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COMBINATORIAL PROPERTIES OF GENERALIZED M-MATRICES∗
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Abstract.

An M∨-matrix has the form A = sI − B with s ≥ ρ(B) and Bk is entrywise nonnegative for

all sufficiently large integers k. In this paper, the existence of a preferred basis for a singular M∨-

matrix A = sI − B with index(B) ≤ 1 is proven. Some equivalent conditions for the equality of

the height and level characteristics of A are studied. Well structured property of the reduced graph

of A is discussed. Also possibility of the existence of preferred basis for another generalization of

M -matrices, known as GM -matrices, is studied.
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1. Introduction. In this paper, we consider two types of generalizations of M -

matrices, namely the class of GM -matrices [3] and M∨-matrices [10]. We show that

the Preferred Basis Theorem and the Index Theorem for M -matrices are not true for

GM -matrices of order greater than 2, whereas we prove the existence of a preferred

basis for the subclass of M∨-matrices A = sI − B with index(B) ≤ 1, and we give a

procedure to obtain a preferred basis from a quasi-preferred basis for the generalized

null space for a certain subclass of M∨-matrices.

The existence of quasi-preferred bases for the class of M∨-matrices was shown by

Naqvi and McDonald [9]. Rothblum, Schneider and Hershkowitz proved the existence

of quasi-preferred and preferred bases for singular M -matrices ([11] and [6]).

In this paper, using similar techniques, we provide a constructive method to

obtain a preferred basis from a given quasi-preferred basis for a subclass of singular

M∨-matrices. Moreover, the procedure proves the existence of a preferred basis for

this subclass of singular M∨-matrices.

In [9], it was proved that the height characteristic is always majorized by its level

characteristic for a specific subclass of M∨-matrices. In this paper, we give some
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necessary and sufficient conditions for the equality of these two characteristics. Later

we describe the concept of well structured graphs and give a sufficient condition for

the reduced graph of a subclass of M∨-matrices to be well structured.

The paper is organized as follows: we start with background and notation in

Section 2. In Section 3, we consider the class of M∨-matrices, which consists of

matrices of the form A = sI − B, where B is an eventually nonnegative matrix and

s ≥ ρ(B). In particular, we give a procedure to obtain a preferred basis from a

given quasi-preferred basis for M -matrices and for M∨-matrices with index(B) ≤ 1,

and summarize the entire procedure in Algorithm 1. We discuss height and level

characteristics and give some necessary and sufficient conditions for their equality, and

give a sufficient condition for the reduced graph of M∨-matrices to be well structured,

introduced in [8]. In Section 4, we consider another generalization of M -matrices,

known as GM -matrices, which are matrices of the form A = sI−B, where B and BT

possess the Perron-Frobenius property, and s ≥ ρ(B). We show that a quasi-preferred

basis, and hence a preferred basis, may not exist for the generalized null space of these

matrices of order more than two. It is shown that the Preferred Basis Theorem and

the Index Theorem hold if the order is two.

2. Notation and preliminaries. This section contains basic notations and

some preliminary results, mostly from [7]. We denote the set {1, 2, . . . , n} by 〈n〉. For

a real n×m matrix A = [ai,j ] we use the following terminology and notation.

• A ≥ 0 (A is nonnegative ) if ai,j ≥ 0, for all i ∈ 〈n〉, j ∈ 〈m〉.

• A > 0 (A is strictly positive) if ai,j > 0, for all i ∈ 〈n〉, j ∈ 〈m〉.

If n = m, then we denote by

• σ(A) the spectrum of A.

• ρ(A) = maxλ∈σ(A){|λ|}, the spectral radius of A.

• N(A) the nullspace of A, and by n(A) the nullity of A.

• indexλ(A) the size of the largest Jordan block associated with the eigenvalue

λ, and if A is singular we simply write index0(A) as index(A).

• Eλ(A), the generalized eigenspace of A corresponding to the eigenvalue λ,

i.e., N((λI −A)n). In case A is a singular matrix, we simply write E(A) for

E0(A).

Definition 2.1. For n ≥ 2, an n × n matrix A is said to be reducible if there

exists a permutation matrix Π such that

(2.1) ΠAΠT =

[

B C

0 D

]

,
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where B and D are square, nonempty matrices. Otherwise A is called irreducible. If

A is reducible and in the form (2.1), and if a diagonal block is reducible, then this

block can be reduced further via permutation similarity. If this process is continued,

then finally there exists a suitable permutation matrix Π such that A is in block

triangular form

(2.2) ΠAΠT =











A11 A12 · · · A1p

0 A22 · · · A2p

...
...

. . .
...

0 0 · · · App











,

where each block Ai,i is square and irreducible. This block triangular form is called

a Frobenius normal form of A. An irreducible matrix consists of one block, is in

Frobenius normal form.

If A = [Ai,j ] is an n× n matrix in Frobenius normal form with p block rows and

columns, and when discussing matrix-vector multiplication with A or the structure

of eigenvectors of A, we partition vectors b analogously in p vector components bi
conformably with A, and we define the support of b via supp(b) = {i ∈ 〈p〉 : bi 6= 0}.

For an n× n matrix A, the directed graph of A denoted by Γ(A) is the directed

graph with vertices 1, 2, . . . , n in which (i, j) is an edge if and only if aij 6= 0. A path

from vertex j to vertex m of length t is a sequence of t vertices v1, v2, . . . , vt such that

(vl, vl+1) is an edge in Γ(A) for l = 1, 2, . . . , t− 1 where v1 = j and vt = m. We say a

vertex j has access to m, if j = m or there is a path from j to m in Γ(A), and in this

case we write j → m. We write j 9 m if j does not have access to m. The transitive

closure of Γ(A), denoted by Γ(A), is the graph with the same vertex set as that of

Γ(A) and (i, j) is an edge in Γ(A) if i has access to j in Γ(A). If j has access to m

and m has access to j, we say j and m communicate. The communication relation is

an equivalence relation on {1, 2, . . . , n} and an equivalence class α is called a class of

A. For any two classes α and β of A, we say that α has access β in Γ(A) if there are

vertices i ∈ α and j ∈ β such that i has access to j in Γ(A).

The reduced graph of A, denoted by R(A) is the graph with vertex set consisting

of all the classes in A and (i, j) is an edge in R(A) if and only if i has access to j in

Γ(A).

For any α, β ⊂ {1, 2, . . . , n}, Aαβ denotes the submatrix of A whose rows are

indexed by α and whose columns are indexed by β. If α is a class of A, then we say

that α is a basic class if ρ(Aαα) = ρ(A), a singular class if Aαα is singular, an initial

class if it is not accessed by any other class of A and a final class if it does not have

access to any other class of A.
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A chain of classes is a collection of classes such that each class in the collection

has access to or from every other class in the collection. A chain of classes with initial

class J and final class K is called a chain from J to K. The length of a chain is the

number of singular classes it contains. We say J has access to K in n steps if the

length of the longest chain from J to K is n.

Definition 2.2. For a set W of vertices in the vertex set V (A) of R(A) we

introduce the following sets.

below(W ) = {i ∈ V (A) : there exists j ∈ W such that i→ j};

above(W ) = {i ∈ V (A) : there exists j ∈ W such that j → i};

top(W ) = {i ∈W : j ∈ W, i→ j imply i = j};

bottom(W ) = {i ∈W : j ∈ W, j → i imply i = j}.

Definition 2.3. Let A be an n × n singular matrix in Frobenius normal

form (2.2). We say a vertex i in R(A) is a singular vertex if the corresponding

block Aii in (2.2), is singular. Let H(A) be the collection of all singular vertices in

R(A).

(i) We define the singular graph S(A) associated with R(A) as the graph with

vertex set H(A) and (i, j) is an edge if and only if i = j or there is a path

from i to j in R(A).

