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EXTREMAL GRAPHS FOR THE SUM OF THE TWO

LARGEST SIGNLESS LAPLACIAN EIGENVALUES
∗
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CARVALHO§

Abstract. Let G be a simple graph on n vertices and e(G) edges. Consider the signless

Laplacian, Q(G) = D + A, where A is the adjacency matrix and D is the diagonal matrix of the

vertices degree of G. Let q1(G) and q2(G) be the first and the second largest eigenvalues of Q(G),

respectively, and denote by S+
n the star graph with an additional edge. It is proved that inequality

q1(G) + q2(G) ≤ e(G)+ 3 is tighter for the graph S+
n among all firefly graphs and also tighter to S+

n

than to the graphs Kk ∨ Kn−k recently presented by Ashraf, Omidi and Tayfeh-Rezaie. Also, it is

conjectured that S+
n minimizes f(G) = e(G)− q1(G) − q2(G) among all graphs G on n vertices.
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1. Introduction. Given a simple graph G with vertex set V (G) and edge set

E(G), let A be the adjacency matrix of G and D be the diagonal matrix of the row-

sums of A, i.e., the degrees of G. The maximum degree of G is denoted by ∆ = ∆(G).

Let e(G) = |E(G)| be the number of edges and let n = |V (G)| be the number of

vertices of G. The matrix Q (G) = A +D is called the signless Laplacian or the Q-

matrix of G. As usual, we shall index the eigenvalues of Q (G) in non-increasing order

and denote them as q1 (G) , q2 (G) , . . . , qn (G). Denote the graph obtained from the

star on n vertices by inserting an additional edge by S+
n ; the complement of G by G

and the complete graph on n vertices by Kn. If G1 = (V1, E1) and G2 = (V2, E2) are

graphs on disjoint sets of vertices, their graph sum is G1 +G2 = (V1 ∪ V2, E1 ∪ E2).

The join G1 ∨ G2 of G1 and G2 is the graph obtained from G1 + G2 by inserting
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new edges from each vertex in G1 to every vertex of G2. Consider M(G) as a matrix

of a graph G of order n and let k be a natural number such that 1 ≤ k ≤ n. A

general question related to G and M(G) can be raised: ”How large can the sum of

the k largest eigenvalues of M(G) be ?” Usually, solving cases k = 1, n− 1 and n are

simple but the general case for any k is not easy to be solved. The natural next case

to be studied is k = 2 and some work has been recently done in order to prove this

case. For instance, Ebrahimi et al., [6], for the adjacency matrix; Haemers et al., [7],

for the Laplacian matrix and Ashraf et al., [2], for the signless Laplacian matrix. In

particular, the latter denoted the sum of the two largest signless Laplacian by S2(G)

and proved that

S2(G) ≤ e(G) + 3(1.1)

for any graph G. Additionally, if G is isomorphic to Kk ∨Kt they show that e(G) +

3− S2(G) < 1/
√
t. Consequently, inequality (1.1) is asymptotically tight.

Given a graph G with e(G) edges, define the function

f(G) = e(G) + 3− S2(G).

Since inequality (1.1) is asymptotically tight for the graphs Kk ∨Kt, it means that

f(Kk ∨ Kt) converges to zero when n goes to infinity. In this paper, we prove the

following facts:

(A) the function f(S+
n ) converges to zero when n goes to infinity and the graph

S+
n is the graph within the firefly graphs such that inequality (1.1) is asymp-

totically tight within the firefly graphs;

(B) the function f(S+
n ) converges to zero faster than f(Kk ∨Kt) does.

Additionally, based on computational experiments from AutoGraphiX [3], we conjec-

ture that S+
n minimizes f(G) among all graphs G on n vertices.

2. Preliminaries. In this section, we present some known results about q1(G)

and q2(G) and define some classes of graphs that will be useful to our purposes.

Definition 2.1. A firefly graph Fr,s,t is a graph on 2r+ s+2t+ 1 vertices that

consists of r triangles, s pendant edges and t pendant paths of length 2, all of them

sharing a common vertex.

Let v be a vertex of G and let Pq+1 and Pr+1 be two paths, say, vq+1vq · · · v2v1
and ur+1ur · · ·u2u1. The graph Gq,r is obtained by identifying vq+1 and ur+1 at the

same vertex v of G. The graph Gq+1,r−1 can be obtained from Gq,r by removing the

edge (u1, u2) and placing the edge (v1, u1).

The Figure 2.1 displays the firefly graphs and Figure 2.2 illustrates the grafting

operation.
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Fig. 2.1. Firefly graph Fr,s,t with r triangles, s pendant vertices and t pendant paths of length 2.

Fig. 2.2. (a) Gq,r (b) Gq+1,r−1 obtained by grafting an edge of Gq,r.

If G is connected with e(G) = n+ c− 1, then G is called a c−cyclic graph.

Lemma 2.2. [8] Suppose c ≥ 1 and G is a c−cyclic graph on n vertices with

∆ ≤ n− 3. If n ≥ 2c+ 5, then q1(G) ≤ n− 1.

