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ON (T, f)-CONNECTIONS OF MATRICES AND GENERALIZED
INVERSES OF LINEAR OPERATORS*

MAREK NIEZGODAT

Abstract. In this note, generalized connections op ; are investigated, where Aop ;B =
TafT, (B) for positive semidefinite matrix A and hermitian matrix B, and operator monotone
function f : J — R on an interval J C R. Here the symbol T, denotes a reflexive generalized inverse
of a positive bounded linear operator T4. The problem of estimating a given generalized connec-
tion by other ones is studied. The obtained results are specified for special cases of a-arithmetic,
a-geometric and a-harmonic operator means.
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1. Motivation. We begin with some notation. By M, we denote the C*-algebra
of nxn complex matrices. The symbol B(M,,) stands for the C*-algebra of all bounded
linear operators from M, into M,,. We denote the (real) space of n x n Hermitian
matrices by H,,. The spectrum of an hermitian matrix A € H,, is denoted by Sp (A).

For matrices X,Y € M,,, we write Y < X (resp., Y < X) if X — Y is positive
semidefinite (resp., positive definite).

We say that a linear map @ : M,, — M, is positive if 0 < ®(X) for 0 < X € M,,.
If in addition 0 < ®(X) for 0 < X € M,, then we say that ® is strictly positive.

A function h : J — R with an interval J C R is said to be an operator monotone
function, if for all Hermitian matrices A and B (of the same order) with spectra in J,

A < B implies h(A4) < h(B)

(see [3, p. 112]).

Let f: J — R be a continuous function on an interval J C R. The f-connection
of n x n positive definite matrices A and B such that Sp (A~Y/2BA~Y2) C J, is

*Received by the editors on January 23, 2014. Accepted for publication on June 30, 2015.
Handling Editor: Bryan L. Shader.

TDepartment of Applied Mathematics and Computer Science, University of Life Sciences in Lublin,
Akademicka 15, 20-950 Lublin, Poland (marek.niezgoda@up.lublin.pl, bniezgoda@wp.pl).

494



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 30, pp. 494-506, September 2015

(T, f)-Connections of Matrices 495

defined by
(1.1) Aoy B = AV2f (A*l/QBA*W) AL/2
(cf. [6 p. 637]).

For f(t) of the form at + 1 — a, t* and (at~! +1 — a)~ !, one obtains the a-
arithmetic mean, a-geometric mean and a-harmonic mean, respectively, defined as

follows (see (L2)), (L3) and (TA).

For « € [0, 1], the a-arithmetic mean of n X n positive definite matrices A and B
is defined by

(1.2) AV.B = (1—-a)A+ aB.
For a € [0, 1], the a-geometric mean of n x n positive definite matrices A and B
is defined as follows:
(1.3) AfoB = AY2(A1/2BAT1/2)2A1/2
(see [8, 13]).

For a € [0, 1], the a-harmonic mean of n x n positive definite matrices A and B
is defined by

(1.4) AlyB=(1-a)A™ +aB™ ).
In [I] Ando showed that if ® : M,, — M}, is a positive linear map and A, B € M,

are positive definite then

P(AfaB) < ©(A)fa®(B).

Aujla and Vasudeva [2] proved that
P(AcyB) < ®(A)o;P(B)
for an operator monotone function f : (0, 00) — (0, o).
A related result is due to Kaur et al. [7].

THEOREM A [7, Theorem 2.1] Let A and B be n X n positive definite matrices
such that 0 < by < A < a; and 0 < by < B < ag for some scalars 0 < b; < a;,
i=1,2.

If ® : M,, — My, is a strictly positive linear map, then for any operator mean o
with the representing function f, the following double inequality holds:

W (B(A)aB(B) < (@A) Vad(B) < TB(A0D),
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_ abi(f(baal ")~ f(azbh)) _ aiaaf(beal ) —bibaf(azb ") _ _av
where p = b1bo—a1dz y Vo= araz—b1bs P W T and
a € (0,1).

The following result was proved in [II]. The symbol o means the composition of
maps.

THEOREM B [I1, Theorem 2.7] Let f1, f2, 91,92 be continuous real functions de-
fined on an interval J = [m, M] C Ry. Assume that g2 > 0 and go ogl_1 are operator
monotone on intervals J and J' = g1(J), respectively, with invertible g1 and concave
go. Let A and B be n X n positive definite matrices such that mA < B < M A with
0<m< M.

