets

(2.1) C =
{
A ∈ C

2m×2m | AJ = JA
}
=

{[
D −E

E D

]
| D,E ∈ C

m×m

}

and

(2.2) C
(a) =

{
A ∈ C

2m×2m | AJ = −JA
}
=

{[
G F

F −G

]
| F,G ∈ C

m×m

}

are called the centralizer of J and the anticentralizer of J , respectively. Also it

was observed that orthogonal sympletic matrices and unitary conjugate sympletic

matrices belong to C . It can be seen that symmetric skew-Hamiltonian matrices also

belong to C and symmetric Hamiltonian matrices belong to C (a).

The next theorem shows the relation between spaces C2m×2m, C and C (a). We

use the Frobenius inner product, 〈X,Y 〉 = trace(Y HX) for matrices X and Y . An

orthogonal direct sum will be denoted with the symbol ⊕⊥.

Lemma 2.1. We have

C
2m×2m = C ⊕⊥

C
(a).

Proof. First, we show that every matrix in C2m×2m can be written as a sum of

two matrices, one in C and the other one in C (a). Given A ∈ C2m×2m, let

(2.3) Ac =
A− JAJ

2
and As =

A+ JAJ
2

.

We have A = Ac +As and

JAcJ =
JAJ − J 2AJ 2

2
=

JAJ −A

2
= −Ac,

JAsJ =
JAJ + J 2AJ 2

2
=

JAJ +A

2
= As,

that is, Ac ∈ C and As ∈ C (a). This decomposition is unique since C
⋂

C (a) = {O}.
In fact, if A ∈ C ∩C (a), then JAJ = −A and JAJ = A, which implies that A = O.

So, we have a direct sum.

Finally, let us see that C⊥C
(a). If X ∈ C and Y ∈ C

(a), we have JXJ = −X

and J Y J = Y . Since JHJ = JJH = I, we have

〈X,Y 〉 = 〈−JXJ ,J Y J 〉
= − trace[(J Y J )HJXJ ] = − trace(JHY HXJ )

= − trace(Y HX) = −〈X,Y 〉,
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which means that 〈X,Y 〉 = 0 and, thus, C⊥C (a).

The minimization problems that we are tackling here have not been considered in

[2]. As compared to the work in [12], for (R,S) symmetric and (R,S)-skew symmetric

matrices, we emphasize that matrices in C and C (a) do not fall into these classes as

J is not an involution (J 2 6= I). The key idea of our contribution is the reduction

of each one of the minimization problems under consideration to two independent

subproblems in orthogonal subspaces of C2m×2m.

3. Preliminary results. The following result has been given in [2, Lemma 2.5].

Lemma 3.1. Let P ∈ C2m×2m be the unitary matrix given by

(3.1) P =
√
2
2

[
I I

iI −iI

]
,

where I is the identity matrix of order m. We have:

(i) if A ∈ C (as defined in (2.1)), then

(3.2) PHAP =

[
M1

N1

]
,

where M1 = D − iE and N1 = D + iE;

(ii) if A ∈ C (a) (as defined in (2.2)), then

(3.3) PHAP =

[
M2

N2

]
,

where M2 = G− iF and N2 = G+ iF .

Using Lemma 3.1 and Lemma 2.1, for any matrix Ã ∈ C2m×2m, we have

PHÃP = PH(Ac +As)P =

[
M1

N1

]
+

[
M2

N2

]
,

where Ac and As are as defined in (2.3). For the sake of convenience, we will use M

to represent either M1 or M2 if there is no danger of ambiguity. The same applies to

N , N1 and N2.

To tackle Problem I, we now define two new subspaces

(3.4) C2m×k
J = {X ∈ C

2m×k : iJX = X} =

{[
X̂

−iX̂

]
| X̂ ∈ C

m×k

}

and

(3.5) S2m×k
J = {Y ∈ C

2m×k : iJ Y = −Y } =

{[
Ŷ

iŶ

]
| Ŷ ∈ C

m×k

}
.
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Any matrix B ∈ C2m×k can be expressed as the sum of one matrix in C2m×k
J and

another in S2m×k
J .

Lemma 3.2. We have

C
2m×k = C2m×k

J ⊕⊥ S2m×k
J .

In fact, any matrix B ∈ C2m×k can be written as

B =
B + iJB

2
+

B − iJB

2
,

where the first matrix in the right hand side belongs to C2m×k
J and the second to

S2m×k
J . The rest of the proof is similar to the one given for the previous result. This

theorem plays a major role in Problem I. Furthermore, we have the following lemma.

Lemma 3.3. Let P be the unitary matrix defined in (3.1). If X ∈ C2m×k
J and

Y ∈ S2m×k
J , then

(3.6) PHX =
√
2

[
O

X̂

]
and PHY =

√
2

[
Ŷ

O

]
.

The proof is straightforward if we perform the matrix products. It is also straight-

forward to prove the following result concerning the invariance (and swapping) of the

subspaces C2m×k
J and S2m×k

J under A ∈ C (and A ∈ C
(a)).

Lemma 3.4. Let X ∈ C2m×k
J and Y ∈ S2m×k

J .

1. For A ∈ C , we have AX ∈ C2m×k
J and AY ∈ S2m×k

J .

2. For A ∈ C (a), we have AX ∈ S2m×k
J and AY ∈ C2m×k

J .

