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ON (T, f)-CONNECTIONS OF MATRICES AND GENERALIZED

INVERSES OF LINEAR OPERATORS∗

MAREK NIEZGODA†

Abstract. In this note, generalized connections σT,f are investigated, where AσT,fB =

TAfT−
A
(B) for positive semidefinite matrix A and hermitian matrix B, and operator monotone

function f : J → R on an interval J ⊂ R. Here the symbol T−
A

denotes a reflexive generalized inverse

of a positive bounded linear operator TA. The problem of estimating a given generalized connec-

tion by other ones is studied. The obtained results are specified for special cases of α-arithmetic,

α-geometric and α-harmonic operator means.
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1. Motivation. We begin with some notation. ByMn we denote the C∗-algebra

of n×n complex matrices. The symbol B(Mn) stands for the C
∗-algebra of all bounded

linear operators from Mn into Mn. We denote the (real) space of n × n Hermitian

matrices by Hn. The spectrum of an hermitian matrix A ∈ Hn is denoted by Sp (A).

For matrices X,Y ∈ Mn, we write Y ≤ X (resp., Y < X) if X − Y is positive

semidefinite (resp., positive definite).

We say that a linear map Φ : Mn → Mk is positive if 0 ≤ Φ(X) for 0 ≤ X ∈ Mn.

If in addition 0 < Φ(X) for 0 < X ∈ Mn then we say that Φ is strictly positive.

A function h : J → R with an interval J ⊂ R is said to be an operator monotone

function, if for all Hermitian matrices A and B (of the same order) with spectra in J ,

A ≤ B implies h(A) ≤ h(B)

(see [3, p. 112]).

Let f : J → R be a continuous function on an interval J ⊂ R. The f -connection

of n × n positive definite matrices A and B such that Sp (A−1/2BA−1/2) ⊂ J , is

∗Received by the editors on January 23, 2014. Accepted for publication on June 30, 2015.

Handling Editor: Bryan L. Shader.
†Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin,

Akademicka 15, 20-950 Lublin, Poland (marek.niezgoda@up.lublin.pl, bniezgoda@wp.pl).

494

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 494-506, September 2015



ELA

(T, f)-Connections of Matrices 495

defined by

AσfB = A1/2f
(

A−1/2BA−1/2
)

A1/2(1.1)

(cf. [6, p. 637]).

For f(t) of the form αt + 1 − α, tα and (αt−1 + 1 − α)−1, one obtains the α-

arithmetic mean, α-geometric mean and α-harmonic mean, respectively, defined as

follows (see (1.2), (1.3) and (1.4)).

For α ∈ [0, 1], the α-arithmetic mean of n×n positive definite matrices A and B

is defined by

A∇αB = (1− α)A+ αB.(1.2)

For α ∈ [0, 1], the α-geometric mean of n× n positive definite matrices A and B

is defined as follows:

A♯αB = A1/2(A−1/2BA−1/2)αA1/2(1.3)

(see [8, 13]).

For α ∈ [0, 1], the α-harmonic mean of n× n positive definite matrices A and B

is defined by

A !αB = ((1 − α)A−1 + αB−1)−1.(1.4)

In [1] Ando showed that if Φ : Mn → Mk is a positive linear map and A,B ∈ Mn

are positive definite then

Φ(A♯αB) ≤ Φ(A)♯αΦ(B).

Aujla and Vasudeva [2] proved that

Φ(AσfB) ≤ Φ(A)σfΦ(B)

for an operator monotone function f : (0,∞) → (0,∞).

A related result is due to Kaur et al. [7].

Theorem A [7, Theorem 2.1] Let A and B be n × n positive definite matrices

such that 0 < b1 ≤ A ≤ a1 and 0 < b2 ≤ B ≤ a2 for some scalars 0 < bi < ai,

i = 1, 2.

If Φ : Mn → Mk is a strictly positive linear map, then for any operator mean σ

with the representing function f , the following double inequality holds:

ω1−α (Φ(A)♯αΦ(B)) ≤ (ωΦ(A))∇αΦ(B) ≤ α

µ
Φ(AσB),
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where µ =
a1b1(f(b2a

−1

1
)−f(a2b

−1

1
))

b1b2−a1a2

, ν =
a1a2f(b2a

−1

1
)−b1b2f(a2b

−1

1
)

a1a2−b1b2
, ω = αν

(1−α)µ and

α ∈ (0, 1).