(ii) The level of a vertex i in R(A), denoted by level(i), is the maximal number

of singular vertices on a path in R(A) that terminates at i.

(iii) Let x be a block-vector with p blocks, partitioned according to the Frobenius

normal form of A. The level of x, denoted by level(x), is defined to be

max{level(i) : i ∈ supp(x)}.

(iv) For a nonzero vector x in the generalized nullspace E(A), we define the height

of x, denoted by height(x), to be the smallest nonnegative integer k such that

Akx = 0.

The other essential objects in our analysis are appropriately chosen sets of basis

vectors for the generalized eigenspace associated with the spectral radius.

Definition 2.4. Let A be a square matrix in Frobenius normal form (2.2), and

let H(A) = {α1, . . . , αq}, with α1 < · · · < αq be the set of singular vertices in R(A).

A set of vectors x1 = [x1
j ], . . . , x

q = [xq
j ] ≥ 0 is called a quasi-preferred set for A

if

xi
j > 0 if j → αi, and xi

j = 0 if j 9 αi

for all i = 1, . . . , q and j = 1, . . . , p.
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If in addition we have

−Axi =

q
∑

k=1

ck,ix
k, i = 1, . . . , q,

where ck,i satisfy

ck,i > 0 if αk → αi, i 6= k; and ck,i = 0 if αk 9 αi or i = k

then the set of vectors x1, . . . , xq is said to be a preferred set for A. A (quasi-)

preferred set that forms a basis for E(A) is called a (quasi-) preferred basis for A.

Throughout this paper we will assume that the matrix A is in Frobenius normal

form (see (2.2)), and we denote the (i, j)-block of the Frobenius normal form of A by

Aij . Every x with n entries will be assumed to be partitioned into p vector components

xi conformably with A.

Definition 2.5. An n× n matrix A is called an M -matrix if it can be written

as A = sI −B, where B ≥ 0 and s ≥ ρ(B). The following results are well-known.

Theorem 2.6. [7] (Preferred Basis Theorem) If A is a singular M -matrix, then

there exists a preferred basis for the generalized eigenspace E(A) of A.

Theorem 2.7. [7, 11] (Index Theorem) If A is a singular M -matrix, then

indexρ(A)(A) is equal to the length of the longest chain in R(A).

After having introduced the basic concepts, in the next section we consider one

generalization of M -matrices, known as M∨-matrices.

3. Combinatorial structure of singular M∨-matrices.

3.1. Preferred basis for singularM∨-matrices. In this section, we first prove

some results on the combinatorial properties of quasi-preferred bases of a subclass

of M∨-matrices which will be used subsequently to give a constructive method for

obtaining a preferred basis from a quasi-preferred basis.

Definition 3.1. Let A ∈ R
n,n. For any two vertices i and j of R(A), let

hull(i, j) := above(i)
⋂

below(j).

Definition 3.2. A square matrix A is called an eventually nonnegative (positive)

matrix if there is a positive integer n0 such that Ak ≥ 0 (Ak > 0) for all k ≥ n0.

Definition 3.3. A square matrix A is called an M∨-matrix if it can be expressed

as A = sI −B with eventually nonnegative B and s ≥ ρ(B).

Throughout the remaining two sections we assume that a singular M∨-matrix A

has the form A = ρI−B, where B is an eventually nonnegative matrix with ρ = ρ(B)
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and A has q singular classes with H(A) = {α1, . . . , αq} as the set of singular classes

of A, where α1 < · · · < αq.

The following results are well known.

Theorem 3.4. [5] Let A be a square matrix in block triangular form and let x

be a vector. Then supp(Ax) ⊆ below(supp(x)).

Theorem 3.5. [9] Suppose that A is an eventually nonnegative matrix with

index(A) ≤ 1 and DA = {d | θ − α = c
d
, where re2πiθ ∈ σ(A), re2πiα ∈ σ(A), r >

0, c ∈ Z
+, d ∈ Z \ {0}, gcd(c, d) = 1}. Let g be a prime number such that g /∈ DA and

Ak ≥ 0 for all k ≥ g. Then R(A) = R(Ag).

Lemma 3.6. [9] Let A ∈ Cn,n and λ ∈ σ(A), λ 6= 0. Then for all k /∈ DA we have

N(λI − A) = N(λkI − Ak) and the Jordan blocks of λk in J(Ak) are obtained from

the Jordan blocks of λ in J(A) by replacing λ with λk.

Theorem 3.7. [9] Let A be an eventually nonnegative matrix with index(A) ≤ 1.

Then A has a quasi-preferred basis for Eρ(A)(A).

Remark 3.8. Let A = ρI − B be an M∨-matrix with index(B) ≤ 1. Then by

Theorem 3.7, there exists a quasi-preferred basis B = {x1, x2, . . . , xq} for Eρ(B), and

hence, B is a basis for E(A). Since Axi ∈ E(A) for all i ∈ {1, . . . , q}, there always

exists a matrix Z(coefficient matrix) such that−AX = XZ, whereX = [x1 x2 · · · xq].

Lemma 3.9. If i, j are vertices of Γ(A), then there is a path of length k from i

to j in Γ(A) if and only if the (i, j)-entry of Ak is nonzero.

Proof. If (Ak)ij denotes the (i, j)-entry of Ak, then

(Ak)ij =
∑

i1

∑

i2

· · ·
∑

ik−1

aii1ai1i2 · · ·aik−1j

and (Ak)ij 6= 0 if and only if aii1ai1i2 · · · aik−1j 6= 0 for some i1, i2, . . . , ik−1, that is, if

and only if there is a path of length k from i to j through i1, i2, . . . , ik−1.

Lemma 3.10. Let A be a singular matrix and let X be such that its columns form

a quasi-preferred basis of E(A). If Z is such that AX = XZ, then

zij = 0 if αi 9 αj

In particular, Z is triangular with all its diagonal entries equal to 0.

Proof. Since AX = XZ and X = [x1 · · · xq], we have

(3.1) Axj =

q
∑

i=1

zijx
i for all j = 1, . . . , q.
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Take any αj ∈ H(A) and consider the set Q = {αi ∈ H(A)| zij 6= 0}. Since αi 9 αj

implies αi /∈ below(αj), to prove (3.1) we have to essentially show Q ⊆ below(αj).

To show Q ⊆ below(αj), it is enough to show, top(Q) ⊆ below(αj).

Consider any αk ∈ top(Q). If αk /∈ below(αj), then
[

(A− zjjI)x
j
]

αk
= 0, since

supp
(

(A− zjjI)x
j
)

⊆ below(supp(xj)). Then equation (3.1) gives
∑

i∈Q
i6=j

zijx
i
αk

= 0.

But αk ∈ top(Q) implies zkjx
k
αk

= 0 which is not possible, hence αk ∈ below(αj).

Thus, we have that top(Q) ⊆ below(αj), and hence, Q ⊆ below(αj).

Since AX = XZ and {x1, . . . , xq} ⊆ E(A), AnX = 0 = XZn. As Z is triangular

and X is of full column rank, all the diagonal entries of Z must be equal to 0.

Lemma 3.11. Let A be a singular M -matrix and X be such that the columns

of X form a quasi-preferred basis for E(A). Let Z be a matrix satisfying the con-

dition −AX = XZ. If αi and αj are two singular classes with hull(αi, αj)
⋂

H(A)

= {αi, αj}, then zij > 0.

Proof. Let there exist a pair of singular classes αi, αj ∈ H(A) such that

hull(αi, αj)
⋂

H(A) = {αi, αj} and zij ≤ 0. Since X = [x1 · · · xq], by Lemma 3.10,

(3.2)
(

−Axj
)

αi
= xi

αi
zij + · · ·+ xj−1

αi
zj−1,j .

