ON (T, f)-CONNECTIONS OF MATRICES AND GENERALIZED INVERSES OF LINEAR OPERATORS*

MAREK NIEZGODA ${ }^{\dagger}$

Abstract

In this note, generalized connections $\sigma_{T, f}$ are investigated, where $A \sigma_{T, f} B=$ $T_{A} f T_{A}^{-}(B)$ for positive semidefinite matrix A and hermitian matrix B, and operator monotone function $f: J \rightarrow \mathbb{R}$ on an interval $J \subset \mathbb{R}$. Here the symbol T_{A}^{-}denotes a reflexive generalized inverse of a positive bounded linear operator T_{A}. The problem of estimating a given generalized connection by other ones is studied. The obtained results are specified for special cases of α-arithmetic, α-geometric and α-harmonic operator means.

Key words. Positive definite matrix, Positive linear map, Operator monotone function, Connection, α-Arithmetic (α-Geometric, α-Harmonic) operator mean, Generalized inverse of linear operator.

AMS subject classifications. 15A45, 47A63, 47A64.

1. Motivation. We begin with some notation. By \mathbb{M}_{n} we denote the C^{*}-algebra of $n \times n$ complex matrices. The symbol $\mathbb{B}\left(\mathbb{M}_{n}\right)$ stands for the C^{*}-algebra of all bounded linear operators from \mathbb{M}_{n} into \mathbb{M}_{n}. We denote the (real) space of $n \times n$ Hermitian matrices by \mathbb{H}_{n}. The spectrum of an hermitian matrix $A \in \mathbb{H}_{n}$ is denoted by $\operatorname{Sp}(A)$.

For matrices $X, Y \in \mathbb{M}_{n}$, we write $Y \leq X$ (resp., $Y<X$) if $X-Y$ is positive semidefinite (resp., positive definite).

We say that a linear map $\Phi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{k}$ is positive if $0 \leq \Phi(X)$ for $0 \leq X \in \mathbb{M}_{n}$. If in addition $0<\Phi(X)$ for $0<X \in \mathbb{M}_{n}$ then we say that Φ is strictly positive.

A function $h: J \rightarrow \mathbb{R}$ with an interval $J \subset \mathbb{R}$ is said to be an operator monotone function, if for all Hermitian matrices A and B (of the same order) with spectra in J,

$$
A \leq B \quad \text { implies } \quad h(A) \leq h(B)
$$

(see [3, p. 112]).
Let $f: J \rightarrow \mathbb{R}$ be a continuous function on an interval $J \subset \mathbb{R}$. The f-connection of $n \times n$ positive definite matrices A and B such that $\operatorname{Sp}\left(A^{-1 / 2} B A^{-1 / 2}\right) \subset J$, is

[^0]defined by
\[

$$
\begin{equation*}
A \sigma_{f} B=A^{1 / 2} f\left(A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2} \tag{1.1}
\end{equation*}
$$

\]

(cf. [6, p. 637]).
For $f(t)$ of the form $\alpha t+1-\alpha, t^{\alpha}$ and $\left(\alpha t^{-1}+1-\alpha\right)^{-1}$, one obtains the α arithmetic mean, α-geometric mean and α-harmonic mean, respectively, defined as follows (see (1.2), (1.3) and (1.4)).

For $\alpha \in[0,1]$, the α-arithmetic mean of $n \times n$ positive definite matrices A and B is defined by

$$
\begin{equation*}
A \nabla_{\alpha} B=(1-\alpha) A+\alpha B \tag{1.2}
\end{equation*}
$$

For $\alpha \in[0,1]$, the α-geometric mean of $n \times n$ positive definite matrices A and B is defined as follows:

$$
\begin{equation*}
A \not \sharp_{\alpha} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{\alpha} A^{1 / 2} \tag{1.3}
\end{equation*}
$$