If & : M,, — My, is a strictly positive linear map,

g1(t) < fi(t) and fa(t) < g2(t) forte J,

and

maxai(t) = max 1i(b),

then
¢ ®(A)7,(B) < @(A0,, B) < B(Ao, . 1(Aay, B)),
where cg, is defined by

g2(M)—g>(m) by, = Mgz (m)—mgs (M)

. Qgot+b
M—m s and cg, = min 272

a =
92 M—-m teJ 92(t)

In the present note, we extend Theorems A and B from f-connections of type
(T to a class of (T, f)-connections of the form

AO’T,fB = TAfT; (B)

for A >0 and B € H,,, where T, denotes a positive reflexive generalized inverse of a
positive bounded map T4, and in addition the map 7' : X — T'x is positive.

2. Results. A generalized inverse of a linear map L : V — W between linear
spaces V and W is a linear map L™ : W — V satisfying LL™L = L. If in addition
L~LL™ = L~ then L~ is called a reflerive generalized inverse of L.

By Ran (L) we denote the range of a linear map L.

If L~ is a reflexive generalized inverse of L, then

(2.1) LL-(Y)=Y forY € Ran(L),
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and
L7L(X)=X for X € Ran(L").
It is known that if L : H — H is a bounded linear map with a Hilbert space H,

then there exists a generalized inverse of L if and only if L has closed range [4].

Throughout this note, whenever the symbol L™ is used, it is assumed that there
exists a generalized inverse L~ of a linear map L.

We denote the Loewner cone of all positive semidefinite n X n complex matrices
by L,, e, L, ={X € H,, : X > 0}.

Let T : X — Tx be a map from L,, into B(H,,) with Tx : H,, — H,, satisfying
Tx is positive for X > 0.

Let f:J — R be a continuous function on an interval J C R. The (T, f)-connection

o7, of an n x n positive semidefinite matrix A and an n x n hermitian matrix B such
that Sp (T'y B) C J, is defined by

(2.2) Aor B = TAfTX(B)
(cf. [0 p. 637]). For some applications of connections of the form ([2:2I), see [10, 111 12].

EXAMPLE 2.1. Let A > 0 be positive semidefinite (not necessarily positive
definite) with eigenvalues A\; > Ay > --- > A\, > 0. By spectral decomposition
A = Udiag (A1, A2,..., A\p)U* for some unitary matrix U € M,. We consider a
generalized inverse A~ of A given by A~ = Udiag (1, p2, . - ., in)U™, where p; = Ai
if \; >0,and u; =0if \; =0,i=1,2,...,n. Thus, A~ is positive semidefinite, and
A~ = (A7)Y2(A7)Y/? with

(A)Y2 = (AY?)~ = Udiag (i1, 11z, - - - » /1) U™

We are now in a position to set
Ty=AY2()AY? and Ty =(A7)"/2()(A7)V2
Then ([22)) takes the form (cf. (III))

Aoy B = AY2f ((A‘)l/QB(A_)l/Q) AY2 for B € H,,.

ExAMPLE 2.2. (Cf. [I2, Example 3.5].) By E we denote the n x n matrix of ones.
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Let A = (a;;) be an n x n positive semidefinite matrix with 0 < a;; < 2, 4,5 =
1,2,...,n, and such that 0 < A < E. We define

TA(X) =A0X = (aij:cij) for X = (IL'”) S Mn,
where ® stands for the Schur product of n x n matrices.
By Schur Product Theorem (see [5l, Theorem 5.2.1]), the map T4 is positive, i.e.,

X >0 implies T4(X)>0.

We consider the generalized inverse of Ty defined by
(2.3) Ty(Y)=A10Y for Y = (y;) €M,
where A[il] = (Cij) with Cij = aLij if Qi 7& 0, and Cij = 0if Q5 = 0.
Under the hypothesis that A = (a;;) with 0 < a;; < 2, 4,5 =1,2,...,n, we have
AP =4 (B= A)+ (B = AP 4+ (E- AP .,

the convergent Schur-power series (see [5, pp. 449-450]). Here the m-th Schur-power
of E — A is defined by

(E-AM=(E-Ae - -0(E-A4), m=12,...,

m times
with (E — A)l = E.

It is evident by Schur Product Theorem that (E — A)"™ >0, m =0,1,2,3,...,
because £ — A > 0. Therefore,

(2.4) AT >0
(see [3, Theorem 6.3.5]). So, the map 7', is positive by ([23) and (2.4]).