The following result was proved in [11]. The symbol ◦ means the composition of

maps.

Theorem B [11, Theorem 2.7] Let f1, f2, g1, g2 be continuous real functions de-

fined on an interval J = [m,M ] ⊂ R+. Assume that g2 > 0 and g2 ◦ g−1
1 are operator

monotone on intervals J and J ′ = g1(J), respectively, with invertible g1 and concave

g2. Let A and B be n × n positive definite matrices such that mA ≤ B ≤ MA with

0 < m < M .

If Φ : Mn → Mk is a strictly positive linear map,

g1(t) ≤ f1(t) and f2(t) ≤ g2(t) for t ∈ J ,

and

max
t∈J

g1(t) = max
t∈J

f1(t),

then

cg2 Φ(A)σf2Φ(B) ≤ Φ(Aσg2B) ≤ Φ(Aσg2◦g
−1

1

(Aσf1B)),

where cg2 is defined by

ag2 = g2(M)−g2(m)
M−m , bg2 = Mg2(m)−mg2(M)

M−m and cg2 = min
t∈J

ag2
t+bg2

g2(t)
.

In the present note, we extend Theorems A and B from f -connections of type

(1.1) to a class of (T, f)-connections of the form

AσT,fB = TAfT
−

A (B)

for A ≥ 0 and B ∈ Hn, where T−

A denotes a positive reflexive generalized inverse of a

positive bounded map TA, and in addition the map T : X → TX is positive.

2. Results. A generalized inverse of a linear map L : V → W between linear

spaces V and W is a linear map L− : W → V satisfying LL−L = L. If in addition

L−LL− = L− then L− is called a reflexive generalized inverse of L.

By Ran (L) we denote the range of a linear map L.

If L− is a reflexive generalized inverse of L, then

LL−(Y ) = Y for Y ∈ Ran (L),(2.1)
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and

L−L(X) = X for X ∈ Ran (L−).

It is known that if L : H → H is a bounded linear map with a Hilbert space H ,

then there exists a generalized inverse of L if and only if L has closed range [4].

Throughout this note, whenever the symbol L− is used, it is assumed that there

exists a generalized inverse L− of a linear map L.

We denote the Loewner cone of all positive semidefinite n× n complex matrices

by Ln, i.e., Ln = {X ∈ Hn : X ≥ 0}.

Let T : X → TX be a map from Ln into B(Hn) with TX : Hn → Hn satisfying

TX is positive for X ≥ 0.

Let f : J → R be a continuous function on an interval J ⊂ R. The (T, f)-connection

σT,f of an n×n positive semidefinite matrix A and an n×n hermitian matrix B such

that Sp (T−

AB) ⊂ J , is defined by

AσT,fB = TAfT
−

A (B)(2.2)

(cf. [6, p. 637]). For some applications of connections of the form (2.2), see [10, 11, 12].

Example 2.1. Let A ≥ 0 be positive semidefinite (not necessarily positive

definite) with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. By spectral decomposition

A = Udiag (λ1, λ2, . . . , λn)U
∗ for some unitary matrix U ∈ Mn. We consider a

generalized inverse A− of A given by A− = Udiag (µ1, µ2, . . . , µn)U
∗, where µi =

1
λi

if λi > 0, and µi = 0 if λi = 0, i = 1, 2, . . . , n. Thus, A− is positive semidefinite, and

A− = (A−)1/2(A−)1/2 with

(A−)1/2 = (A1/2)− = Udiag (
√
µ1,

√
µ2, . . . ,

√
µn)U

∗

We are now in a position to set

TA = A1/2(·)A1/2 and T−

A = (A−)1/2(·)(A−)1/2.

Then (2.2) takes the form (cf. (1.1))

AσT,fB = A1/2f
(

(A−)1/2B(A−)1/2
)

A1/2 for B ∈ Hn.

Example 2.2. (Cf. [12, Example 3.5].) By E we denote the n×n matrix of ones.
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Let A = (aij) be an n × n positive semidefinite matrix with 0 ≤ aij < 2, i, j =

1, 2, . . . , n, and such that 0 ≤ A ≤ E. We define

TA(X) = A⊙X = (aijxij) for X = (xij) ∈ Mn,

where ⊙ stands for the Schur product of n× n matrices.