Lemma 2.3. [1] Let G be a connected graph on n ≥ 7 vertices. Then

(i) 3− 2.5
n

< q2(G) < 3 if and only if G is a firefly with one triangle.

(ii) q2(G) = 3 if and only if G is a firefly and has at least two triangles.

Lemma 2.4. [5] Let G be a connected graph on n ≥ 2 vertices. For q ≥ r ≥ 1,

consider the graphs Gq,r and Gq+1,r−1. Then,

q1(Gq,r) > q1(Gq+1,r−1).

3. Main results. In this section, we present the proofs of facts (A) and (B)

presented in the introduction. In order to prove fact (A), we firstly present Lemma

3.1. From this point on, we will use F1,n−3,0 to denote the graph S+
n since they are
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isomorphic and ei to denote the i-th standard unit basis vector for each i = 1, . . . , n.

Lemma 3.1. Let G be isomorphic to F1,n−3,0 with n ≥ 7. Then

e(G) + 3− 2.5

n
< S2(G) < e(G) + 3.

Proof. The matrix Q(G) can be written as

Q(G) =











I + J 1 0

1 n− 1 1

0
T

1
T I











,

where the diagonal blocks are of orders 2, 1 and n−3, respectively. We find that e1−e2
and e4 − ej , 5 ≤ j ≤ n are eigenvectors for Q(G) corresponding to the eigenvalue 1.

Consequently, we see that Q(G) has 1 as an eigenvalue of multiplicity at least n− 3.

Further, since Q(G) has an orthogonal basis of eigenvectors, there are remaining

eigenvectors of Q(G) of the form







α1

β

γ1






. We then deduce that the eigenvalues of

the 3×3 matrix M =





3 1 0

2 n− 1 n− 3

0 1 1



 comprise the remaining three eigenvalues

of Q(G) that are the roots of the polynomial Ψ(x) = x3 − (n + 3)x2 + 3nx − 4. As

Ψ is a continuous function in R and Ψ(0) = −4 < 0, Ψ(1) = 2n − 6 > 0, from [1],

Ψ(3 − 2.5
n
) > 0, Ψ(3 − 1

n
) = −1 − 1

n3 + 6

n2 − 10

n
< 0, Ψ(n) = −4 < 0, and for n ≥ 7,

Ψ(n+ 1

n
) = −7+ 1

n3 − 3

n2 +
2

n
+n > 0, so 3− 2.5

n
< q2(G) < 3− 1

n
and n < q1(G) < n+ 1

n

for n ≥ 7. Thus, e(G) + 3− 2.5
n

< S2(G) < e(G) + 3.

From Lemma 3.1, one can easily see that function f(F1,n−3,0) converges to zero

when n goes to infinity. To complete the proof of the statement (A) we need to show

that F1,n−3,0 is the only firefly graph such that inequality (1.1) is asymptotically tight.

The proof follows from Lemmas 3.2, 3.3 and 3.5.

Lemma 3.2. Let G be isomorphic to F1,n−5,1 with n ≥ 9. Then

e(G) + 2− 0.8

lnn
< S2(G) < e(G) + 2.
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Proof. The matrix Q(G) can be written as

Q(G) =





























2 1 1 0 0 0 . . . 0

1 2 1 0 0 0 . . . 0

1 1 n− 2 1 0 1 . . . 1

0 0 1 2 1 0 . . . 0

0 0 0 1 1 0 . . . 0

0 0 1 0 0 1 . . . 0
...

...
...

...
...

. . .

0 0 1 0 0 . . . 1





























.

We find that e6 − ej , 7 ≤ j ≤ n and e1 − e2 are eigenvectors for Q(G) corresponding

to eigenvalue 1. Consequently, we see that Q(G) has 1 as an eigenvalue of multiplicity

at least n− 5. Further, since Q(G) has an orthogonal basis of eigenvectors, it follows

that there are remaining eigenvectors of Q(G) of the form














α1

β

γ

ξ

̟1















.

We deduce that the eigenvalues of 5× 5 matrix

M =















3 1 0 0 0

2 n− 2 1 0 n− 5

0 1 2 1 0

0 0 1 1 0

0 1 0 0 1















comprise the remaining five eigenvalues of Q(G) that are the roots of the polynomial

Ψ(x) = x5−(n+5)x4+(6n+4)x3−(10n−2)x2+(3n+12)x−4. As Ψ is a continuous

function in R, there are three roots of Ψ(x) in the intervals [0, 0.3], [0.3, 1] and [1, 2.7].

For the other two, as

Ψ

(

3− 0.8

lnn

)

= −4 + (12 + 3n)

(

3− 0.8

lnn

)

− (−2 + 10n)

(

3− 0.8

lnn

)2

+(4 + 6n)

(

3− 0.8

lnn

)3

− (5 + n)

(

3− 0.8

lnn

)4

+

(

3− 0.8

lnn

)5

> 0,

Ψ

(

3− 5

4n

)

= − 1

1024n5

(

3125− 25000n+ 70500n2 − 72800n3 + 12160n4 + 256n5
)

< 0,
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Ψ(n− 1) = −24 + 25n− 5n2 < 0

and

Ψ(n− 1 +
5

4n
) =

1

1024n5

(

3125− 25000n+ 78000n2 − 140000n3 + 178400n4

−142976n5 + 75520n6 − 17920n7 + 1280n8
)

> 0.