In summary, in this situation (7, f)-connection is given by

Ao B=AGf (A[‘” ® B) for B € H,,.

For a function g : J — Ry defined on an interval J = [m, M| with m < M, we
define (see [9])

(2.5) ag = 79(1\14\4):7975’%) , by = Mg(m)=mg(M)  4pq ¢y = min agttby

M—m teJ g(t)
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In the forthcoming theorem, we extend [9, Corollary 3.4] from the classical map
X = Tx(:) = XY2()X2 X > 0, with the inverse T'x'(-) = X Y/2(:)X /2 to an
arbitrary positive map X — T'x with a reflexive generalized inverse Ty of Tx.

THEOREM 2.3. Assume that

(i) for any X >0, Tx : H,, — H,, is a bounded linear operator, and Ty : H, — H,
is a reflexive generalized inverse of Tx , satisfying the following conditions:

(2.6) Tx and Ty are positive,
Tx (In) = X’
I, € Ran(Ty),

(ii) @ : M,, — My, is a strictly positive linear map,
(iii) A is an n x n positive semidefinite matriz and B is an n x n Hermitian matriz
with Sp (T'y B) C J = [m, M|, m < M, such that

(2.9) B cRanTy and ®(B) € RanTy(y).
If g : J — Ry is a continuous concave operator monotone function, then
cg ®(A)or @(B) < ®(Aor,yB),
where ag, by and ¢y are defined by (22).

Proof. The proof of inequality (Z12)) is based on the proof of [6 Theorem 1] (cf. also
[9, Corollary 3.4]).

Since g : J — (0,00) is concave, it is not hard to verify that

(2.10) agt +by < g(t) forte J.

It follows from (Z3]) that

¢y < agt + by
g(t)

However, g is positive, so a4t + b; > 0 for ¢t € J. Thus, ¢4 is positive. Therefore,

fort € J.

b
(2.11) g(t) < 224422,
Cq Cg
In consequence, (ZI0) and (ZI1)) give
b
2.12 agt +b, < g(t) < 24422 for t € [m, M],
9 9

Cg Cg
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which is the required estimation.

We now denote

b
Li(t) = agt + b, and Ix(t) = Q944 20

for t € J = [m, M].
Cq Cq

Consider C' = ®(A) and D = ®(B). Because Sp (T’ B) C [m, M], we establish
ml, <T,yB < MI,, and next mTal, <TsT,;B < MTal,, because T4 is positive.
In addition, B € RanT4 and A = T4(I,,) (see (Z9) and 21)). Consequently, mA <
B < MA (see (Z1))). From this m®(A) < ®(B) < MP(A), ie., mC < D < MC.
But T is positive, so mI5C < T5D < MT;C. Furthermore, T, C' = I,,, because
Tcl, = C (see (1)) and hence I, = T T¢I, = T, C by I, € RanT; (see (ZJ)).
Thus, we derive mI,, < T, D < MI, and Sp (T D) C [m, M].

Since Sp (T; D) C [m,M] and g(t) < l5(t) for t € [m, M] (see [ZI2)), we find
that

9(T5 D) < (T D).
Now, by making use of positivity of T we obtain

Teg(T; D) < Tely(TE D).
But lx(t) = %ll(t) for t € [m, M]. So, we have

CgTCg(TgD) < Tcll(TaD).

Therefore,
cgCor gD < Cory, D,
ie.,
(2.13) cg®(A)or,®(B) < ®(A)or,, ©(B).

Simultaneously, it is clear that
(2.14) Cory, D =TchT;D =Tc(agTy D +byly,) = aTcTy D+ byTcl,.

However, T¢(I,) = C and D € RanT¢ (see (27) and (29). Hence, TcT; (D) = D
(see (20)). Finally, from (2I4) we obtain

(2.15) Cor;, D =aygD +b,C,
which means

(2.16) ®(A)or, ®(B) = a,®(B) + by®(A) = ®(ayB + byA).
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By virtue of (ZI3) and 2I4), we get

cg®(A)or,y®(B) < (ayB + byA).

On the other hand, since Sp (T, B) C [m, M] and {1(t) < g(t) for ¢t € [m, M] (see
212), we have

LW(TyB) < g(Ty B),
and further

Taly(T; B) < Tag(T; B).