(see [8, 13]).
For $\alpha \in[0,1]$, the α-harmonic mean of $n \times n$ positive definite matrices A and B is defined by

$$
\begin{equation*}
A!_{\alpha} B=\left((1-\alpha) A^{-1}+\alpha B^{-1}\right)^{-1} \tag{1.4}
\end{equation*}
$$

In [1] Ando showed that if $\Phi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{k}$ is a positive linear map and $A, B \in \mathbb{M}_{n}$ are positive definite then

$$
\Phi\left(A \not \sharp_{\alpha} B\right) \leq \Phi(A) \nVdash_{\alpha} \Phi(B) .
$$

Aujla and Vasudeva [2] proved that

$$
\Phi\left(A \sigma_{f} B\right) \leq \Phi(A) \sigma_{f} \Phi(B)
$$

for an operator monotone function $f:(0, \infty) \rightarrow(0, \infty)$.
A related result is due to Kaur et al. [7].
Theorem A [7, Theorem 2.1] Let A and B be $n \times n$ positive definite matrices such that $0<b_{1} \leq A \leq a_{1}$ and $0<b_{2} \leq B \leq a_{2}$ for some scalars $0<b_{i}<a_{i}$, $i=1,2$.

If $\Phi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{k}$ is a strictly positive linear map, then for any operator mean σ with the representing function f, the following double inequality holds:

$$
\omega^{1-\alpha}\left(\Phi(A) \sharp_{\alpha} \Phi(B)\right) \leq(\omega \Phi(A)) \nabla_{\alpha} \Phi(B) \leq \frac{\alpha}{\mu} \Phi(A \sigma B)
$$

where $\mu=\frac{a_{1} b_{1}\left(f\left(b_{2} a_{1}^{-1}\right)-f\left(a_{2} b_{1}^{-1}\right)\right)}{b_{1} b_{2}-a_{1} a_{2}}, \nu=\frac{a_{1} a_{2} f\left(b_{2} a_{1}^{-1}\right)-b_{1} b_{2} f\left(a_{2} b_{1}^{-1}\right)}{a_{1} a_{2}-b_{1} b_{2}}, \omega=\frac{\alpha \nu}{(1-\alpha) \mu}$ and $\alpha \in(0,1)$.

The following result was proved in 11. The symbol \circ means the composition of maps.

Theorem B [11, Theorem 2.7] Let $f_{1}, f_{2}, g_{1}, g_{2}$ be continuous real functions defined on an interval $J=[m, M] \subset \mathbb{R}_{+}$. Assume that $g_{2}>0$ and $g_{2} \circ g_{1}^{-1}$ are operator monotone on intervals J and $J^{\prime}=g_{1}(J)$, respectively, with invertible g_{1} and concave g_{2}. Let A and B be $n \times n$ positive definite matrices such that $m A \leq B \leq M A$ with $0<m<M$.

If $\Phi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{k}$ is a strictly positive linear map,

$$
g_{1}(t) \leq f_{1}(t) \quad \text { and } \quad f_{2}(t) \leq g_{2}(t) \quad \text { for } t \in J
$$

and

$$
\max _{t \in J} g_{1}(t)=\max _{t \in J} f_{1}(t)
$$

then

$$
c_{g_{2}} \Phi(A) \sigma_{f_{2}} \Phi(B) \leq \Phi\left(A \sigma_{g_{2}} B\right) \leq \Phi\left(A \sigma_{g_{2} \circ g_{1}^{-1}}\left(A \sigma_{f_{1}} B\right)\right)
$$

where $c_{g_{2}}$ is defined by

$$
a_{g_{2}}=\frac{g_{2}(M)-g_{2}(m)}{M-m}, \quad b_{g_{2}}=\frac{M g_{2}(m)-m g_{2}(M)}{M-m} \quad \text { and } \quad c_{g_{2}}=\min _{t \in J} \frac{a_{g_{2}} t+b_{g_{2}}}{g_{2}(t)}
$$