As {x1, . . . , xq} is a quasi-preferred basis for A and hull(αi, αj)
⋂

H(A) = {αi, αj},

equation (3.2) gives (−Axj)αi
= xi

αi
zij ≤ 0. Also since A is an M -matrix and

(Axj)αi
= Aαi,αi

xj
αi

+

αj
∑

k=αi+1

Aαi,kx
j
k, it follows that Aαi,αi

xj
αi
≥ 0. Since Aαi,αi

is an irreducible singular M -matrix, Aαi,αi
xj
αi
≥ 0 implies Aαi,αi

xj
αi

= 0 [1, p.156].

Hence, it follows that

αj
∑

k=αi+1

Aαi,kx
j
k = 0 and for any k = αi +1, . . . , αj , if Aαi,k < 0

then xj
k = 0. This contradicts αi → αj , hence zij > 0.

Lemma 3.12. Let A = ρI−B be an M∨-matrix with ρ = ρ(B) and indexρ(A) ≤ 1.

Let the matrix X be such that its columns form a quasi-preferred basis in E(A) and

let Z be a matrix satisfying the condition −AX = XZ. If αi and αj are two singular

classes with hull(αi, αj)
⋂

H(A) = {αi, αj}, then zij > 0.

Proof. Given A = ρI − B, where B is an eventually nonnegative matrix with

index(B) ≤ 1 and ρ = ρ(B). As DB, defined in Theorem 3.5, is finite and B is

eventually nonnegative matrix, so we can always choose a prime number g such that

g /∈ DB and Bl ≥ 0 for all integer l ≥ g. Since −AX = XZ, BkX = XZ̄k for any

positive integer k, where Z̄ = Z + ρI. Take B̃ = Bg and Z̃ = Z̄g, then B̃ ≥ 0 and

since by Theorem 3.5 the accessibility relations in B and B̃ are same, columns of X
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will also be a quasi-preferred basis for E(ρgI − B̃). If αi, αj are singular classes of A

with hull(αi, αj)
⋂

H(A) = {αi, αj} then by Lemma 3.11, z̃ij > 0. Let (Z̄k)ij be the

(i, j)-entry of Z̄k, for any k and we simply write Z̄ij when k = 1. We will use strong

induction on l to show that (Z̄ l)ij = lρl−1zij for any integer l ≥ 2, hence z̃ij > 0 will

imply zij > 0.

For l = 2, (Z̄2)ij = 2ρZ̄ij +

j−1
∑

l=i+1

Z̄ilZ̄lj = 2ρzij +

j−1
∑

l=i+1

zilzlj .

Since hull{αi, αj}
⋂

H(A) = {αi, αj}, from Lemma 3.10 it follows that zilzlj = 0

for all l, i + 1 ≤ l ≤ j − 1. Thus, (Z̄2)ij = 2ρzij . Let (Z̄ l)ij = lρl−1zij for all l < k

and k > 2.

Now,

(Z̄k)ij = Z̄ii(Z̄
k−1)ij +

j−1
∑

l=i+1

Z̄il(Z̄
k−1)lj + Z̄ij(Z̄

k−1)jj

= ρ(k − 1)ρk−2zij +

j−1
∑

l=i+1

zil(Z̄
k−1)lj + zijρ

k−1

= kρk−1zij +

j−1
∑

l=i+1

zil(Z̄
k−1)lj .

From Lemma 3.9, if zil(Z̄
k−1)lj 6= 0 for some l, i + 1 ≤ l ≤ j − 1 then there is

a path from i to l in Γ(Z) and from l to j in Γ(Z̄). Hence, by Lemma 3.10, there is

a path from i to j in Γ(A) through at least 3 singular classes i, l and j of A, which

contradicts the fact that hull(i, j)
⋂

H(A) = {i, j}. Thus,

j−1
∑

l=i+1

zil(Z̄
k−1)lj = 0, or

(Z̄k)ij = kρk−1zij . Hence, z̃ij = gρg−1zij > 0, which implies zij > 0 and the result

follows.

If B is an eventually nonnegative matrix with index(B) > 1, then B need not

have a quasi-preferred basis. However if index(B) ≤ 1 it is known from [9] that B, and

hence, A = ρI − B has a quasi-preferred basis. In this section, we give a procedure

to obtain a preferred basis from a quasi-preferred basis for any M∨-matrix A, where

A = ρI −B with index(B) ≤ 1.

Procedure 3.13. Constructive method of obtaining a preferred basis

from a quasi-preferred basis:

Let A = ρI −B be an M∨-matrix with indexρ(A) ≤ 1 and let X = [x1 x2 · · · xq]

be an n × q matrix whose columns form a quasi-preferred basis for E(A). Then by

Remark 3.8, we can choose a matrix Z satisfying −AX = XZ.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 550-576, September 2015



ELA

558 M. Saha and S. Bandopadhyay

We now construct a preferred basis (from the given quasi-preferred basis X) X̃

such that −AX̃ = X̃Z̃ for some nonnegative matrix Z̃.

If the columns of X already give a preferred basis for E(A), then we are done.

If the columns of X form a quasi-preferred basis but not a preferred basis for E(A),

then there exist indices i0 and j0 such that αi0 → αj0 and zi0,j0 ≤ 0. If I := {j ∈

〈q〉 | zij < 0 for some i}
⋃

{j ∈ 〈q〉 | αi → αj and zij = 0 for some i}, then I 6= ∅

since j0 ∈ I. Let j be the least index in I. Then the first j − 1 columns of X

forms a preferred set for E(A). To find an x̃j such that if X̃ is the matrix obtained

by replacing the jth column xj of X by x̃j , then the first j columns of X̃ will be a

preferred set of E(A). Finally we show that it can be done for every j ≥ 2.

Let

Q = {i ∈ 〈j − 1〉 | zij < 0}

R = {i ∈ 〈j − 1〉 | zij = 0, αi → αj}

S = Q
⋃

R

Q̄ = 〈j − 1〉 \Q

R̄ = 〈j − 1〉 \R

S̄ = Q̄
⋂

R̄.

We claim that S 6= ∅. Since for all i ∈ S, αi → αj , there exists an l(i) ∈ H(A) such

that αl(i) → αj and hull(αi, αl(i))
⋂

H(A) = {αi, αl(i)}. Since for all i ∈ S, zij ≤ 0

and from Lemma 3.12, zi,l(i) > 0, so l(i) < j for all i ∈ S.

Case I: Q = ∅. Let x̃j = xj +
∑

i∈R

xl(i). Since −Axl(i) = zi,l(i)x
i +

l(i)−1
∑

k=1
k 6=i

zk,l(i)x
k and

−Axj =
∑

i∈R̄

zijx
i, we have −Ax̃j =

∑

i∈R

zi,l(i)x
i +
∑

i∈R

l(i)−1
∑

k=1
k 6=i

zk,l(i)x
k +

∑

i∈R̄

zijx
i. Since

the first j − 1 columns of X formed a preferred set for E(A) and zi,l(i) > 0 for all

i ∈ R, {x1, . . . , xj−1, x̃j} forms a preferred set for E(A).

Case II: Q 6= ∅. Let x̃j = xj + β
∑

i∈S

xl(i). Then

−Ax̃j = β
∑

i∈R

zi,l(i)x
i +
∑

i∈Q

(

βzi,l(i) + zij
)

xi +
∑

i∈S

l(i)−1
∑

k=1
k 6=i

βzk,l(i)x
k +

∑

i∈S̄

zijx
i.

For β > max
i∈Q

{

−zij
zi,l(i)

}

> 0, {x1, . . . , xj−1, x̃j} forms a preferred set for E(A). Hence,

in both cases if we take X̃ =
[

x1 · · · x̃j · · · xq
]

and if Z̄ is the matrix satisfying

the condition −AX̃ = X̃Z̄, then the leading j columns of X̃ form a preferred set for

E(A). The above process is repeated with X replaced by X̃. Since at every stage at

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 550-576, September 2015



ELA

Combinatorial Properties of Generalized M -Matrices 559

least one more column is included in the preferred set, after at most q − j steps we

will get a preferred basis for E(A).