4. The minimization problems. In this section, we recall two results concern-

ing the minimization problem for the general case, that is, given matrices Z ∈ Cq×k

and B ∈ C
p×k, we seek minA∈Cp×q ‖AZ −B‖, when there is no constraint on A. We

also give a different interpretation of the known necessary and sufficient condition for

such minimum to be zero. Then we turn to the problem with A ∈ C and A ∈ C (a),

exploiting the structure properties of these matrices.

4.1. General case. For a matrix Z ∈ Cq×k, we will use the standard notation

Z† for the Moore-Penrose inverse. We recall that throughout the paper we use the

Frobenius norm, the norm induced by the Frobenius inner product.

Lemma 4.1. [12, Lemma 2] If Z ∈ Cq×k and B ∈ Cp×k, then

(4.1) min
A∈Cp×q

‖AZ −B‖ =
∥∥B

(
I − Z†Z

)∥∥ ,
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and this minimum is attained if and only if

(4.2) A = BZ† +K
(
I − ZZ†)

with K ∈ Cp×q arbitrary. Moreover, A0 = BZ† is the unique matrix of this form with

minimum norm.

In particular, we have AZ = B if and only if B
(
I − Z†Z

)
= O ([12, Lemma 3]).

For q ≥ k, if Z is full rank1 then Z†Z = I and the previous condition holds. More

generally, we have the following result.

Theorem 4.2. Given Z in Cq×k (with q ≥ k) and B in Cp×k, we have that

B
(
I − Z†Z

)
= O if and only if the null space of Z is contained in the null space of

B, that is, null(Z) ⊆ null(B).

Proof. To conclude that the given condition is necessary, note that from

B
(
I − Z†Z

)
= O we get that Zx = 0 implies Bx = 0. Conversely, assume that

null(Z) ⊆ null(B). Then, row(Z) and row(B) are the orthogonal complements of

null(Z) and null(B), respectively, and satisfy row(B) ⊆ row(Z) [5, Theorems 3.12

and 3.11]. Thus, there is a matrix M such that B = MZ and, since ZZ†Z = Z,

B
(
I − Z†Z

)
= MZ −MZZ†Z = MZ −MZ = O.

In the proofs of the results concerning Problem II, we will use the following.

Lemma 4.3. [12, Lemma 4] Suppose that L ∈ C
p×q and Γ ∈ C

q×q where Γ2 = Γ =

ΓH . Then the unique matrix of the form L −MΓ with minimum Frobenius norm is

L− LΓ = L(I − Γ).

4.2. A ∈ C (centralizer of J ). We first consider Problem I.

Let Z,B ∈ C2m×k (m ≥ k). Write Z = Z1 + Z2 with

(4.3) Z1 =
Z + iJZ

2
, Z2 =

Z − iJZ

2
,

and B = B1 +B2 with

(4.4) B1 =
B + iJB

2
, B2 =

B − iJB

2
,

where Z1, B1 ∈ C2m×k
J and Z2, B2 ∈ S2m×k

J .

From Lemma 3.4, for A ∈ C , (AZ1 − B1) ∈ C2m×k
J and (AZ2 − B2) ∈ S2m×k

J .

The orthogonality of these subspaces implies

‖AZ −B‖2 = ‖(AZ1 −B1) + (AZ2 −B2)‖2 = ‖AZ1 −B1‖2 + ‖AZ2 −B2‖2 .

1Since q ≥ k, by full rank we mean full column rank.
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According to (3.4) and (3.5),

(4.5) Z1 =

[
Ẑ1

−iẐ1

]
, Z2 =

[
Ẑ2

iẐ2

]
, B1 =

[
B̂1

−iB̂1

]
, B2 =

[
B̂2

iB̂2

]
,

where Ẑ1, Ẑ2, B̂1, B̂2 ∈ Cm×k.

For A ∈ C , the invariance of the Frobenius norm under unitary multiplication,

(3.2) and (3.6) imply that

‖AZ1 −B1‖2 =
∥∥PHAPPHZ1 − PHB1

∥∥2
= 2

∥∥∥∥∥

[
M

N

] [
O

Ẑ1

]
−
[

O

B̂1

]∥∥∥∥∥

2

= 2
∥∥∥NẐ1 − B̂1

∥∥∥
2

.

Similarly,

‖AZ2 −B2‖2 = 2
∥∥∥MẐ2 − B̂2

∥∥∥
2

.

Therefore, our problem is reduced to two independent subproblems of the same

type in the orthogonal subspaces, one for the pair (Z1, B1) and the other for the pair

(Z2, B2). Thus, with respect to Problem I, we have the following result.

Theorem 4.4. Let Z,B ∈ C2m×k. Consider P as given in (3.1) and Ẑ1, Ẑ2, B̂1,

B̂2 in (4.5). Then

(4.6) min
A∈C

‖AZ −B‖ =
√
2

(∥∥∥B̂1

(
I − Ẑ

†
1Ẑ1

)∥∥∥
2

+
∥∥∥B̂2

(
I − Ẑ

†
2Ẑ2

)∥∥∥
2
)1/2

,

and this minimum is attained if and only if

A = P

[
M

N

]
PH = 1

2

[
M +N −(M −N)i

(M −N)i M +N

]
,(4.7)

where M = B̂2Ẑ
†
2 + K2

(
I − Ẑ2Ẑ

†
2

)
and N = B̂1Ẑ

†
1 + K1

(
I − Ẑ1Ẑ

†
1

)
with arbitrary

K1,K2 ∈ Cm×m. Moreover, A = P

[
B̂2Ẑ

†
2

B̂1Ẑ
†
1

]
PH is the unique matrix of this

form with minimum norm.