In the present note, we extend Theorems A and B from f-connections of type (1.1) to a class of (T, f)-connections of the form

$$
A \sigma_{T, f} B=T_{A} f T_{A}^{-}(B)
$$

for $A \geq 0$ and $B \in \mathbb{H}_{n}$, where T_{A}^{-}denotes a positive reflexive generalized inverse of a positive bounded map T_{A}, and in addition the map $T: X \rightarrow T_{X}$ is positive.
2. Results. A generalized inverse of a linear map $L: V \rightarrow W$ between linear spaces V and W is a linear map $L^{-}: W \rightarrow V$ satisfying $L L^{-} L=L$. If in addition $L^{-} L L^{-}=L^{-}$then L^{-}is called a reflexive generalized inverse of L.

By $\operatorname{Ran}(L)$ we denote the range of a linear map L.
If L^{-}is a reflexive generalized inverse of L, then

$$
\begin{equation*}
L L^{-}(Y)=Y \quad \text { for } Y \in \operatorname{Ran}(L) \tag{2.1}
\end{equation*}
$$

and

$$
L^{-} L(X)=X \quad \text { for } X \in \operatorname{Ran}\left(L^{-}\right)
$$

It is known that if $L: H \rightarrow H$ is a bounded linear map with a Hilbert space H, then there exists a generalized inverse of L if and only if L has closed range [4].

Throughout this note, whenever the symbol L^{-}is used, it is assumed that there exists a generalized inverse L^{-}of a linear map L.

We denote the Loewner cone of all positive semidefinite $n \times n$ complex matrices by \mathbb{L}_{n}, i.e., $\mathbb{L}_{n}=\left\{X \in \mathbb{H}_{n}: X \geq 0\right\}$.

Let $T: X \rightarrow T_{X}$ be a map from \mathbb{L}_{n} into $\mathbb{B}\left(\mathbb{H}_{n}\right)$ with $T_{X}: \mathbb{H}_{n} \rightarrow \mathbb{H}_{n}$ satisfying

$$
T_{X} \text { is positive for } X \geq 0
$$

Let $f: J \rightarrow \mathbb{R}$ be a continuous function on an interval $J \subset \mathbb{R}$. The (T, f)-connection $\sigma_{T, f}$ of an $n \times n$ positive semidefinite matrix A and an $n \times n$ hermitian matrix B such that $\operatorname{Sp}\left(T_{A}^{-} B\right) \subset J$, is defined by

$$
\begin{equation*}
A \sigma_{T, f} B=T_{A} f T_{A}^{-}(B) \tag{2.2}
\end{equation*}
$$

(cf. [6, p. 637]). For some applications of connections of the form (2.2), see [10, 11, 12].
Example 2.1. Let $A \geq 0$ be positive semidefinite (not necessarily positive definite) with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$. By spectral decomposition $A=U \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) U^{*}$ for some unitary matrix $U \in \mathbb{M}_{n}$. We consider a generalized inverse A^{-}of A given by $A^{-}=U \operatorname{diag}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right) U^{*}$, where $\mu_{i}=\frac{1}{\lambda_{i}}$ if $\lambda_{i}>0$, and $\mu_{i}=0$ if $\lambda_{i}=0, i=1,2, \ldots, n$. Thus, A^{-}is positive semidefinite, and $A^{-}=\left(A^{-}\right)^{1 / 2}\left(A^{-}\right)^{1 / 2}$ with

$$
\left(A^{-}\right)^{1 / 2}=\left(A^{1 / 2}\right)^{-}=U \operatorname{diag}\left(\sqrt{\mu_{1}}, \sqrt{\mu_{2}}, \ldots, \sqrt{\mu_{n}}\right) U^{*}
$$

We are now in a position to set

$$
T_{A}=A^{1 / 2}(\cdot) A^{1 / 2} \quad \text { and } \quad T_{A}^{-}=\left(A^{-}\right)^{1 / 2}(\cdot)\left(A^{-}\right)^{1 / 2}
$$

Then (2.2) takes the form (cf. (1.1))

$$
A \sigma_{T, f} B=A^{1 / 2} f\left(\left(A^{-}\right)^{1 / 2} B\left(A^{-}\right)^{1 / 2}\right) A^{1 / 2} \quad \text { for } B \in \mathbb{H}_{n}
$$

Example 2.2. (Cf. [12, Example 3.5].) By E we denote the $n \times n$ matrix of ones.