By Schur Product Theorem (see [5, Theorem 5.2.1]), the map TA is positive, i.e.,

X ≥ 0 implies TA(X) ≥ 0.

We consider the generalized inverse of TA defined by

T−

A (Y ) = A[−1] ⊙ Y for Y = (yij) ∈ Mn ,(2.3)

where A[−1] = (cij) with cij =
1
aij

if aij 6= 0, and cij = 0 if aij = 0.

Under the hypothesis that A = (aij) with 0 ≤ aij < 2, i, j = 1, 2, . . . , n, we have

A[−1] = E + (E −A) + (E −A)[2] + (E −A)[3] + · · · ,

the convergent Schur-power series (see [5, pp. 449–450]). Here the m-th Schur-power

of E −A is defined by

(E −A)[m] = (E −A)⊙ · · · ⊙ (E −A)
︸ ︷︷ ︸

m times

, m = 1, 2, . . . ,

with (E −A)[0] = E.

It is evident by Schur Product Theorem that (E − A)[m] ≥ 0, m = 0, 1, 2, 3, . . .,

because E −A ≥ 0. Therefore,

A[−1] ≥ 0(2.4)

(see [5, Theorem 6.3.5]). So, the map T−

A is positive by (2.3) and (2.4).

In summary, in this situation (T, f)-connection is given by

AσT,fB = A⊙ f
(

A[−1] ⊙B
)

for B ∈ Hn.

For a function g : J → R+ defined on an interval J = [m,M ] with m < M , we

define (see [9])

ag = g(M)−g(m)
M−m , bg = Mg(m)−mg(M)

M−m and cg = min
t∈J

agt+bg
g(t) .(2.5)
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In the forthcoming theorem, we extend [9, Corollary 3.4] from the classical map

X → TX(·) = X1/2(·)X1/2, X > 0, with the inverse T−1
X (·) = X−1/2(·)X−1/2, to an

arbitrary positive map X → TX with a reflexive generalized inverse T−

X of TX .

Theorem 2.3. Assume that

(i) for any X ≥ 0, TX : Hn → Hn is a bounded linear operator, and T−

X : Hn → Hn

is a reflexive generalized inverse of TX , satisfying the following conditions:

TX and T−

X are positive,(2.6)

TX(In) = X,(2.7)

In ∈ Ran (T−

X ),(2.8)

(ii) Φ : Mn → Mk is a strictly positive linear map,

(iii) A is an n× n positive semidefinite matrix and B is an n× n Hermitian matrix

with Sp (T−

A B) ⊂ J = [m,M ], m < M , such that

B ∈ RanTA and Φ(B) ∈ RanTΦ(A).(2.9)

If g : J → R+ is a continuous concave operator monotone function, then

cg Φ(A)σT,gΦ(B) ≤ Φ(AσT,gB),

where ag, bg and cg are defined by (2.5).

Proof. The proof of inequality (2.12) is based on the proof of [6, Theorem 1] (cf. also

[9, Corollary 3.4]).

Since g : J → (0,∞) is concave, it is not hard to verify that

agt+ bg ≤ g(t) for t ∈ J .(2.10)

It follows from (2.5) that

cg ≤ agt+ bg

g(t)
for t ∈ J .

However, g is positive, so agt+ bt > 0 for t ∈ J . Thus, cg is positive. Therefore,

g(t) ≤ ag

cg
t+

bg

cg
.(2.11)

In consequence, (2.10) and (2.11) give

agt+ bg ≤ g(t) ≤ ag

cg
t+

bg

cg
for t ∈ [m,M ],(2.12)
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which is the required estimation.

We now denote

l1(t) = agt+ bg and l2(t) =
ag

cg
t+

bg

cg
for t ∈ J = [m,M ].

Consider C = Φ(A) and D = Φ(B). Because Sp (T−

AB) ⊂ [m,M ], we establish

mIn ≤ T−

AB ≤ MIn, and next mTAIn ≤ TAT
−

AB ≤ MTAIn, because TA is positive.