The relations (4.6) and (4.7) follow from the application of Lemma 4.1 to

‖NẐ1 − B̂1‖ and ‖MẐ2 − B̂2‖.

Now we consider Problem II.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 613-631, October 2015



ELA

620 Z.Y. Liu, R. Ralha, Y. Zhang, and C. Ferreira

Let σc = min
A∈C

‖AZ −B‖ and Sc = {A ∈ C : ‖AZ −B‖ = σc} .

For Ã ∈ C2m×2m, using Lemma 2.1, there exists a unique pair of matrices Ã1 ∈ C ,

Ã2 ∈ C
(a) such that Ã = Ã1 + Ã2 with

(4.8) Ã1 =
Ã− J ÃJ

2
and Ã2 =

Ã+ J ÃJ
2

.

Using Lemma 3.1, we write

(4.9) PHÃ1P =

[
M1

N1

]
and PHÃ2P =

[
M2

N2

]
.

Theorem 4.5. Assume the conditions of Theorem 4.4. Let Ã ∈ C2m×2m and

M1, N1,M2, N2 given in (4.9). Then

(4.10)

min
A∈Sc

∥∥Ã−A
∥∥ =

(
‖M2‖2 + ‖N2‖2 +

∥∥∥
(
M1Ẑ2 − B̂2

)
Ẑ

†
2

∥∥∥
2

+
∥∥∥
(
N1Ẑ1 − B̂1

)
Ẑ

†
1

∥∥∥
2
)1/2

,

and this minimum is attained if and only if

(4.11) A = 1
2

[
M3 +N3 −(M3 −N3)i

(M3 −N3)i M3 +N3

]
,

where M3 = B̂2Ẑ
†
2 +M1

(
I − Ẑ2Ẑ

†
2

)
and N3 = B̂1Ẑ

†
1 +N1

(
I − Ẑ1Ẑ

†
1

)
.

Proof. Let Ã = Ã1 + Ã2, with Ã1, Ã2 given in (4.8), and A ∈ Sc given by (4.7).

Since the Frobenius norm is invariant under unitary transformations, we have

∥∥Ã−A
∥∥2 =

∥∥∥
(
Ã1 −A

)
+ Ã2

∥∥∥
2

=
∥∥∥PH

(
Ã1 −A

)
P + PHÃ2P

∥∥∥
2

=

∥∥∥∥∥

[
M1 − B̂2Ẑ

†
2 −K2

(
I − Ẑ2Ẑ

†
2

)
M2

N2 N1 − B̂1Ẑ
†
1 −K1

(
I − Ẑ1Ẑ

†
1

)
]∥∥∥∥∥

2

= ‖M2‖2 + ‖N2‖2 +
∥∥∥M1 − B̂2Ẑ

†
2 −K2

(
I − Ẑ2Ẑ

†
2

)∥∥∥
2

+

+
∥∥∥N1 − B̂1Ẑ

†
1 −K1

(
I − Ẑ1Ẑ

†
1

)∥∥∥
2

.

Observe that only K1,K2 ∈ Cm×m are free. Thus,

min
A∈Sc

∥∥Ã−A
∥∥2

= ‖M2‖2 + ‖N2‖2 + min
K2∈Cm×m

∥∥∥M1 − B̂2Ẑ
†
2 −K2

(
I − Ẑ2Ẑ

†
2

)∥∥∥
2

+

+ min
K1∈Cm×m

∥∥∥N1 − B̂1Ẑ
†
1 −K1

(
I − Ẑ1Ẑ

†
1

)∥∥∥
2

.
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For X ∈ Cm×k, the properties of the Moore-Penrose inverse imply that (I−XX†)2 =

(I − XX†) = (I − XX†)H . Thus, we can apply Lemma 4.3 to each of the two

minimization problems on the right side of the previous equation. The minimum

values are attained if and only if

K2 = M1 − B̂2Ẑ
†
2 and K1 = N1 − B̂1Ẑ

†
1

which give

K2

(
I − Ẑ2Ẑ

†
2

)
=

(
M1 − B̂2Ẑ

†
2

)(
I − Ẑ2Ẑ

†
2

)
= M1

(
I − Ẑ2Ẑ

†
2

)
− B̂2Ẑ

†
2 + B̂2Ẑ

†
2Ẑ2Ẑ

†
2

= M1

(
I − Ẑ2Ẑ

†
2

)

and

K1

(
I − Ẑ1Ẑ

†
1

)
=

(
N1 − B̂1Ẑ

†
1

)(
I − Ẑ1Ẑ

†
1

)
= N1

(
I − Ẑ1Ẑ

†
1

)
.

Hence, the minimum values are
∥∥∥M1 − B̂2Ẑ

†
2 −M1

(
I − Ẑ2Ẑ

†
2

)∥∥∥
2

=
∥∥∥
(
M1Ẑ2 − B̂2

)
Ẑ

†
2

∥∥∥
2

and
∥∥∥N1 − B̂1Ẑ

†
1 −N1

(
I − Ẑ1Ẑ

†
1

)∥∥∥
2

=
∥∥∥
(
N1Ẑ1 − B̂1

)
Ẑ

†
1

∥∥∥
2

.