Let $A=\left(a_{i j}\right)$ be an $n \times n$ positive semidefinite matrix with $0 \leq a_{i j}<2, i, j=$ $1,2, \ldots, n$, and such that $0 \leq A \leq E$. We define

$$
T_{A}(X)=A \odot X=\left(a_{i j} x_{i j}\right) \quad \text { for } X=\left(x_{i j}\right) \in \mathbb{M}_{n}
$$

where \odot stands for the Schur product of $n \times n$ matrices.
By Schur Product Theorem (see [5, Theorem 5.2.1]), the map T_{A} is positive, i.e.,

$$
X \geq 0 \quad \text { implies } \quad T_{A}(X) \geq 0
$$

We consider the generalized inverse of T_{A} defined by

$$
\begin{equation*}
T_{A}^{-}(Y)=A^{[-1]} \odot Y \quad \text { for } \quad Y=\left(y_{i j}\right) \in \mathbb{M}_{n} \tag{2.3}
\end{equation*}
$$

where $A^{[-1]}=\left(c_{i j}\right)$ with $c_{i j}=\frac{1}{a_{i j}}$ if $a_{i j} \neq 0$, and $c_{i j}=0$ if $a_{i j}=0$.
Under the hypothesis that $A=\left(a_{i j}\right)$ with $0 \leq a_{i j}<2, i, j=1,2, \ldots, n$, we have

$$
A^{[-1]}=E+(E-A)+(E-A)^{[2]}+(E-A)^{[3]}+\cdots,
$$

the convergent Schur-power series (see [5, pp. 449-450]). Here the m-th Schur-power of $E-A$ is defined by

$$
(E-A)^{[m]}=\underbrace{(E-A) \odot \cdots \odot(E-A)}_{m \text { times }}, \quad m=1,2, \ldots,
$$

with $(E-A)^{[0]}=E$.
It is evident by Schur Product Theorem that $(E-A)^{[m]} \geq 0, m=0,1,2,3, \ldots$, because $E-A \geq 0$. Therefore,

$$
\begin{equation*}
A^{[-1]} \geq 0 \tag{2.4}
\end{equation*}
$$

(see [5, Theorem 6.3.5]). So, the map T_{A}^{-}is positive by (2.3) and (2.4).
In summary, in this situation (T, f)-connection is given by

$$
A \sigma_{T, f} B=A \odot f\left(A^{[-1]} \odot B\right) \quad \text { for } B \in \mathbb{H}_{n}
$$

For a function $g: J \rightarrow \mathbb{R}_{+}$defined on an interval $J=[m, M]$ with $m<M$, we define (see 9])

$$
\begin{equation*}
a_{g}=\frac{g(M)-g(m)}{M-m}, \quad b_{g}=\frac{M g(m)-m g(M)}{M-m} \quad \text { and } \quad c_{g}=\min _{t \in J} \frac{a_{g} t+b_{g}}{g(t)} . \tag{2.5}
\end{equation*}
$$

In the forthcoming theorem, we extend 9, Corollary 3.4] from the classical map $X \rightarrow T_{X}(\cdot)=X^{1 / 2}(\cdot) X^{1 / 2}, X>0$, with the inverse $T_{X}^{-1}(\cdot)=X^{-1 / 2}(\cdot) X^{-1 / 2}$, to an arbitrary positive map $X \rightarrow T_{X}$ with a reflexive generalized inverse T_{X}^{-}of T_{X}.