The following theorem is an immediate consequence of Procedure 3.13.

Theorem 3.14. If A = ρI −B is an M∨-matrix with indexρ(A) ≤ 1, then there

is a preferred basis for E(A).

Remark 3.15. The Procedure 3.13 can also be used to obtain a preferred basis

from a given quasi-preferred basis for M -matrices.

We summarize the entire procedure below.

Algorithm 1 Given A ∈ Rn,n, X ∈ Rn,q

H(A) = {α1, . . . , αq} basis classes of A

Z = X+AX (X+ is the pseudo inverse of X)

I = {j ∈ 〈q〉 | zij < 0 for some i}
⋃

{j ∈ 〈q〉 | zij = 0, αi → αj , for some i}

while I 6= ∅ do

j = min I

Q = {i ∈ 〈j − 1〉|zij < 0} = {i1, . . . , im}

R = {i ∈ 〈j − 1〉|zij = 0, αi → αj} = {im+1, . . . , it}

if Q = ∅ then

for k = m+ 1: t do

l(k)←− hull{αik , αl(k)}
⋂

H(A) = {αik , αl(k)} and αl(k) → αj

end for

for r = 1: n do

Xrj ←− Xrj +

t
∑

k=m+1

Xrl(k)

end for

else

for k = 1: t do

l(k)←− hull{αik , αl(k)}
⋂

H(A) = {αik , αl(k)} and αl(k) → αj

end for

Choose β > max
1≤k≤m

{

−zikj
zikl(k)

}

for r = 1: n do

Xrj ←− Xrj + β

t
∑

k=1

Xrl(k)

end for

end if

Z = X+AX

I = {j ∈ 〈q〉 | zij < 0 for some i}
⋃

{j ∈ 〈q〉 | zij = 0, αi → αj , for some i}

end while
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We illustrate Procedure 3.13 with the help of the following example.

Example 3.16. Let

B =



















2 2 4 −1 0 0

2 2 −1 4 0 0

0 0 2 6 1 −1

0 0 1 1 1 −1

0 0 0 0 0 6

0 0 0 0 2 1



















.

Then Bk ≥ 0 for all k ≥ 7 with ρ(B)=4. Consider the M∨ matrix A = 4I − B so

that E(A) = N(A3) and index4(A) = 1. The reduced graph of A is given by,

1

2

3

Consider the quasi-preferred basis for E(A) given by,

x1 = [2 2 0 0 0 0]T

x2 = [271 241 36 12 0 0]T

x3 = [3.0625 1 2.8 1 1.5 1]T .

Take X = [x1 x2 x3]. Then −AX = XZ implies that

Z =





0 36 −0.35

0 0 0.25

0 0 0



 .

Then the set I = {j ∈ 〈4〉 | zij < 0 for some i}
⋃

{j ∈ 〈4〉 | {zij = 0, αi →

αj , for some i}} = {3}
⋃

∅. So 3 is the least index in I. Now consider the set

Q = {i | zi3 < 0} = {1}. Again we have hull(1, 2)
⋂

H(A) = {1, 2}. Define the vector

x3
new = x3 + x2 so that

−Ax3
new = 35.65x1 + 0.25x2 + 4x3

new .

Then,

−A[x1 x2 x3
new] = [x1 x2 x3

new]





0 36 35.65

0 0 0.25

0 0 0



 .
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Thus, we have the preferred basis {x1, x2, x3
new} for E(A) such that if Xfinal =

[x1 x2 x3
new], then

−AXfinal = Xfinal





0 36 35.65

0 0 0.25

0 0 0



 := XfinalZfinal.

3.2. Height and level characteristics of M∨-matrices and well struc-

tured graph. Most of following results were obtained by Schneider and Hershkowitz

in [7, 8, 4], for the class of singular M -matrices. We try to give independent proofs of

each of the results and extend it for the class of M∨-matrices. This section essentially

deals with two different types of characteristics, namely height characteristic and level

characteristic and we give some necessary and sufficient conditions for their equality.

Later we give a sufficient condition for the reduced graph of an M∨-matrix to be well

structured.

3.2.1. Height and level characteristics of M∨-matrices. We begin this

section with some definitions, most of them are taken from [8].

Definition 3.17. [7, 8] Let t = index(A). For i ∈ 〈t〉, let ηi(A) = n(Ai) −

n(Ai−1). The sequence (η1(A), . . . , ηt(A)) is called the height ( or Weyr) characteristic

of A, and is denoted by η(A). Normally we write ηi for ηi(A) where no confusion

should result.

Definition 3.18. [8] Let A be a singular matrix and let index(A) = t.

(i) Let S be a collection of vectors in E(A), and let ηk(S) be the number of

vectors in S of height k. The height signature η(S) of S is defined as the

t-tuple (η1(S), . . . , ηt(S)).

(ii) A basis B for E(A) is said to be a height basis for E(A) if η(B) = η(A).

Definition 3.19. [8] Let A be a singular matrix.

(i) The Segré characteristic j(A) ofA is defined to be the nonincreasing sequence

of sizes of the Jordan blocks of A associated with the eigenvalue 0.

(ii) A sequence (x1, . . . , xs) of vectors in E(A) is said to be a Jordan chain for A

if Axi = xi−1, i ∈ {2, . . . , s}, and Ax1 = 0. The vector xs is called the top

of the chain (x1, . . . , xs).

(iii) A basis for E(A) that consists of disjoint Jordan chains for A is said to be a

Jordan basis for E(A).
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Remark 3.20. It is known that E(A) always has a Jordan basis.

Remark 3.21. Observe that every Jordan basis for A is a height basis, but

clearly a height basis need not be a Jordan basis.

Definition 3.22. [4] Let a = (a1, . . . , ar) be a nonincreasing sequence of positive

integers. Consider the diagram formed by r columns of stars such that the jth column

has aj stars. The sequence a⋆ dual to a is defined to be the sequence of row lengths

of the diagram, reordered in a nonincreasing order.

It is well known that the height characteristic and the Segré characteristic are

dual sequences (see [13]).

Definition 3.23. [8] The cardinality of the jth level of S(A) is denoted by

λj(A). If S(A) has m levels, then the sequence (λ1(A), . . . , λm(A)) is called the level

characteristic of A, and is denoted by λ(A). Normally we write λi for λi(A) where

no confusion should result.

Convention 3.24. We will always assume that the level characteristic and the

height characteristic of A to be (λ1, . . . , λm) and (η1, . . . , ηt), respectively.

Remark 3.25. [9] If A = ρI − B is an M∨-matrix with indexρ(A) ≤ 1, then m

and t in Convention 3.24 are equal.

Definition 3.26. [8] Let A be a square matrix.

(i) Let S be a collection of vectors in E(A), and let λk(S) be the number of

vectors in S of level k. We define the level signature λ(S) of S as the m-tuple

(λ1(S), . . . , λm(S)).

(ii) A basis B for E(A) is said to be a level basis for E(A) if λ(B) = λ(A).

(iii) A basis B for E(A) is said to be a height-level basis for E(A) if B is both

height and level basis.

Definition 3.27. [7] Let A be an n×n singular matrix and let B = {x1, . . . , xq}

be a basis for E(A). Denote X =
[

x1 · · · xq
]

∈ Rn,q. Then there exists a unique

matrix C ∈ Rq,q such that AX = XC. This matrix is called the induced matrix for

A by B, and is denoted by C(A,B).

Definition 3.28. [7] Let P be the set of p-tuples of nonnegative integers. P is

partially ordered in the following way: If a = (a1, . . . , ap) and b = (b1, . . . , bp) are in

P , then we define a 4 b if
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k
∑

i=1

ai ≤
k
∑

i=1

bi, k ∈ 〈p− 1〉,

p
∑

i=1

ai =

p
∑

i=1

bi.