This shows that min
A∈Sc

‖Ã − A‖ is given by (4.10) and it is attained if and only if A

takes the form (4.11).

4.3. A ∈ C (a) (anticentralizer of J ). For A ∈ C (a) the results are entirely

analogous to the ones just presented for A ∈ C and therefore we will omit the proofs.

In view of the fact that for A ∈ C (a), (AZ2 −B1) ∈ C2m×k
J and (AZ1 −B2) ∈ S2m×k

J
are orthogonal, we may use arguments similar to those used in the previous subsection

to get the following results.

Theorem 4.6. Let Z,B ∈ C2m×k. Consider P as given in (3.1) and Ẑ1, Ẑ2, B̂1,

B̂2 in (4.5). Then

(4.12) min
A∈C (a)

‖AZ −B‖ =
√
2

(∥∥∥B̂2

(
I − Ẑ

†
1Ẑ1

)∥∥∥
2

+
∥∥∥B̂1

(
I − Ẑ

†
2Ẑ2

)∥∥∥
2
)1/2

and this minimum is attained if and only if

A =P

[
M

N

]
PH = 1

2

[
M +N (M −N)i

(M −N)i −(M +N)

]
,(4.13)

where M = B̂2Ẑ
†
1 +K2

(
I − Ẑ1Ẑ

†
1

)
and N = B̂1Ẑ

†
2 +K1

(
I − Ẑ2Ẑ

†
2

)
with arbitrary

K1,K2 ∈ Cm×m. Moreover, A = P

[
B̂2Ẑ

†
1

B̂1Ẑ
†
2

]
PH is the unique matrix of this

form with minimum norm.
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Let σs = min
A∈C (a)

‖AZ −B‖ and Ss =
{
A ∈ C (a) : ‖AZ −B‖ = σs

}
.

Theorem 4.7. Assume the conditions of Theorem 4.6. Let Ã ∈ C2m×2m and

M1, N1,M2, N2 given in (4.9). Then

(4.14)

min
A∈Ss

∥∥Ã−A
∥∥ =

(
‖M1‖2 + ‖N1‖2 +

∥∥∥
(
M2Ẑ1 − B̂2

)
Ẑ

†
1

∥∥∥
2

+
∥∥∥
(
N2Ẑ2 − B̂1

)
Ẑ

†
2

∥∥∥
2
)1/2

,

and this minimum is attained if and only if

(4.15) A = 1
2

[
M4 +N4 (M4 −N4)i

(M4 −N4)i −(M4 +N4)

]
,

where M4 = B̂2Ẑ
†
1 +M2

(
I − Ẑ1Ẑ

†
1

)
and N4 = B̂1Ẑ

†
2 +N2

(
I − Ẑ2Ẑ

†
2

)
.

4.4. Further results on residuals. The conditions for the existence of solu-

tions A ∈ C and A ∈ C
(a) such that ‖AZ − B‖ = 0 are clear from (4.6) and (4.12),

respectively. So, for Z = Z1 + Z2 with Z1 ∈ C2m×k
J and Z2 ∈ S2m×k

J , if Z1 and Z2

have full rank, a null residual is achieved with matrices given by (4.7) and (4.13).

Now, it also follows from Theorem 4.2 that consistency will be achieved for A ∈ C

even when Z1 and/or Z2 are not full rank if the null spaces of Ẑ1 and Ẑ2 are con-

tained in the null spaces of B̂1 and B̂2, respectively. For A ∈ C
(a), the conditions are

null(Ẑ1) ⊆ null(B̂2) and null(Ẑ2) ⊆ null(B̂1). Observing that null(Ẑ1) = null(Z1),

null(Ẑ2) = null(Z2), null(B̂1) = null(B1) and null(B̂2) = null(B2), the previous

conditions may be stated in terms of the null spaces of Z1, Z2, B1 and B2.

In general, of course, it may exist a matrix A ∈ Cn×n that maps Z onto B and

no solution be possible with A ∈ C or A ∈ C (a). In particular, if Z is in C2m×k
J and

is full rank, that is, Z1 = Z and Z2 = O, then no Ac ∈ C can map Z onto B2 6= O

and no As ∈ C (a) can map Z onto B1 6= O. In this case, again from (4.6) and (4.12),

we have

(4.16) min
A∈C

‖AZ −B‖ =
√
2
∥∥B̂2

∥∥ = ‖B2‖

and

(4.17) min
A∈C (a)

‖AZ −B‖ =
√
2
∥∥B̂1

∥∥ = ‖B1‖.

Analogously, if Z is full rank and is in S2m×k
J , that is, Z1 = O and Z2 = Z, then,

from (4.12) we have

(4.18) min
A∈C

‖AZ −B‖ = ‖B1‖ and min
A∈C (a)

‖AZ −B‖ = ‖B2‖.
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Obviously, it is always the case that rank(Z1) ≤ rank(Z) and rank(Z2) ≤
rank(Z). For the particular case of these ranks being equal, we have

Theorem 4.8. If Z, Z1 and Z2 have the same rank then min ‖AZ − B‖ is the

same for A ∈ C , A ∈ C (a) or general A.