Theorem 2.3. Assume that

(i) for any $X \geq 0, T_{X}: \mathbb{H}_{n} \rightarrow \mathbb{H}_{n}$ is a bounded linear operator, and $T_{X}^{-}: \mathbb{H}_{n} \rightarrow \mathbb{H}_{n}$ is a reflexive generalized inverse of T_{X}, satisfying the following conditions:

$$
\begin{gather*}
T_{X} \text { and } T_{X}^{-} \text {are positive, } \tag{2.6}\\
T_{X}\left(I_{n}\right)=X \tag{2.7}\\
I_{n} \in \operatorname{Ran}\left(T_{X}^{-}\right) \tag{2.8}
\end{gather*}
$$

(ii) $\Phi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{k}$ is a strictly positive linear map,
(iii) A is an $n \times n$ positive semidefinite matrix and B is an $n \times n$ Hermitian matrix with $\operatorname{Sp}\left(T_{A}^{-} B\right) \subset J=[m, M], m<M$, such that

$$
\begin{equation*}
B \in \operatorname{Ran} T_{A} \quad \text { and } \quad \Phi(B) \in \operatorname{Ran} T_{\Phi(A)} \tag{2.9}
\end{equation*}
$$

If $g: J \rightarrow \mathbb{R}_{+}$is a continuous concave operator monotone function, then

$$
c_{g} \Phi(A) \sigma_{T, g} \Phi(B) \leq \Phi\left(A \sigma_{T, g} B\right)
$$

where a_{g}, b_{g} and c_{g} are defined by (2.5).
Proof. The proof of inequality (2.12) is based on the proof of [6, Theorem 1] (cf. also [9, Corollary 3.4]).

Since $g: J \rightarrow(0, \infty)$ is concave, it is not hard to verify that

$$
\begin{equation*}
a_{g} t+b_{g} \leq g(t) \quad \text { for } t \in J \tag{2.10}
\end{equation*}
$$

It follows from (2.5) that

$$
c_{g} \leq \frac{a_{g} t+b_{g}}{g(t)} \quad \text { for } t \in J
$$

However, g is positive, so $a_{g} t+b_{t}>0$ for $t \in J$. Thus, c_{g} is positive. Therefore,

$$
\begin{equation*}
g(t) \leq \frac{a_{g}}{c_{g}} t+\frac{b_{g}}{c_{g}} \tag{2.11}
\end{equation*}
$$

In consequence, (2.10) and (2.11) give

$$
\begin{equation*}
a_{g} t+b_{g} \leq g(t) \leq \frac{a_{g}}{c_{g}} t+\frac{b_{g}}{c_{g}} \quad \text { for } t \in[m, M] \tag{2.12}
\end{equation*}
$$

which is the required estimation.
We now denote

$$
l_{1}(t)=a_{g} t+b_{g} \quad \text { and } \quad l_{2}(t)=\frac{a_{g}}{c_{g}} t+\frac{b_{g}}{c_{g}} \quad \text { for } t \in J=[m, M]
$$

Consider $C=\Phi(A)$ and $D=\Phi(B)$. Because $\operatorname{Sp}\left(T_{A}^{-} B\right) \subset[m, M]$, we establish $m I_{n} \leq T_{A}^{-} B \leq M I_{n}$, and next $m T_{A} I_{n} \leq T_{A} T_{A}^{-} B \leq M T_{A} I_{n}$, because T_{A} is positive. In addition, $B \in \operatorname{Ran} T_{A}$ and $A=T_{A}\left(I_{n}\right)$ (see (2.9) and (2.7)). Consequently, $m A \leq$ $B \leq M A$ (see (2.1)). From this $m \Phi(A) \leq \Phi(B) \leq M \Phi(A)$, i.e., $m C \leq D \leq M C$. But T_{C}^{-}is positive, so $m T_{C}^{-} C \leq T_{C}^{-} D \leq M T_{C}^{-} C$. Furthermore, $T_{C}^{-} C=I_{n}$, because $T_{C} I_{n}=C\left(\right.$ see (2.7)) and hence $I_{n}=T_{C}^{-} T_{C} I_{n}=T_{C}^{-} C$ by $I_{n} \in \operatorname{Ran} T_{C}^{-}$(see (2.8)). Thus, we derive $m I_{n} \leq T_{C}^{-} D \leq M I_{n}$ and $\operatorname{Sp}\left(T_{C}^{-} D\right) \subset[m, M]$.