If a 4 b, then a is said to be majorized by b. If a 4 b and a 6= b, then it is written as

a ≺ b.

Remark 3.29. Let B be a basis of E(A). If η(B) = (η1(B), . . . , ηt(B)) is the

height signature of B, then for any k ∈ 〈t〉, B has η1(B) + · · · + ηk(B) elements of

height at most k, and hence, η1(B) + · · ·+ ηk(B) ≤ η1 + · · ·+ ηk, so η(B) 4 η(A).

By a similar argument, λ(B) 4 λ(A) for any basis B of E(A).

Lemma 3.30. [7] Given A, let y be a linear combination of the n-component

vectors x1, . . . , xr. Then level(y) ≤ max{level(xi) : i ∈ 〈r〉}.

Lemma 3.31. [7] Given A, let y be a linear combination of the n-component

vectors x1, . . . , xr. Then height(y) ≤ max{height(xi) : i ∈ 〈r〉}.

Lemma 3.32. If B is a preferred basis of an M∨-matrix A = ρI − B with

indexρ(A) ≤ 1, then level(Akx) ≤ level(x) − k for all x ∈ B and k ≥ 1.

Proof. Let B = {x1, . . . , xq}. Since

(−1)kAkxi =
∑

i1

∑

i2

· · ·
∑

ik

ci1i2 · · · cikix
i1 , i1 6= · · · 6= ik 6= i,

and ci1i2 · · · ciki > 0 for some i1 6= · · · 6= ik 6= i if and only if there is a chain of

length k from i1 to i, so it follows that level(xi1 ) ≤ level(xi)− k, for all i1. Hence, by

Lemma 3.30, the result follows.

Corollary 3.33. For any preferred basis B of A, height(x) ≤ level(x), for all

x ∈ B.

Proof. The proof follows by Lemma 3.32.

Lemma 3.34. Let A be any M∨-matrix with indexρ(A) ≤ 1 and x ∈ E(A). Then

height(x) ≤ level(x).

Proof. If B = {x1, . . . , xq} be a preferred basis for A, then x =

q
∑

i=1

cix
i for some

ci’s. Let Q = {i | ci 6= 0}. Then clearly, l = level(x) = max{level(xi) | i ∈ top(Q)}.
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From Corollary 3.33, it follows that for all i ∈ Q, height(xi) ≤ level(xi) ≤ l, or

Alxi = 0. So it follows that Alx = 0 and therefore, height(x) ≤ l = level(x).

Remark 3.35. From Lemma 3.34 we can easily conclude that if A is any M∨-

matrix with indexρ(A) ≤ 1 and B is any basis for E(A) then λ(B) � η(B).

Remark 3.36. If A is anyM∨- matrix with indexρ(A) ≤ 1 then from Lemma 3.30

then the set Λk(A) consisting of all vectors in E(A), with level less than or equal to k

form a vector space and in view of Lemma 3.34, Λk(A) ⊆ N(Ak), hence λ(A) 4 η(A).

Lemma 3.37. Let A = ρI − B be an M∨-matrix with indexρ(A) ≤ 1. Then for

any nonnegative vector x in E(A), height(x) = level(x).

Proof. It suffices to show that level(x) ≤ height(x). Let {x1, . . . , xq} be a pre-

ferred basis for E(A). Then x =

q
∑

i=1

cix
i for some scalars ci, and l = level(x) =

max{level(xi) | i ∈ top(Q)}, where Q is as defined in Lemma 3.34. Clearly since x is

nonnegative, for any i ∈ top(Q), ci > 0. In view of the above argument it is enough

to show Al−1x 6= 0.

If −Axi =

q
∑

k=1

ckix
k where the cki’s are as in the definition of a preferred basis,

then

(−1)l−1Al−1x = (−1)l−1





∑

i∈Q

ciA
l−1xi



 .

From Lemma 3.34, height(x) ≤ level(x), and hence, it follows that

(−1)l−1





∑

i∈Q

ciA
l−1xi



 = (−1)l−1
∑

i∈Q

level(xi)=l

ciA
l−1xi

=
∑

i1

∑

i2

· · ·
∑

il−1

∑

i∈Q

level(xi)=l

ci1i2 · · · cil−1icix
i1 .

Since for every i ∈ Q with level(xi) = l, ci > 0 and there is a sequence of distinct

indices ii, i2, . . . , il−1 such that ci1i2 · · · cil−1i > 0, so it follows that Al−1x 6= 0.

Remark 3.38. From Lemma 3.37 it is clear that for any nonnegative level basis

of E(A) and in particular for a preferred basis B of E(A), η(B) = λ(B) = λ(A).

Remark 3.39. If B is a nonnegative height basis, then η(B) = λ(B) = η(A) and,

this together with Remark 3.38 and Remark 3.29 imply that η(B) = λ(B) = η(A) =
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λ(A). Hence, B is also a level basis.

In [9], it was shown that the level characteristic of an eventually nonnegative

matrix B with index(B) ≤ 1 is majorized by the height characteristic which implies

that the level characteristic of an M∨-matrix A = ρI − B with indexρ(A) ≤ 1, is

majorized by the height characteristic. Motivated by the necessary and sufficient

conditions obtained by Schneider and Hershkowitz in [7] for the equality of these

two characteristics for singular M -matrices, we independently try to obtain similar

conditions for the equality of these two characteristics for the class of M∨-matrices.

Theorem 3.40. Let A be an M∨-matrix with indexρ(A) ≤ 1. Then the following

are equivalent:

(i) η(A) = λ(A).

(ii) For all x ∈ E(A), height(x) = level(x).

(iii) For every basis B of E(A), we have height(x) = level(x) for all x ∈ B.

(iv) For some height basis B of E(A), we have height(x) = level(x) for all x ∈ B.

(v) Every height basis for A is a level basis for A.

(vi) Every level basis for A is a height basis for A.

(vii) Some preferred basis for A is a height basis for A.

(viii) There exists a nonnegative height-level basis for A.

(ix) There is a nonnegative height basis for A.

(x) For all j ∈ 〈t〉, there exists a nonnegative basis for N(Aj).

(xi) For every level basis B for A with induced matrix C = C(A,B), the block

Ck−1,k has full column rank for all k ∈ 〈t〉.

(xii) There exists a level basis B for A with induced matrix C = C(A,B), such that

for all k ∈ 〈t〉 the block Ck−1,k has full column rank.

Proof.

(i)⇒ (ii) : Condition (i) implies that for any k, dim(Λk(A)) = λ1 + · · · + λk = η1 +

· · ·+ηk = dim(N(Ak)). So from Remark 3.36, it follows that Λk(A) = N(Ak)

and hence (ii) follows.

(ii)⇒ (iii)⇒ (iv) : Obvious.

(iv)⇒ (v) : By assumption we have a height basis B such that for each x ∈ B,

height(x) = level(x), hence it follows that η(A) = η(B) = λ(B). Since λ(B) 4

λ(A) from Remark 3.29, and η(A) < λ(A), it follows that η(A) = λ(A) and

hence (i) and (iii) hold.

If B′ is any height basis, then (iii) and (i) imply λ(B′) = η(B′) = η(A) = λ(A).

Thus, B′ is a level basis.

(v)⇒ (vi) : Consider a Jordan basis B for E(A) derived from the set T = {y1, . . . , yt̄}

and let max{height(yk) | k ∈ 〈t̄〉} = l. Since A is an M∨-matrix with

indexρ(A) ≤ 1, index(A) is equal to the length of the longest chain in A
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and it follows that max{level(yk) | k ∈ 〈t̄〉} = l.

Since B is a height basis, η(B) = η(A). Thus, by assumption, λ(B) = λ(A).