Proof. From Zv = 0 ⇒ Z1v = 1
2 (Z + iJZ)v = 0 we conclude that null(Z) ⊆

null(Z1); this and the hypothesis rank(Z1) = rank(Z) allows us to state that those

null spaces are the same. Similarly, we may say that null(Z) = null(Z2). Therefore,

the right singular vectors corresponding to null singular values of Z, Z1 (or Ẑ1) and

Z2 (or Ẑ2) are the same. This implies (see Section 5.5) that

(4.19)
(
I − Z†Z

)
=

(
I − Ẑ

†
1Ẑ1

)
=

(
I − Ẑ

†
2Ẑ2

)

and the residuals expressed in (4.6) and (4.12) are the same. Now, for a general A we

write

‖B
(
I − Z†Z

)
‖2 = ‖P (B1 +B2)

(
I − Z†Z

)
‖2

= 2

∥∥∥∥∥

[
B̂2

B̂1

]
(
I − Z†Z

)
∥∥∥∥∥

2

= 2

(∥∥∥B̂2

(
I − Z†Z

)∥∥∥
2

+
∥∥∥B̂1

(
I − Z†Z

)∥∥∥
2
)

and, again from (4.19) conclude that the residual is equal to those in (4.6) and (4.12).

We end this section observing that when Z and B are real, the ranks of Z, Z1

and Z2 are always the same and the previous theorem applies, i.e., there are always

real matrices in C and in C (a) that attain the same minimum residual as a general

matrix. This will be shown in Section 5.3.

5. Algorithms. In this section, we propose algorithms for computing the solu-

tions of Problems I and II, first the case of A ∈ C and then the case of A ∈ C (a).

We also present an algorithm to compute the solutions of Problems I and II for an

arbitrary matrix A ∈ C2m×2m, the unstructured minimization problem.

5.1. Unstructured minimization. An essential part of the computation of A

in (4.2) and the minimum value in (4.1) is the full SVD computation of Z ∈ Cq×k,

with q ≥ k,

(5.1) Z =
[
U1 U2

] [Σ O

O O

] [
V1 V2

]H
,

where, for rank(Z) = r < k, U1 ∈ Cq×r , U2 ∈ Cq×(q−r), V1 ∈ Ck×r , V2 ∈ Ck×(k−r)

have orthonormal columns and Σ = diag(σ1, . . . , σr), with σi > 0, i = 1, . . . , r, the
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nonzero singular values of Z. When Z is full rank (r = k), (5.1) gives

(5.2) Z =
[
U1 U2

] [Σ
O

]
V H
1

if q > k, and gives place to

(5.3) Z = U1ΣV
H
1 ,

if q = k. Thus, in the full rank case, V2 does not exist and, if p = k, U2 does not

exist either. The following expressions are always valid if we make the convention

that in the full rank case V2V
H
2 and V H

2 V2 are null matrices and, if p = k, U2U
H
2 is

also a null matrix. This convention will be used throughout Section 5, including the

structured cases.

The Moore-Penrose inverse of Z is

(5.4) Z† = V1Σ
−1UH

1 .

We have

(5.5)
(
I − Z†Z

)
= (I − V1Σ

−1UH
1 U1ΣV

H
1

)
= (I − V1V

H
1

)
= V2V

H
2

and

(5.6)
(
I − ZZ†) =

(
I − U1ΣV

H
1 V1Σ

−1UH
1

)
= (I − U1U

H
1

)
= U2U

H
2 .

Entering (5.6) in (4.2), we get

A = BV1Σ
−1UH

1 +KU2U
H
2 ,(5.7)

with K ∈ C2m×2m arbitrary. Using (5.5) in (4.1) we get

min
A∈C2m×2m

‖AZ −B‖ = ‖BV2V
H
2 ‖.(5.8)

Denoting this value by σ and defining

S =
{
A ∈ C

2m×2m : ‖AZ −B‖ = σ
}
,

in Problem II, for a given Ã ∈ C
2m×2m, we want to compute

min
A∈S

∥∥Ã−A
∥∥ = min

K∈C2m×2m
‖Ã−BV1Σ

−1UH
1 −KU2U

H
2 ‖.

Since
(
U2U

H
2

)2
= U2U

H
2 =

(
U2U

H
2

)H
, we can apply Lemma 4.3 to conclude that the

unique matrix K which gives the minimum norm is

K = Ã−BV1Σ
−1UH

1 .
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Thus, minA∈S
∥∥Ã−A

∥∥ is attained for

A =BV1Σ
−1UH

1 +
(
Ã−BV1Σ

−1UH
1

)
U2U

H
2 = BV1Σ

−1UH
1 + ÃU2U

H
2 .

Notice that this is the expression in (5.7) with K = Ã.

The following algorithm computes the solutions for Problem I (steps 1 and 2) and

Problem II (steps 1 and 3) for an arbitrary matrix A ∈ C
2m×2m.

Algorithm 1.

Given Z, B, K and Ã, compute:

1. the full SVD of Z,

Z =
[
U1 U2

] [Σ O

O O

] [
V1 V2

]H
;

2. A = BV1Σ
−1UH

1 +KU2U
H
2 and the minimum residual ‖(BV2)V

H
2 ‖, according

to (5.8);

3. A = BV1Σ
−1UH

1 + ÃU2U
H
2 and the minimum value

∥∥∥Ã−A

∥∥∥ .