Since $\operatorname{Sp}\left(T_{C}^{-} D\right) \subset[m, M]$ and $g(t) \leq l_{2}(t)$ for $t \in[m, M]$ (see (2.12)), we find that

$$
g\left(T_{C}^{-} D\right) \leq l_{2}\left(T_{C}^{-} D\right)
$$

Now, by making use of positivity of T_{C} we obtain

$$
T_{C} g\left(T_{C}^{-} D\right) \leq T_{C} l_{2}\left(T_{C}^{-} D\right)
$$

But $l_{2}(t)=\frac{1}{c_{g}} l_{1}(t)$ for $t \in[m, M]$. So, we have

$$
c_{g} T_{C} g\left(T_{C}^{-} D\right) \leq T_{C} l_{1}\left(T_{C}^{-} D\right)
$$

Therefore,

$$
c_{g} C \sigma_{T, g} D \leq C \sigma_{T, l_{1}} D
$$

i.e.,

$$
\begin{equation*}
c_{g} \Phi(A) \sigma_{T, g} \Phi(B) \leq \Phi(A) \sigma_{T, l_{1}} \Phi(B) \tag{2.13}
\end{equation*}
$$

Simultaneously, it is clear that

$$
\begin{equation*}
C \sigma_{T, l_{1}} D=T_{C} l_{1} T_{C}^{-} D=T_{C}\left(a_{g} T_{C}^{-} D+b_{g} I_{n}\right)=a_{g} T_{C} T_{C}^{-} D+b_{g} T_{C} I_{n} \tag{2.14}
\end{equation*}
$$

However, $T_{C}\left(I_{n}\right)=C$ and $D \in \operatorname{Ran} T_{C}$ (see (2.7) and (2.9)). Hence, $T_{C} T_{C}^{-}(D)=D$ (see (2.1)). Finally, from (2.14) we obtain

$$
\begin{equation*}
C \sigma_{T, l_{1}} D=a_{g} D+b_{g} C \tag{2.15}
\end{equation*}
$$

which means

$$
\begin{equation*}
\Phi(A) \sigma_{T, l_{1}} \Phi(B)=a_{g} \Phi(B)+b_{g} \Phi(A)=\Phi\left(a_{g} B+b_{g} A\right) \tag{2.16}
\end{equation*}
$$

By virtue of (2.13) and (2.16), we get

$$
c_{g} \Phi(A) \sigma_{T, g} \Phi(B) \leq \Phi\left(a_{g} B+b_{g} A\right)
$$

On the other hand, since $\operatorname{Sp}\left(T_{A}^{-} B\right) \subset[m, M]$ and $l_{1}(t) \leq g(t)$ for $t \in[m, M]$ (see (2.12)), we have

$$
l_{1}\left(T_{A}^{-} B\right) \leq g\left(T_{A}^{-} B\right)
$$

and further

$$
T_{A} l_{1}\left(T_{A}^{-} B\right) \leq T_{A} g\left(T_{A}^{-} B\right)
$$

Therefore,

$$
A \sigma_{T, l_{1}} B \leq A \sigma_{T, g} B
$$

Hence,

$$
\begin{equation*}
\Phi\left(A \sigma_{T, l_{1}} B\right) \leq \Phi\left(A \sigma_{T, g} B\right) \tag{2.17}
\end{equation*}
$$