Therefore,

Aoy, B < Aot ¢B.
Hence,
(2.17) ®(Aop,, B) < &(Aor ¢ B).

Moreover, it follows that
Aor, B =Ta(agT, B+ bgl,) = agB +bgA,

since B € RanTx, TaT, (B) = B and T4 (I,) = A (see (Z9), 1) and (7).
So, in light of (ZI7) we see that

(2.18) B(ayB + byA) < B(Acr.,B).

In summary, combining (ZI3), 2I5) and 2I])) leads to

cg®(A)or,®(B) < ®(A)or,, ®(B) = ®(aysB + bgA) < &(Aor B). O

REMARK 2.4. In the case Ta(-) = AY/2(-)A'/2 with A > 0, Theorem 23 reduces
to [6 Theorem 1], cf. also [9, Corollary 3.4].

REMARK 2.5. It is evident that Theorem [Z3] simplifies if T'x is invertible. In fact,
then the condition ([29) is automatically fulfilled, and therefore, it can be dropped
off. For the same reason, condition (2:8)) can be deleted.

REMARK 2.6. In Theorem 23] condition (i) can be assumed to hold for X = A
and X = ®(A), only.
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The next result is an extension of [7, Theorem 2.1].

THEOREM 2.7. Under the assumptions (1)—(iii) of Theorem [Z3 for X, Tx, ®, A
and B, let f1, f2, g1, g2 be continuous real functions defined on an interval J = [m, M],
m < M. Suppose that g1 is invertible on J, go is positive concave and operator
monotone on J, and go 0 gi * is operator monotone on J' = g1(J), and

(2.19) g1(t) < fi(t) and fa(t) < g2(t) forte J,

(2.20) max g1(¢) = max f1(¢),

(2.21) fiRan (T, ) C Ran(T) and g¢giRan(T,) C Ran(T,) .
Then

(222)  cp ®(A)or,,®(B) < W(Aory, B) < B(Aoy, 1 (Aor., B)).
where cg, is defined by (Z0) with g = go.

Proof. As in the proof of Theorem 23] we obtain mA < B < M A, and further

m®(A) < ®(B) < MP(A) by the positivity of ®. Hence, by the positivity of T«I:(A)’

we establish

mTg 4 P(A) < Tg0)®(B) < MTy 4 P(A).

Now, from (Z71)-(Z.8) we deduce that
ml, < T&A)@(B) < MI,.

Therefore, Sp (T 4y ®(B)) C [m, M].
In light of the second inequality of [2I9]), we have

JoTg ) ®(B) < g2T4 4 2(B),
and next, by the positivity of Tg(4),
T<I>(A)f2Tq:(A)‘I)(B) < T<I>(A)92T<1:(A)(I)(B)-
That is,

(2.23) B(A)or. 1, ®(B) < B(A)or.q, ®(B).

It follows from Theorem 23] applied to the function g = g that

Cgs q)(A)UT7g2q)(B) < q)(AUT792B)'
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For this reason, (Z23) implies
(2.24) cg, ©(A)or, 4, ®(B) < &(Aor,g,B).
This proves the left-hand side inequality of (2:22)).
Furthermore, we find that
(2.25) Aot g, B = Aor hog B = Aor p(Aor 4, B),

where h = g 0 g; ' and o means composition. Indeed, by Z2I)) we get 1T B €
RanT . So, we have

(2.26) G Ty B=T,Tag\ T, B.
Hence,

AUT,hong = TAhng;B = TAhT;TAng;B

=TushT, (Aor,g B) = Aor (Aot g, B),
which yields [225).
On the other hand, from the first inequality of (ZI9) we obtain
aT,B < fiT, B,
and further
Tag1Ty B <TsfLT,B
by the positivity of T)4. Thus, we have

(227) AO’T’ng S AO’Tyle.

From (ZI9) we see that
. < .
min g1 (t) < min f1(t)

This together with (2:20) implies

(2.28) fi(T) C g1 ().

We now introduce

ZO = T,Z(AUT,gl B) and WO = TA_(AO'T,le).
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Clearly, by (220) and (Z21),
Zo=g:1T,(B) and Wy = fiT, (B).

Then Sp (Zo) C g1(J) and Sp (Wo) C fi1(J) C g1(J), because Sp (T, B) C J.
So, from (Z27)) and (Z28)), we obtain

(2.29) Ao p(Aor,g, B) < Aop (Aot f, B),

because h is operator monotone on J' = g1(J), and T4 and T, are positive.
From (Z20) and (Z29), it follows that

(2.30) O(Aor 4 B) < D(Aay, .+ (Aory, B)).