To give an estimate of the number of complex arithmetic operations involved in

the algorithm we will assume that m is significantly larger than k. In step 1 the

number of flops for the complete SVD is about 16m2k + 22k3 and 12mk2 + 20k3 if

U2 is not required (using the R-SVD) [4, p. 254]. In step 2, the first term in the

expression for A requires about 8m2r and the second term is more expensive since it

requires about 16m3 flops. Therefore, the solutionA of minimal norm for unstructured

Problem I, which occurs for the choice K = O, is the cheapest to compute, requiring

a total of 12mk2 + 8m2r + 20k3 flops. The computation of the residual costs an

extra 8mk(k − r) flops, approximately, which is rather cheap when r is close to k. A

direct computation of ‖AZ − B‖ is more expensive (it costs about 8m2k flops) and

in our numerical experiments we did not find significant differences in the size of the

computed residuals.

The cost of computing A in step 3 is equal to the corresponding cost of step 2

when K 6= O. When Problem II is to be solved after Problem I we may reuse the first

term in the expression for A in step 2, which is the same in both problems, and also

the product U2U
H
2 , if it has been computed before. The computation of the minimum

value ‖Ã−A‖ costs about 8m2 flops.

5.2. Minimization for A ∈ C and A ∈ C (a). Let Z,B ∈ C2m×k and P be

given in (3.1). Consider Ẑ1, Ẑ2, B̂1, B̂2 given in (4.5). Let r1 = rank(Ẑ1) and the full
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SVD of Ẑ1 be

(5.9) Ẑ1 =
[
Û1 Û2

] [Σ̂ O

O O

] [
V̂1 V̂2

]H
= Û1Σ̂V̂

H
1 ,

where Û1 ∈ Cm×r1 , Û2 ∈ Cm×(m−r1), V̂1 ∈ Ck×r1 , V̂2 ∈ Ck×(k−r1) have orthonormal

columns and Σ̂ = diag(σ̂1, . . . , σ̂r1), with σ̂i > 0, i = 1, . . . , r1, the nonzero singular

values of Ẑ1. Analogously, let r2 = rank(Ẑ2) and the SVD of Ẑ2 be

(5.10) Ẑ2 =
[
Ũ1 Ũ2

] [Σ̃ O

O O

] [
Ṽ1 Ṽ2

]H
= Ũ1Σ̃Ṽ

H
1 ,

where Ũ1 ∈ Cm×r2 , Ũ2 ∈ Cm×(m−r2), Ṽ1 ∈ Ck×r2 , Ṽ2 ∈ Ck×(k−r2) have orthonormal

columns and Σ̃ = diag(σ̃1, . . . , σ̃r), with σ̃i > 0, i = 1, . . . , r2, the nonzero singular

values of Ẑ2. Then, the Moore-Penrose inverses of Ẑ1 and Ẑ2 are

Ẑ
†
1 = V̂1Σ̂

−1ÛH
1 and Ẑ

†
2 = Ṽ1Σ̃

−1ŨH
1 .

If both Ẑ
†
1 and Ẑ

†
2 are rank-deficient (r1, r2 < k), then we have

(5.11)
(
I − Ẑ

†
1Ẑ1

)
= V̂2V̂

H
2 ,

(
I − Ẑ

†
2Ẑ2

)
= Ṽ2Ṽ

H
2

and, according to Theorem 4.4 and (5.11),

(5.12) min
A∈C

‖AZ −B‖ =
√
2

(∥∥∥B̂1V̂2V̂
H
2

∥∥∥
2

+
∥∥∥B̂2Ṽ2Ṽ

H
2

∥∥∥
2
)1/2

.

In the full rank case (r1 = r2 = k),
(
I − Ẑ

†
1Ẑ1

)
=

(
I − Ẑ

†
2Ẑ2

)
= O and we have a null

residual. In both cases,

(5.13)
(
I − Ẑ1Ẑ

†
1

)
= Û2Û

H
2 ,

(
I − Ẑ2Ẑ

†
2

)
= Ũ2Ũ

H
2

and, using (4.7) in Theorem 4.4, this minimum is attained with

(5.14) A = 1
2

[
M +N −(M −N)i

(M −N)i M +N

]
,

where

(5.15) M = B̂2Ṽ1Σ̃
−1ŨH

1 +K2Ũ2Ũ
H
2 and N = B̂1V̂1Σ̂

−1ÛH
1 +K1Û2Û

H
2 ,

with K1,K2 ∈ Cm×m arbitrary.

Now we will consider the computation of the solution for problem II. Consider

Ã ∈ C2m×2m, Ã1, given in (4.8) and M1 and N1 given in (4.9). Then, according to

Theorem 4.5, A is given by (5.14), where in (5.15) K2 = M1 and K1 = N1.
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The following algorithm computes the solutions for Problem I (steps 1, 2 and 3)

and Problem II (steps 1, 2, 4 and 5) for A ∈ C .

Algorithm 2.

Given Z, B, K1, K2 and Ã, compute:

1. Ẑ1, Ẑ2, B̂1 and B̂2, in (4.5);

2. the full SVD’s of Ẑ1 and Ẑ2, in (5.9) and (5.10);

3. M and N in (5.15), for the given K1 and K2, A in (5.14) and the residual

with (5.12);

4. M1 and N1 given in (4.9);

5. M , N and A (as in step 3) for K1 = M1 and K2 = N1 and the minimum

value
∥∥∥Ã−A

∥∥∥.