In addition, B ∈ RanTA and A = TA(In) (see (2.9) and (2.7)). Consequently, mA ≤
B ≤ MA (see (2.1)). From this mΦ(A) ≤ Φ(B) ≤ MΦ(A), i.e., mC ≤ D ≤ MC.

But T−

C is positive, so mT−

C C ≤ T−

C D ≤ MT−

C C. Furthermore, T−

C C = In, because

TCIn = C (see (2.7)) and hence In = T−

C TCIn = T−

C C by In ∈ RanT−

C (see (2.8)).

Thus, we derive mIn ≤ T−

C D ≤ MIn and Sp (T−

C D) ⊂ [m,M ].

Since Sp (T−

C D) ⊂ [m,M ] and g(t) ≤ l2(t) for t ∈ [m,M ] (see (2.12)), we find

that

g(T−

C D) ≤ l2(T
−

C D).

Now, by making use of positivity of TC we obtain

TCg(T
−

C D) ≤ TCl2(T
−

C D).

But l2(t) =
1
cg
l1(t) for t ∈ [m,M ]. So, we have

cgTCg(T
−

C D) ≤ TCl1(T
−

C D).

Therefore,

cgCσT,gD ≤ CσT,l1D,

i.e.,

cgΦ(A)σT,gΦ(B) ≤ Φ(A)σT,l1Φ(B).(2.13)

Simultaneously, it is clear that

CσT,l1D = TCl1T
−

C D = TC(agT
−

C D + bgIn) = agTCT
−

C D + bgTCIn.(2.14)

However, TC(In) = C and D ∈ RanTC (see (2.7) and (2.9)). Hence, TCT
−

C (D) = D

(see (2.1)). Finally, from (2.14) we obtain

CσT,l1D = agD + bgC,(2.15)

which means

Φ(A)σT,l1Φ(B) = agΦ(B) + bgΦ(A) = Φ(agB + bgA).(2.16)
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By virtue of (2.13) and (2.16), we get

cgΦ(A)σT,gΦ(B) ≤ Φ(agB + bgA).

On the other hand, since Sp (T−

AB) ⊂ [m,M ] and l1(t) ≤ g(t) for t ∈ [m,M ] (see

(2.12)), we have

l1(T
−

A B) ≤ g(T−

AB),

and further

TAl1(T
−

A B) ≤ TAg(T
−

AB).

Therefore,

AσT,l1B ≤ AσT,gB.

Hence,

Φ(AσT,l1B) ≤ Φ(AσT,gB).(2.17)

Moreover, it follows that

AσT,l1B = TA(agT
−

AB + bgIn) = agB + bgA,

since B ∈ RanTA, TAT
−

A (B) = B and TA(In) = A (see (2.9), (2.1) and (2.7)).

So, in light of (2.17) we see that

Φ(agB + bgA) ≤ Φ(AσT,gB).(2.18)

In summary, combining (2.13), (2.15) and (2.18) leads to

cgΦ(A)σT,gΦ(B) ≤ Φ(A)σT,l1Φ(B) = Φ(agB + bgA) ≤ Φ(AσT,gB).

Remark 2.4. In the case TA(·) = A1/2(·)A1/2 with A > 0, Theorem 2.3 reduces

to [6, Theorem 1], cf. also [9, Corollary 3.4].

Remark 2.5. It is evident that Theorem 2.3 simplifies if TX is invertible. In fact,

then the condition (2.9) is automatically fulfilled, and therefore, it can be dropped

off. For the same reason, condition (2.8) can be deleted.

Remark 2.6. In Theorem 2.3, condition (i) can be assumed to hold for X = A

and X = Φ(A), only.
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The next result is an extension of [7, Theorem 2.1].

Theorem 2.7. Under the assumptions (i)–(iii) of Theorem 2.3 for X, TX, Φ, A

and B, let f1, f2, g1, g2 be continuous real functions defined on an interval J = [m,M ],

m < M . Suppose that g1 is invertible on J , g2 is positive concave and operator

monotone on J , and g2 ◦ g−1
1 is operator monotone on J ′ = g1(J), and

g1(t) ≤ f1(t) and f2(t) ≤ g2(t) for t ∈ J ,(2.19)

max
t∈J

g1(t) = max
t∈J

f1(t),(2.20)

f1Ran (T
−

A ) ⊂ Ran (T−

A ) and g1Ran (T
−

A ) ⊂ Ran (T−

A ) .(2.21)

Then

cg2 Φ(A)σT,f2Φ(B) ≤ Φ(AσT,g2B) ≤ Φ(AσT,g2◦g
−1

1

(AσT,f1B)),(2.22)

where cg2 is defined by (2.5) with g = g2.