Now, according to (2:24) and ([2:30)), we infer that [222)) is satisfied. O

The discussion of inequality ([2:22)) for the cases f; = f2 and g1 = go with T4 =
A=12()AY2 A > 0, can be found in [T1].

We now consider the case g1 = g2 of [2:22) for arbitrary T4.

COROLLARY 2.8. Under the assumptions (1)—(iii) of Theorem[Z3 for X, Tx, ®,
A and B, let f1, fa, g be continuous real functions defined on an interval J = [m, M],
m < M. Suppose that g is invertible positive concave and operator monotone on J,
and

fat) <gt) < fi(t) forteJ,

t) = t
I{leafy() r{lea}fl( ),

fiRan (T, ) C Ran(T,) and gRan(T,)C Ran(T}) .

Then
cg ®(A)or,f, ®(B) < ®(Aor,¢B) < ®(Aor,f, B),
where cg is defined by (2.5).

Proof. Tt is enough to apply Theorem 27 with g; = g» = g and g0 g7 ' = id and
AUT,id (AUT,fl B) = AO’T,le. O

Some concrete versions of inequalities (Z22) of Theorem 27 which depend on
the form of g; o g5 1 are included in Corollary By making use of affine, power
and inverse-affine functions we obtain arithmetic, geometric and harmonic operator
means of A and Aoy ;, B, respectively, on the right-hand side of (2:22]).

COROLLARY 2.9. Under the assumptions of Theorem[Z.] with A, B > 0:
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(I) If gaogy' is an affine function, i.e., g2 o gy *(s) = as +b for s € gi(J), a > 0,
then the right-hand side inequality of (2.22) reduces to

(2.31) ®(Aor g, B) < a®(Aor s, B) +bP(A).

(IT) If g2 0 g7 * is a power function, i.c., gz 0 g7 '(s) = s* for s € gi(J) C Ry,
a € [0,1], then the right-hand side inequality of (2.23) reduces to

(2.32) ®(Aor g, B) < O(Ta(Ty (Aor,5, B))%).

(ITIT) If g2 0 g7 ' is an inverse function of the form gy o g7 '(s) = (as ' +1 —a)~*

for s € g1(J) C Ry, a € [0,1], then the right-hand side inequality of (2.23)
reduces to

(2.33) ®(Aor g, B) < O([(1 - a) A7t 4 a(Aor B)7'h.

Proof. (I) Since a > 0, the function g o g;*(s) = as + b is operator monotone
(see [3, p. 113]). Moreover,

Aot n(Aor,s, B) = TahT (Aot ¢, B).
Simultaneously,
Aor s, B=Taf1T4 B € Ran(T4).
So, for h(s) = as + b, by (1) we have

AUT’h(AO'TJ"1 B) = TA(CLT‘X(AO'TJ"1 B) + bIn)

= aTAT; (AUT,fl B) + bTA(In) = aAO’T,le + bA.

Now, to see ([Z3])) it is enough to employ (Z22).

(IT) The function gy o g7 '(s) = s with a € [0,1] is operator monotone (see [3,
p. 115]). So, to prove ([Z32)), it is sufficient to apply (2.22)).

(III) Inequality (233)) follows from (2.22)) applied to the operator monotone func-
tion ga 0 g7 *(s) = (as™ ' + 1 —a)~! with a € [0,1] (see [3, p. 114]). O

Theorem 2.7 simplifies if in addition Tx is invertible.
COROLLARY 2.10. Assume that

(i) for any X >0, Tx : H,, — H,, is an invertible bounded positive linear operator
with positive inverse Tgl such that Tx (1) = X,
(ii) @ : M,, — My, is a strictly positive linear map,
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(iii) A and B are n X n positive definite matrices with Sp (Tng) c J = [m,M],
0<m< M.

Let f1, f2,91,92 be continuous real functions defined on J satisfying conditions
(ZI9) and (220). Suppose that g1 is invertible on J, go is positive concave and
operator monotone on J, and gs o gfl is operator monotone on interval J' = g1(J).

Then inequality (Z22) is satisfied with (2Z3) for g = ga.

Proof. With Ty = Tx" conditions ([Z8) and 22I)) hold automatically. Now it is
sufficient to use Theorem [Z71 O
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