For A ∈ C (a), the algorithm is similar to Algorithm 2 and we just point out the

differences in the expressions to be used in this case. In step 3, we use

M = B̂2V̂1Σ̂
−1ÛH

1 +K2Û2Û
H
2 ,

N = B̂1Ṽ1Σ̃
−1ŨH

1 +K1Ũ2Ũ
H
2 ,

A = 1
2

[
M +N (M −N)i

(M −N)i −(M +N)

]
,

min
A∈C (a)

‖AZ −B‖ =
√
2

(∥∥∥B̂2V̂2V̂
H
2

∥∥∥
2

+
∥∥∥B̂1Ṽ2Ṽ

H
2

∥∥∥
2
)1/2

.

In step 4, use (4.9) for M2 and N2. In step 5, compute M , N and A as in step 3 for

K1 = N2 and K2 = M2.

The costs of steps 1 and 4 are relatively inexpensive. In step 2 the number of flops

for each one of the two complete SVD’s is about 4m2k+22k3 and 6mk2 +20k3 if Û2

and Ũ2 are not required. In step 3, to compute M and N we need 2m2r1 and 2m2r2

flops, respectively, if K1 = K2 = O which, as in the unstructured case, produce the

minimal norm solution. Since r1 + r2 ≤ 2r, the total cost to compute M and N , in

this case, is not larger than 4m2r flops and this is half the cost of computing A in the

unstructured case. For general matrices K1 and K2, the computation of M and N

requires in addition 4m3 extra flops in contrast to 16m3 flops in the general case. The

explicit construction of A requires 2m2 flops. The computation of the residual costs

an extra 4mk(k − r1) + 4mk(k − r2) flops, approximately. If r1 = r2 = r, this equal

the corresponding cost in the unstructured case; however, if r1 ≪ r or r2 ≪ r, this

cost may be larger in the structured case (the extreme situation occurs when r = k

and r1 or r2 are equal to zero).
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The cost of computing M , N and A in step 5 equals the corresponding cost in

step 3 when K1,K2 6= O. As in the unstructured case, when Problem II is to be

solved after Problem I, we may reuse the first terms in the expressions for M and

N in step 3, which are the same in both problems, and also the products Û2Û
H
2 and

Ũ2Ũ
H
2 , if computed before. The computation of the minimum value ‖Ã − A‖ costs

about 8m2 flops.

In conclusion, to produce structured solutions for Problems I and II, our algorithm

requires less arithmetic than the algorithm for the general case. As noted before, to

compute the minimal norm solution for Problem I, our algorithm is about half as

expensive as the general algorithm. For solutions with general matrices K, K1 and

K2 (which is always the case in Problem II), our algorithm requires approximately

1/4 of the number of flops of the general algorithm.

5.3. The real case. Although Algorithm 1 and Algorithm 2 have been presented

for complex matrices, there are situations where one may be interested in producing

a real solution A (we noted before that real orthogonal sympletic matrices belong to

C ). When Z and B are real, Algorithm 1 produces necessarily real matrices A since

all the arithmetic involved is real. This is not the case in Algorithm 2. From (5.14)

it follows that A is real if and only if M and N in (5.15) are complex conjugate.

This happens whenever Z and B are real and we take K1 and K2 in (5.15) with

K1 = K2. Because (Z1, Z2) and (B1, B2), in (4.3) and (4.4), respectively, are pairs

of conjugate matrices, the same is true for Ẑ1 and Ẑ2 and the corresponding factors

in their decompositions in (5.9) and (5.10), respectively. As a consequence of this,

Algorithm 2 gets the following simplifications when Z and B are real: in step 2, one

single complex SVD (either of Ẑ1 or Ẑ2) is required and in step 3 only one of M and

N is computed. Furthermore, in Problem II, for a real Ã, M1 and N1 in step 4 are

also conjugate (see Lemma 3.1). The amount of computation is also reduced in step

5 similarly to step 3.

6. Numerical examples. We implemented our algorithms in Matlab 7.5.0342

(R2007b), with rounding error unit equal to 2−53 ≈ 1.1 × 10−16. For Problem I, we

computed the minimum norm solutions with null matrices K,K1 and K2. In Table

6.1 we summarize the numerical results obtained with our codes for 15 given pairs

(Z, B). Here, as before, Ac ∈ C , As ∈ C (a) and A is a general matrix. The residuals

O(10−12), O(10−13) and O(10−14) are due to rounding errors since they correspond

to cases for which null residuals are expected, in accordance with Theorem 4.2 and

our analysis in section 4.4.

In the first 3 cases, matrices Z and B are generated with Matlab function rand.