Also for any basis B′, λ(B′) 4 η(B′) 4 η(A) and λ(B′) = λ(A) 4 η(A) if it is

a level basis, then to show that every level basis is a height basis, it is enough

to show η(A) = λ(A) or η(B) = λ(B).

For any yi for which height(yi) = level(yi), height(Akyi) = height(yi)− k =

level(yi)−k ≥ level(Akyi). It follows that height(Akyi) = level(Akyi) for any

k ≤ height(yi). Then for yi with height(yi) = l, height(Akyi) = level(Akyi)

for any k ≤ l. From the above argument it follows that if λ(B) 6= η(B), then

there exists a yi ∈ T with height(yi) < l such that height(yi) < level(yi). Let

height(yi) = s and level(yi) = p. Consider any yj ∈ T with height(yj) = l =

level(yj). Then there exists an r such that height(Aryj) = height(yi) = s.

Consider the element z = yi + Aryj , and the new basis B̄ obtained from

B by replacing Aryj with z. Since B is a height basis, the new basis B̄ so

constructed will also be a height basis and since level(Aryj) = height(Aryj) =

s, so level(z) = p > s. Hence, λ(B̄) ≺ λ(B) = λ(A) which contradicts

the assumption that every height basis is a level basis. So for any yi ∈ T ,

height(yi) = level(yi) which implies η(B) = λ(B).

(vi)⇒ (vii) & (vii)⇒ (viii) : Follow from the fact that every preferred basis is a level

basis.

(viii)⇒ (ix) : Obvious.

(ix)⇒ (x) : Let B be a nonnegative height basis for A. Then η(B) = η(A) =

(η1, . . . , ηp). Thus, for any j ∈ 〈p〉, there are η1 + · · · + ηj elements in B

of height at most j and since dim(N(Aj)) = η1 + · · ·+ ηj , these elements will

form a nonnegative basis for N(Aj).

(x) ⇒ (xi) : Suppose that for each j ∈ 〈p〉, there exists a nonnegative basis

for N(Aj). Let B be a level basis for A with the induced matrix C = C(A,B).

To show that for all k, Ck−1,k has full column rank.

Suppose that there is a k such that Ck−1,k does not have full column rank

and we assume that k is the least of such indices. We have,

(3.3) A[X(1) · · ·X(t)] = [X(1) · · ·X(t)]



















0 C12 C13 · · · C1t

0 C23 · · · C2t

0
. . .

...
. . . Ct−1,t

0



















with X(i) = [xi
1 · · ·x

i
λi
] in which the columns give the elements of B having

level i.

Since Ck−1,k = [Ck−1,k
1 · · ·Ck−1,k

λk
] does not have full column rank, so there is

a column say Ck−1,k
j in Ck−1,k which is a linear combination of its preceding
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columns. Since every column of Ck−1,k is a nonzero vector, there exists

scalars β1, . . . , βj−1, not all zeros, such that Ck−1,k
j =

j−1
∑

r=1

βrC
k−1,k
r . Then

from equation (3.3), for r = 1, . . . , j − 1 we have,

Axk
r = X(1)C1,k

r +X(2)C2,k
r + · · ·+X(k−1)Ck−1,k

r ,

and

Axk
j = X(1)C1,k

j +X(2)C2,k
j + · · ·+X(k−1)

(

j−1
∑

r=1

βrC
k−1,k
r

)

.

If z = xk
j −

j−1
∑

r=1

βrx
k
r , then it follows that height(z) ≤ k−1. Let height(z) = h.

Then by assumption N(Ah) has a nonnegative basis, say, {y1, . . . , ym} and

let z = d1y
1 + · · · + dmym for some scalars di. If level(z) = l, then since

level(yi) = height(yi) ≤ h, so l ≤ h < k. Construct a new basis B̃ from B by

replacing xk
j with z in B. Then λi(B̃) = λi for all i /∈ {l, k}; λl(B̃) = λl + 1;

λk(B̃) = λk−1. Hence, it follows that λ(B̃) ≻ λ(A), which is a contradiction.

Thus, (xii) holds.

(xi)⇒ (xii) : Obvious.

(xii)⇒ (i) : Let there exist a level basis B for A with the induced matrix C = C(A,B)

such that for all k ∈ 〈t〉 the block Ck−1,k has full column rank. We show that

λ(A) = η(A).

From equation (3.3), we have Ak−1X(k) = X(1)C12C23 · · ·Ck−1,k. Since

Cj−1,j ’s are of full column rank, height(xk
i ) = k for all i ∈ 〈λk〉. Hence,

we have height(x) = level(x) for all x ∈ B and, η(B) = λ(B) = λ(A).

If η(A) ≻ λ(A) then there exists a k for which λk > ηk. Since Ak−1X(k) =

X(1)C12C23 · · ·Ck−1,k and each of the matrices X(1), C12, C23, . . . , Ck−1,k is

of full column rank, rank(Ak−1X(k)) = λk(B) = λk, which is equal to the

number of columns in X(k). Hence, no linear combination of the columns

in X(k) can belong to N(Ak−1). Also since AkX(k) is the 0 matrix, ηk =

n(Ak) − n(Ak−1) ≥ λk, which is a contradiction. Hence, it follows that

η(A) = λ(A).

Theorem 3.41. Let A be an M∨-matrix with indexρ(A) ≤ 1. Then η(A) = λ(A)

if and only if there exists a nonnegative Jordan basis for −A.

Proof. Since every nonnegative Jordan basis for −A is a nonnegative height basis

for A, the ‘if’ part follows from Theorem 3.40(ix).

The ‘only if’ part can be obtained by proceeding as in Theorem 6.10 of [7].
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We next consider two extreme cases: (i) Each path in R(A) has at most one

singular vertex, (ii) all singular vertices lie on a single path.

Theorem 3.42. [12] Let A be an M -matrix. Then the following are equivalent:

(i) The Segré characteristic of A is (1, 1, . . . , 1).

(ii) The level characteristic of A is (t).

Theorem 3.43. [12] Let A be an M -matrix. Then the following are equivalent:

(i) The Segré characteristic of A is (t).

(ii) The level characteristic of A is (1, 1, . . . , 1).

Theorems 3.42 and 3.43 are also true for an M∨-matrix A with indexρ(A) ≤ 1,

due to Theorem 3.5 and Lemma 3.6.

Remark 3.44. Let A be an M∨-matrix with indexρ(A) ≤ 1. Then in The-

orem 3.42 since 0 is a simple eigenvalue of every singular block in the Frobenius

normal form of A, t is the algebraic multiplicity of 0. Also, the number of 1’s in the

Segré characteristic in Theorem 3.42 is t. Therefore, Theorem 3.42 states that in the

extreme case (i) we have that λ(A) = j(A)⋆ = η(A).

Similarly for the other extreme case (ii), considered in Theorem 3.43, λ(A) = j(A)⋆ =

η(A).

The following examples show that the results in Theorem 3.42 and Theorem 3.43

need not be true for an M∨-matrix A having indexρ(A) > 1.

Example 3.45. Consider the M∨-matrix

A = 4I −B = 4I −



















2 2 1 1 0 0

2 2 1 1 0 0

0 0 1 1 1 −1

0 0 1 1 −1 1

0 0 0 0 2 2

0 0 0 0 2 2



















.

Clearly A has index4(A) = 2 > 1; t = 2 and A is in Frobenius normal form having

irreducible diagonal blocksA11,A22, A33 so that the singular vertices in R(A) are 1 and

3. Segré characteristic is (1, 1) since it has two Jordan blocks of size 1 corresponding

to the eigenvalue 0, whereas level characteristic is (1, 1).

Example 3.46. Consider the M∨ matrix A given by,

A = 4I −B = 4I −









2 2 0.5 0.5

2 2 0.5 0.5

1 −1 2 2

−1 1 2 2









.
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Then A has index4(A) = 2 > 1. Since A has only one Jordan block corresponding to 0

of size 2, and it has only one irreducible block, the matrix itself, so Segré characteristic

of A is j(A) = (2) and, level characteristic is λ(A) = (1).