Proof. As in the proof of Theorem 2.3, we obtain mA ≤ B ≤ MA, and further

mΦ(A) ≤ Φ(B) ≤ MΦ(A) by the positivity of Φ. Hence, by the positivity of T−

Φ(A),

we establish

mT−

Φ(A)Φ(A) ≤ T−

Φ(A)Φ(B) ≤ MT−

Φ(A)Φ(A).

Now, from (2.7)-(2.8) we deduce that

mIn ≤ T−

Φ(A)Φ(B) ≤ MIn.

Therefore, Sp (T−

Φ(A)Φ(B)) ⊂ [m,M ].

In light of the second inequality of (2.19), we have

f2T
−

Φ(A)Φ(B) ≤ g2T
−

Φ(A)Φ(B),

and next, by the positivity of TΦ(A),

TΦ(A)f2T
−

Φ(A)Φ(B) ≤ TΦ(A)g2T
−

Φ(A)Φ(B).

That is,

Φ(A)σT,f2Φ(B) ≤ Φ(A)σT,g2Φ(B).(2.23)

It follows from Theorem 2.3 applied to the function g = g2 that

cg2 Φ(A)σT,g2Φ(B) ≤ Φ(AσT,g2B).
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For this reason, (2.23) implies

cg2 Φ(A)σT,f2Φ(B) ≤ Φ(AσT,g2B).(2.24)

This proves the left-hand side inequality of (2.22).

Furthermore, we find that

AσT,g2B = AσT,h◦g1B = AσT,h(AσT,g1B),(2.25)

where h = g2 ◦ g−1
1 and ◦ means composition. Indeed, by (2.21) we get g1T

−

AB ∈
RanT−

A . So, we have

g1T
−

AB = T−

A TAg1T
−

A B.(2.26)

Hence,

AσT,h◦g1B = TAhg1T
−

AB = TAhT
−

A TAg1T
−

AB

= TAhT
−

A (AσT,g1B) = AσT,h(AσT,g1B),

which yields (2.25).

On the other hand, from the first inequality of (2.19) we obtain

g1T
−

AB ≤ f1T
−

AB,

and further

TAg1T
−

AB ≤ TAf1T
−

AB

by the positivity of TA. Thus, we have

AσT,g1B ≤ AσT,f1B.(2.27)

From (2.19) we see that

min
t∈J

g1(t) ≤ min
t∈J

f1(t).

This together with (2.20) implies

f1(J) ⊂ g1(J).(2.28)

We now introduce

Z0 = T−

A (AσT,g1B) and W0 = T−

A (AσT,f1B).
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Clearly, by (2.26) and (2.21),

Z0 = g1T
−

A (B) and W0 = f1T
−

A (B).

Then Sp (Z0) ⊂ g1(J) and Sp (W0) ⊂ f1(J) ⊂ g1(J), because Sp (T−

A B) ⊂ J .

So, from (2.27) and (2.28), we obtain

AσT,h(AσT,g1B) ≤ AσT,h(AσT,f1B),(2.29)

because h is operator monotone on J ′ = g1(J), and TA and T−

A are positive.

From (2.25) and (2.29), it follows that

Φ(AσT,g2B) ≤ Φ(AσT,g2◦g
−1

1

(AσT,f1B)).(2.30)

Now, according to (2.24) and (2.30), we infer that (2.22) is satisfied.

The discussion of inequality (2.22) for the cases f1 = f2 and g1 = g2 with TA =

A−1/2(·)A−1/2, A > 0, can be found in [11].

We now consider the case g1 = g2 of (2.22) for arbitrary TA.