The produced matrix Z, as well as the projections Z1 and Z2 are full rank and

consistency is always expected.
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Table 6.1

Minimal residuals for problem I.

m, k ‖AZ −B‖ ‖AcZ −B‖ ‖AsZ −B‖ ‖A‖ ‖Ac‖ ‖As‖
1 10, 10 4.9× 10−14 3.3× 10−14 3.2× 10−14 4.37 19.02 19.96

2 100, 20 6.7× 10−14 1.1× 10−13 1.2× 10−13 4.73 7.09 7.06

3 1000, 200 1.0× 10−12 1.2× 10−12 1.2× 10−12 18.26 44.57 45.00

4 10, 10 6.8× 10−14 7.88 8.39 11.45 8.34 7.84

5 100, 20 5.7× 10−14 36.39 36.40 7.01 4.93 4.99

6 1000, 200 1.6× 10−12 365.42 365.14 22.38 15.82 15.83

7 100, 10 1.6× 10−14 1.4× 10−14 26.14 2.47 2.47 0

8 10, 10 3.80 3.80 3.80 3.56 8.45 8.76

9 50, 10 8.31 18.82 18.83 4.76 3.38 3.35

10 100, 20 11.76 11.76 11.76 4.60 6.85 6.79

11 1000, 200 36.93 366.41 365.73 22.32 15.77 15.80

12 20, 20 3.35 3.35 3.35 4.95 13.12 34.13

13 50, 10 1.4× 10−14 18.03 17.96 3.76 2.64 2.68

14 100, 20 6.4× 10−14 2.3× 10−13 2.5× 10−13 4.13 6.16 6.10

15 100, 20 2.1× 10−13 32.55 32.67 6.08 4.22 4.38

In cases 4–7, Z has full rank and is either in the subspace C2m×k
J (Z2 = O) or in

the subspace S2m×k
J (Z1 = O). Here, matrices Z were generated according to (4.5)

from random (m× k) matrices Ẑ1 and Ẑ2. The computed residuals are in accordance

with (4.16) - (4.18). In particular, in case 7 we used Z2 = B2 = O and Algorithm

1 produced the same Ac ∈ C as Algorithm 2. This is because the general solution

with minimum norm in this case is necessarily in C . With A = Ãc + Ãs, Ãc ∈ C and

Ãs ∈ C (a), we have

‖AZ −B‖2 =
∥∥∥
(
Ãc + Ãs

)
(Z1 + Z2)− (B1 +B2)

∥∥∥
2

=
∥∥∥ÃcZ1 + ÃsZ2 −B1

∥∥∥
2

+
∥∥∥ÃcZ2 + ÃsZ1 −B2

∥∥∥
2

=
∥∥∥ÃcZ1 −B1

∥∥∥
2

+
∥∥∥ÃsZ1

∥∥∥
2

and the minimum residual is attained with Ãs = O and A = Ãc that minimizes∥∥∥ÃcZ1 −B1

∥∥∥. That As = O also minimizes ‖AsZ −B‖2 in this case (Z2 = B2 = O)

is a consequence of its expression in Theorem 4.6.

Cases 8–11 are examples of Z being rank-deficient (by making copies of random

columns) and B full rank. The problem is never consistent since AZ can not be full

rank.
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In cases 12–15, Z and B are both rank deficient and the condition null(Z) ⊆
null(B) in Theorem 4.2 only fails in case 12. In case 14, we also have null(Z1) ⊆
null(B1) and null(Z2) ⊆ null(B2). We adopted a simple method to generate rank

deficient consistent problems. For instance, in case 13 the first 6 independent columns

of Z and B have been generated randomly and then, for i = 7, . . . , 10, the ith column

of Z and B is computed using the same linear combination of the first six columns of

Z and B, respectively.

In cases 8, 10, 12 and 14, the ranks of Z, Z1 and Z2 are the same and, in

accordance with Theorem 4.8, we have equal residuals with A, Ac and As.

The next table shows results for Problem II with matrix Ã generated randomly.

Table 6.2

Minimal residuals for problem II.

m, k ‖Ã−A‖ ‖Ã−Ac‖ ‖Ã−As‖
1 10, 10 15.47 21.97 21.62

2 50, 50 92.89 86.68 88.11

3 100, 10 71.91 98.90 115.25

4 100, 20 141.96 153.67 153.66

5 1000, 200 758.97 1201.40 1001.82

When the smallest residual ‖AZ − B‖ for unstructured A is also attained for

structured Ac (As) it is obvious that ‖Ã−A‖ ≤ ‖Ã−Ac‖ and ‖Ã−A‖ ≤ ‖Ã−As‖
because the set of solutions Ac (As) is contained in the set of general solutions A. In

case 2 the problem is consistent for A but not for Ac or As. In case 3, Ã ∈ C but

does not belong to the set of solutions Ac which give minimum residual ‖AcZ − B‖
(otherwise, ‖Ã− Ac‖ would be zero). In case 5, Ã ∈ C (a) and a similar observation

can be made.

7. Conclusions. The problems addressed have been studied before by other

authors for different types of structured matrices. We have extended the previous work

to other structures which are exhibited by certain matrices that occur in applications.

More precisely, for given complex matrices Z and B, we proposed algorithms to

compute A ∈ C (centralizer of J ) or A ∈ C
(a) (anti-centralizer of J ) that minimize

‖AZ − B‖. We proved several new theoretical results and illustrated them with

numerical examples. Also, for such solutions A and for a given matrix Ã, we have

considered the problem of minimizing ‖Ã − A‖. The key idea of our work has been

the use of special orthogonal subspaces that allow the decomposition of each one the

minimization problems into two independent subproblems. As a consequence of this,

our algorithms not only deliver solutions which are of the required type but they need

less arithmetic than previous algorithms for unstructured matrices.
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