3.2.2. Hall condition and well structured graphs. In this section, we show

with the help of the Hall Marriage condition that the reduced graph of a singular

M∨-matrix with indexρ(A) ≤ 1 is a well structured graph.

We first state Hall’s theorem essentially as it is found in [2].

Theorem 3.47. [2] Let E1, . . . , Eh be subsets of a given set E. Then the following

are equivalent:

(i) We have,

(3.4)

∣

∣

∣

∣

∣

⋃

i∈α

Ei

∣

∣

∣

∣

∣

≥ |α|, for all α ⊆ 〈h〉.

(ii) There exist distinct elements e1, . . . , eh of E such that ei ∈ Ei, i ∈ 〈h〉.

Condition (3.4) is often referred to as the Hall Marriage condition.

Definition 3.48. [8] Let S be an acyclic graph. A chain (i1, . . . , im) is called

an anchored chain if the level of ik is k, k ∈ 〈m〉.

Definition 3.49. [8] Let S be an acyclic graph.

(i) A set κ of chains in S is said to be a chain decomposition of S if each vertex

of S belongs to exactly one chain in κ.

(ii) A chain decomposition κ of S is said to be an anchored chain decomposition

of S if every chain in κ is anchored.

(iii) S is said to be well structured if there exists an anchored chain decomposition

of S.

The following result is due to [8].

Theorem 3.50. [8] Let S be an acyclic graph with levels L1, . . . , Lt. Then the

following are equivalent:

(i) The sets Ei = below(i)
⋂

Lk, i ∈ Lk+1, satisfy the Hall Marriage Condition

for all k ∈ 〈t− 1〉.

(ii) S is well structured.

In the next theorem we show that the reduced graph of certain M∨-matrices is

well structured.

Theorem 3.51. Let A be an M∨-matrix with indexρ(A) ≤ 1. If η(A) = λ(A),
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then the reduced graph R(A) is well structured.

Proof. Let {α1, . . . , αq} be the set of all singular vertices of A ordered according

to levels. L1, . . . , Lt mentioned in Theorem 3.50, are the levels of R(A), i.e., Li is

the collection of singular vertices of level i and, t is the length of the longest chain

in R(A). It suffices to show that Ei = below(αi)
⋂

Lk, where αi ∈ Lk+1 satisfies

condition (i) of Theorem 3.50, for all k ∈ 〈t− 1〉.

Suppose the Ei’s as defined above do not satisfy the Hall marriage condition for

all k ∈ 〈t− 1〉. Then there exists a k0 and an α ⊆ 〈λk0+1〉 such that |
⋃

i∈α Ei| < |α|.

Without loss of generality let α = {1, 2, . . . , r}.

Consider a preferred basis B. Since η(A) = λ(A), B is also a height basis. If X

is the matrix such that the columns of which give the elements of B and C is the

corresponding induced matrix, then since η(A) = λ(A), so Ck,k+1’s are of full column

rank, for all k ∈ 〈t− 1〉. Since B is a preferred basis, Cij 6= 0 if and only if αi → αj .

Hence, |
⋃r

i=1 Ei| < r implies that in the submatrix of Ck0,k0+1 of order λk0
× r,

formed by taking only the first r columns of Ck0,k0+1, there are less than r nonzero

rows, which contradicts the fact that the r columns are linearly independent.

Remark 3.52. Note that η(A) = λ(A) is a sufficient condition for the reduced

graph R(A) to be well structured, but is not a necessary condition. For example,

consider the M -matrix A = I −B where,

B =









1 0 1 1

0 1 1 1

0 0 1 0

0 0 0 1









.

The reduced graph R(A) of A is given by,

1

3 4

2

Then {(1, 3), (2, 4)} is an anchored chain decomposition for A, and hence, R(A) is

well structured. But note that λ(A) = (2, 2) whereas η(A) = (3, 1).

4. Combinatorial structure of GM-matrices. In this section, we consider

another generalization of the class of M -matrices known as GM -matrices. We extend

some results on the combinatorial spectral properties of M -matrices to this class. In

particular, it is shown that the Preferred Basis Theorem and the Index Theorem do

not hold for the class of GM -matrices of order n ≥ 3, whereas the theorems are true
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for n < 3.

Definition 4.1. A matrix A ∈ Rn,n is said to have the Perron-Frobenius

property if the spectral radius is an eigenvalue that has an entry-wise nonnegative

eigenvector. WPFn denotes the collection of all n× n matrices A, for which both A

and AT possess the Perron-Frobenius property.

Definition 4.2. A matrix A ∈ Rn,n is said to be a GZ-matrix if it can be

expressed in the form A = sI − B, where s is a positive scalar and B ∈ WPFn.

Moreover, if A = sI − B is a GZ-matrix such that ρ(B) ≤ s, then A is called a

GM -matrix.

Through out this section we write a (singular) GM -matrix A in the form A =

ρI −B, where B ∈WPFn and ρ = ρ(B).

Example 4.3. Consider the matrix

A = 2I −B = 2I −





2 0 0

−1 0 2

1 2 0



 .

The eigenvalues of B are 2, 2,−2. As [1 0 0]T and [0 1 1]T are nonnegative left and

right eigenvectors of B corresponding to 2 respectively, so A is a GM -matrix.

We will show that the size of the largest Jordan block associated with 0, in the

Jordan form of a GM -matrix of order 2, is combinatorially determined, but the Index

Theorem need not be true if the size of the matrix exceeds 2.

Lemma 4.4. For any A ∈ R2,2 with the spectral radius ρ(A) ∈ σ(A), the length

of the longest chain of A is always less than or equal to indexρ(A)(A).

Proof. If indexρ(A)(A) = 2, then the result is obviously true. If suppose

indexρ(A)(A) = 1 and length of the longest chain = 2.

So there are exactly two basic classes {1} and {2} such that either {1} → {2} or

{2} → {1}, and hence, either A or AT is of the form

[

ρ(A) ∗

0 ρ(A)

]

, where ∗ is

nonzero. In each of the cases indexρ(A)(A) = 2, a contradiction to our assumption.

Hence, the result follows.

The following example shows that Lemma 4.4 does not hold if the order of the

matrix exceeds 2.

Example 4.5. Consider the GM -matrix A in Example 4.3. Note that [0, 1, 1]T

and [2, 0, 1]T are two linearly independent eigenvectors of A corresponding to the

eigenvalue 0 so that index(A) = 1. But the maximal level of a vertex in Γ(A) is 2.
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We now give an example of a 2× 2 matrix that satisfies the hypothesis of Lemma

4.4 and for which indexρ(A)(A) > length of the longest chain in Γ(A). Hence, even

for 2× 2 matrices, the condition ρ(A) ∈ σ(A) is not sufficient for their equality.

Example 4.6. Let A =

[

2 −1

1 0

]

. Then ρ(A) = 1 ∈ σ(A) and indexρ(A)(A) =

2 whereas the length of the longest chain in Γ(A) is 1.

In the next lemma we give a subclass of 2× 2 matrices for which indexρ(A)(A) =

length of the longest chain in Γ(A).

Lemma 4.7. If A = (aij) ∈ R2,2 is in WPF2 but not a nonnegative matrix, then

the following statements are equivalent:

(i) indexρ(A)(A) = 2.

(ii) aij < 0 for some i 6= j.

(iii) A is in triangular form with diagonal entries equal to ρ(A).

Proof. Since A ∈WPF2, so there exists nonnegative vectors x = [xj ] and y = [yj ]

such that,

Ax = ρ(A)x and yTA = ρ(A)yT

which give,

(4.1) (a11 − ρ(A))x1 + a12x2 = 0

(4.2) a21x1 + (a22 − ρ(A))x2 = 0

(4.3) (a11 − ρ(A))y1 + a21y2 = 0

(4.4) a12y1 + (a22 − ρ(A))y2 = 0.