So, 3− 0.8
lnn

< q2(G) < 3− 5

4n
and n− 1 < q1(G) < n− 1 + 5

4n
. Then,

e(G) + 2− 0.8

lnn
< S2(G) < e(G) + 2.

From Lemma 3.2, one can easily see that function f(F1,n−5,1) converges to 1 when

n goes to infinity.

Lemma 3.3. Let G be isomorphic to F1,s,t a firefly graph such that s ≥ 1 and

t ≥ 2. Then S2(G) < e(G) + 2.

Proof. From Lemma 2.2, we have q1(G) ≤ s + 2t + 2 and from Lemma 2.3,

q2(G) < 3. So, S2(G) < s+ 2t+ 5 = e(G) + 2.

From Lemma 3.3, follows that function f(F1,s,t) > 1 when s ≥ 1 and t ≥ 2.

Lemma 3.4. For 2r + s+ 1 ≥ 6 and r ≥ 2,

2r + s+ 1 < q1(Fr,s,0) < 2r + s+
3

2
.

Proof. The signless Laplacian matrix of the graph Fr,s,0 can be written as

Q(Fr,s,0) =







2r + s 1 1

1
T

I 0

1
T

0 B






,

where the diagonal blocks are of orders 1, s and 2r, respectively, and B is a diagonal

block matrix and each block has order 2 of the type I + J. We find that for each

j = 3, . . . , s+ 1, e2 − ej is an eigenvector for Q(Fr,s,0) corresponding to eigenvalue 1;

also, for each k = 1, . . . , r, es+2k−es+2k+1 is an eigenvector for Q(Fr,s,0) corresponding

to eigenvalue 1. So, 1 is an eigenvalue with multiplicity at least r+s−1. Further, since

Q(Fr,s,0) has an orthogonal basis of eigenvectors, it follows that there are remaining

eigenvectors of Q(Fr,s,0) of the form






γ

α1

β1






.
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We then deduce that the eigenvalues of the 3× 3 matrix

M =





2r + s s 2r

1 1 0

1 0 3





comprise the remaining three eigenvalues of Q(Fr,s,0). The eigenvalues of M are the

roots of the characteristic polynomial of M given by g(x) = −(x3+(−s− 2r− 4)x2+

(3s + 6r + 3)x − 4r). See that g(2r + s + 1) > 0 and g(2r + s + 3/2) < 0. Since

q2(G) ≤ n− 2 = 2r + s− 1 and q1(G) ≥ q2(G), we get

2r + s+ 1 < q1(G) < 2r + s+
3

2
.

Lemma 3.5. Let G = Fr,s,t such that r ≥ 2, t, s ≥ 1. Then S2(G) ≤ e(G) + 2.5.

Proof. For firefly graphs Fr,s,t such that t ≥ 1, we can obtain any Fr,s,t from

grafting edges of the graph Fr,s,0. From Lemma 2.4 and Lemma 3.4 q1(Fr,s,t) <

q1(Fr,s+2t,0) < 2r + s + 2t + 3

2
. Also, by Lemma 2.3, q2(Fr,s,t) = 3 and we get

q1(Fr,s,t) + q2(Fr,s,t) < 2r+ s+ 2t+ 4.5. Observe that e(Fr,s+2t,0) = 3r+ s+ 2t and

then 2r+ s+ 2t+ 4.5 = e(Fr,s+2t,0) + 2.5+ (2− r) ≤ e(Fr,s+2t,0) + 2.5 for r ≥ 2. So,

S2(G) ≤ e(G) + 2.5.

From Lemma 3.5, follows that function f(Fr,s,t) ≥ 0.5 when r ≥ 2. The next

proposition proves the statement (B) of the introduction.

Proposition 3.6. For n ≥ 9 and k ≥ 2, the function f(F1,n−3,0) converges to

zero faster than f(Kk ∨Kn−k).

Proof. From Lemma 3.1, we have 0 < f(F1,n−3,0) <
2.5
n

and from Remark 8 of

[2], 0 < f(Kk ∨ Kn−k) < 1√
n−k

. Noting that 2.5
n

< 1√
n−k

for k ≥ 2 completes the

proof.

Therefore, we proved that inequality (1.1) is asymptotically tight for the graph

F1,n−3,0 within the firefly graphs on n ≥ 9 vertices. Based on computational experi-

ments with AutoGraphiX, we propose the following conjecture.

Conjecture 3.7. Let G be a graph on n ≥ 9 vertices. Then

f(G) ≥ f(F1,n−3,0).

Equality holds if and only if G is isomorphic to F1,n−3,0.
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[4] D. Cvetković. Spectral theory of graphs based on the signless Laplacian. Research report, 2010.

Available at http://www.mi.sanu.ac.rs/projects/signless L reportApr11.pdf.
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