Corollary 2.8. Under the assumptions (i)–(iii) of Theorem 2.3 for X, TX, Φ,

A and B, let f1, f2, g be continuous real functions defined on an interval J = [m,M ],

m < M . Suppose that g is invertible positive concave and operator monotone on J ,

and

f2(t) ≤ g(t) ≤ f1(t) for t ∈ J ,

max
t∈J

g(t) = max
t∈J

f1(t),

f1Ran (T
−

A ) ⊂ Ran (T−

A ) and gRan (T−

A ) ⊂ Ran (T−

A ) .

Then

cg Φ(A)σT,f2Φ(B) ≤ Φ(AσT,gB) ≤ Φ(AσT,f1B),

where cg is defined by (2.5).

Proof. It is enough to apply Theorem 2.7 with g1 = g2 = g and g2 ◦ g−1
1 = id and

AσT,id (AσT,f1B) = AσT,f1B.

Some concrete versions of inequalities (2.22) of Theorem 2.7 which depend on

the form of g1 ◦ g−1
2 are included in Corollary 2.9. By making use of affine, power

and inverse-affine functions we obtain arithmetic, geometric and harmonic operator

means of A and AσT,f1B, respectively, on the right-hand side of (2.22).

Corollary 2.9. Under the assumptions of Theorem 2.7 with A,B > 0:
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(I) If g2 ◦ g−1
1 is an affine function, i.e., g2 ◦ g−1

1 (s) = as + b for s ∈ g1(J), a > 0,

then the right-hand side inequality of (2.22) reduces to

Φ(AσT,g2B) ≤ aΦ(AσT,f1B) + bΦ(A).(2.31)

(II) If g2 ◦ g−1
1 is a power function, i.e., g2 ◦ g−1

1 (s) = sα for s ∈ g1(J) ⊂ R+,

α ∈ [0, 1], then the right-hand side inequality of (2.22) reduces to

Φ(AσT,g2B) ≤ Φ(TA(T
−

A (AσT,f1B))α).(2.32)

(III) If g2 ◦ g−1
1 is an inverse function of the form g2 ◦ g−1

1 (s) = (αs−1 + 1 − α)−1

for s ∈ g1(J) ⊂ R+, α ∈ [0, 1], then the right-hand side inequality of (2.22)

reduces to

Φ(AσT,g2B) ≤ Φ([(1 − α)A−1 + α(AσT,f1B)−1]−1).(2.33)

Proof. (I) Since a > 0, the function g2 ◦ g−1
1 (s) = as + b is operator monotone

(see [3, p. 113]). Moreover,

AσT,h(AσT,f1B) = TAhT
−

A (AσT,f1B).

Simultaneously,

AσT,f1B = TAf1T
−

AB ∈ Ran (TA).

So, for h(s) = as+ b, by (2.1) we have

AσT,h(AσT,f1B) = TA(aT
−

A (AσT,f1B) + bIn)

= aTAT
−

A (AσT,f1B) + bTA(In) = aAσT,f1B + bA.

Now, to see (2.31) it is enough to employ (2.22).

(II) The function g2 ◦ g−1
1 (s) = sα with α ∈ [0, 1] is operator monotone (see [3,

p. 115]). So, to prove (2.32), it is sufficient to apply (2.22).

(III) Inequality (2.33) follows from (2.22) applied to the operator monotone func-

tion g2 ◦ g−1
1 (s) = (αs−1 + 1− α)−1 with α ∈ [0, 1] (see [3, p. 114]).

Theorem 2.7 simplifies if in addition TX is invertible.

Corollary 2.10. Assume that

(i) for any X ≥ 0, TX : Hn → Hn is an invertible bounded positive linear operator

with positive inverse T−1
X such that TX(In) = X,

(ii) Φ : Mn → Mk is a strictly positive linear map,
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(iii) A and B are n × n positive definite matrices with Sp (T−1
A B) ⊂ J = [m,M ],

0 < m < M .

Let f1, f2, g1, g2 be continuous real functions defined on J satisfying conditions

(2.19) and (2.20). Suppose that g1 is invertible on J , g2 is positive concave and

operator monotone on J , and g2 ◦ g−1
1 is operator monotone on interval J ′ = g1(J).

Then inequality (2.22) is satisfied with (2.5) for g = g2.

Proof. With T−

X = T−1
X conditions (2.8) and (2.21) hold automatically. Now it is

sufficient to use Theorem 2.7.
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