(ii) ⇒ (iii): Assume that a12 < 0. We claim that x2 cannot be positive. If x2 > 0,

then from equation (4.1) we must have x1 > 0 and,

a11 > ρ(A).

Since a11 + a22 = λ + ρ(A) where λ is the other eigenvalue of A, so a22 − ρ(A) < 0.

Thus, equation (4.4) implies a12 ≥ 0, which is a contradiction. So x2 = 0. From

conditions (4.1) and (4.2) we get, a11 = ρ(A) and a21 = 0, and hence, A is an upper
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triangular matrix. Similarly, one can show that y1 = 0 and a22 = ρ(A). Thus,

λ = ρ(A).

(iii)⇒ (i) : Trivial.

(i)⇒ (ii): Since indexρ(A)(A) = 2 and eigenvalues of A are

(a11 + a22)±
√

(a11 − a22)2 + 4a12a21
2

,

so (a11 − a22)
2 + 4a12a21 = 0. Thus, either a12 and a21 are both nonzero and of

opposite sign, in which case (ii) holds, or at least one of them must be zero. If any

one of a12, a21 is zero, then a11 = a22 = ρ(A). Since A is not a nonnegative matrix,

so at least one of a12, a21 must be negative which implies that (ii) holds.

Corollary 4.8. Suppose A ∈ R2,2 is in WPF2. Then indexρ(A)(A) = 2 if and

only if either A or AT is of the form

[

ρ(A) ∗

0 ρ(A)

]

, where ∗ is nonzero.

Corollary 4.9. If A ∈WPF2, then indexρ(A)(A) = length of the longest chain

in Γ(A).

Proof. If A ≥ 0, then the result is known to be true. Suppose A is not a

nonnegative matrix. If indexρ(A)(A) = 1, then either A is a diagonal matrix or has

two distinct eigenvalues, but in both the cases length of the longest chain in Γ(A) is

1. If indexρ(A)(A) = 2, then the result follows from Lemma 4.7.

The Index Theorem for GM -matrices of order 2 is an immediate consequence of

Corollary 4.9.

Theorem 4.10. If A = ρI−B is a singular GM -matrix of order 2, then index(A)

is equal to the length of the longest chain in R(A).

We next show that there is a nonnegative basis for the generalized nullspace E(A)

and, the positive entries of which are combinatorially determined.

Lemma 4.11. Suppose A ∈ WPF2 and let α1 · · ·αM (M = 1 or 2) be the basic

classes for A. Then there always exists a nonnegative basis {x1, . . . , xM} for Eρ(A)(A)

such that xi
j > 0 if and only if j has access to the ith basic class αi.

Proof. The result is known to be true if A is a nonnegative matrix. Hence, assume

that A has at least one negative entry. We consider two cases:

Case I: Suppose that indexρ(A)(A) = 1. Then by Corollary 4.9, length of the

longest chain in Γ(A) is 1. If A has two basic classes, then A is a nonnegative

diagonal matrix with diagonal entries equal to ρ(A) in which case the result follows.

Suppose A has only one basic class. By Lemma 4.7 both a12 and a21 are nonnegative.
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Suppose one of a12, a21 is 0, say a12 = 0. Then A has two different diagonal entries,

ρ(A) and say, λ. If a11 = ρ(A), then x1 = [1, a21

ρ(A)−λ
]T will be the required vector,

and if a22 = ρ(A), then x1 = [0, 1]T will be the required vector.

Suppose that both a12 and a21 are positive. Then the only basic class of A will

be {1, 2}. Since A ∈WPF2, so there is a nonnegative vector x1 = [x1
1, x

1
2]

T 6= 0 such

that Ax1 = ρ(A)x1 which implies

(a11 − ρ(A))x1
1 + a12x

1
2 = 0

a21x
1
1 + (a22 − ρ(A))x1

2 = 0,

and hence x1
j > 0 ∀j = 1, 2.

Case II: Suppose that indexρ(A)(A) = 2. If A is a nonnegative matrix, then the

result follows from Theorem 2.6. If A is not a nonnegative matrix, then by Lemma 4.7,

A has two basic classes {1}, {2} such that either 2→ 1 or 1→ 2. If 2→ 1, then the

required generalized eigenvectors are x1 = [1, 1]T and x2 = [0, 1]T that satisfy xi
j > 0

if and only if j has access to the ith basic class, for i, j ∈ {1, 2}.

We now prove the Preferred Basis Theorem for GM -matrices of order 2.

Theorem 4.12. If A is a singular GM -matrix of order 2, then there exists a

preferred basis for E(A).

Proof. The result is known to be true if A is an M -matrix, hence let A ∈ R2,2

be a GM -matrix which is not an M -matrix. The existence of a quasi-preferred basis

for E(A) is an immediate consequence of Lemma 4.11. We now show that every

quasi-preferred basis of E(A) is a preferred basis.

Let the columns of X form a quasi-preferred basis for E(A). If index(A) = 1,

then AX = 0, and hence, the columns of X form a preferred basis for A. Suppose

index(A) = 2. Then X = [x1 x2], where x2 is a positive vector and x1
1 > 0. Thus,

by Lemma 4.7, exactly one of a12 or a21 must be zero. Assume that a12 6= 0. Then

a21 = 0 = a11 = a22. Then AX = X

[

0
a12x

2

2

x1

1

0 0

]

. Thus, the columns of X form a

preferred basis for E(A).

The following examples show that the conclusions of Theorem 4.10 and Theo-

rem 4.12 do not hold for WPFn matrices if n > 2.

Example 4.13. Let,

A = 3I −B = 3I −





2 −1 0

1 4 0

0 0 3



 .
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Clearly, B ∈ WPF3, and hence, A is aGM -matrix of order 3. Note that index(A) = 2

whereas the maximal level of a vertex in Γ(A) is 1.

Example 4.14. Consider the matrix

A = 2I −B = 2I −





1 −1 0

−1 1 0

0 0 2



 .

Clearly A is a singular GM -matrix with the singular classes {1, 2} and {3}. Suppose

that there is a preferred basis {x1, x2} for E(A) such that xj
i > 0 if and only if i

has access to the jth singular class. So by assumption x1
i > 0, for all i = 1, 2. But

Ax1 = 0 implies that x1
1 + x1

2 = 0, which cannot happen. Thus, Theorem 4.12 is not

true for n = 3.

Remark 4.15. By taking Ã = diag(A,B) ∈ Rn,n, where A is as in Example 4.14

or in Example 4.13 and any matrix B having ρ(B) < ρ(A), we can conclude that

Theorems 4.10 and 4.12 do not hold for n > 3.

5. Conclusion. We have considered two types of generalizations of M -matrices,

namely, the GM -matrices and the M∨-matrices. Initially we considered a generaliza-

tion of M -matrices, known as M∨-matrices and we proved the existence of preferred

basis for a subclass of these matrices. In particular, we gave a method to obtain a pre-

ferred basis for singular M -matrices and singularM∨-matrices, from a quasi-preferred

basis. We next considered different types of characteristics, known as height, level

and Segré characteristics and tried to understand their mutual relationship. Based on

results obtained for singular M -matrices in [7], we stated and proved some equivalent

conditions for the equality of the height characteristic and the level characteristic for

a subclass of singular M∨-matrices. We also have given a sufficient condition for the

reduced graph of this subclass of M∨-matrices to be well structured.

Finally, we showed the existence of a preferred basis for singular GM -matrices of

order 2 and we have also demonstrated with the help of an example, the fact that a

quasi-preferred (and hence, a preferred) basis need not exist if the order of the matrix

exceeds 2.
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