Moreover, it follows that

$$
A \sigma_{T, l_{1}} B=T_{A}\left(a_{g} T_{A}^{-} B+b_{g} I_{n}\right)=a_{g} B+b_{g} A,
$$

since $B \in \operatorname{Ran} T_{A}, T_{A} T_{A}^{-}(B)=B$ and $T_{A}\left(I_{n}\right)=A($ see (2.9), (2.1) and (2.7)).
So, in light of (2.17) we see that

$$
\begin{equation*}
\Phi\left(a_{g} B+b_{g} A\right) \leq \Phi\left(A \sigma_{T, g} B\right) \tag{2.18}
\end{equation*}
$$

In summary, combining (2.13), (2.15) and (2.18) leads to

$$
c_{g} \Phi(A) \sigma_{T, g} \Phi(B) \leq \Phi(A) \sigma_{T, l_{1}} \Phi(B)=\Phi\left(a_{g} B+b_{g} A\right) \leq \Phi\left(A \sigma_{T, g} B\right)
$$

Remark 2.4. In the case $T_{A}(\cdot)=A^{1 / 2}(\cdot) A^{1 / 2}$ with $A>0$, Theorem 2.3 reduces to [6, Theorem 1], cf. also [9, Corollary 3.4].

Remark 2.5. It is evident that Theorem 2.3 simplifies if T_{X} is invertible. In fact, then the condition (2.9) is automatically fulfilled, and therefore, it can be dropped off. For the same reason, condition (2.8) can be deleted.

Remark 2.6. In Theorem 2.3, condition (i) can be assumed to hold for $X=A$ and $X=\Phi(A)$, only.

The next result is an extension of [7, Theorem 2.1].
Theorem 2.7. Under the assumptions (i)-(iii) of Theorem 2.3 for X, T_{X}, Φ, A and B, let $f_{1}, f_{2}, g_{1}, g_{2}$ be continuous real functions defined on an interval $J=[m, M]$, $m<M$. Suppose that g_{1} is invertible on J, g_{2} is positive concave and operator monotone on J, and $g_{2} \circ g_{1}^{-1}$ is operator monotone on $J^{\prime}=g_{1}(J)$, and

$$
\begin{equation*}
f_{1} \operatorname{Ran}\left(T_{A}^{-}\right) \subset \operatorname{Ran}\left(T_{A}^{-}\right) \quad \text { and } \quad g_{1} \operatorname{Ran}\left(T_{A}^{-}\right) \subset \operatorname{Ran}\left(T_{A}^{-}\right) \tag{2.21}
\end{equation*}
$$

Then

$$
\begin{equation*}
c_{g_{2}} \Phi(A) \sigma_{T, f_{2}} \Phi(B) \leq \Phi\left(A \sigma_{T, g_{2}} B\right) \leq \Phi\left(A \sigma_{T, g_{2} \circ g_{1}^{-1}}\left(A \sigma_{T, f_{1}} B\right)\right) \tag{2.22}
\end{equation*}
$$

where $c_{g_{2}}$ is defined by (2.5) with $g=g_{2}$.
Proof. As in the proof of Theorem 2.3, we obtain $m A \leq B \leq M A$, and further $m \Phi(A) \leq \Phi(B) \leq M \Phi(A)$ by the positivity of Φ. Hence, by the positivity of $T_{\Phi(A)}^{-}$, we establish

$$
m T_{\Phi(A)}^{-} \Phi(A) \leq T_{\Phi(A)}^{-} \Phi(B) \leq M T_{\Phi(A)}^{-} \Phi(A)
$$

Now, from (2.7)-(2.8) we deduce that

$$
m I_{n} \leq T_{\Phi(A)}^{-} \Phi(B) \leq M I_{n}
$$

Therefore, $\mathrm{Sp}\left(T_{\Phi(A)}^{-} \Phi(B)\right) \subset[m, M]$.
In light of the second inequality of (2.19), we have

$$
f_{2} T_{\Phi(A)}^{-} \Phi(B) \leq g_{2} T_{\Phi(A)}^{-} \Phi(B),
$$

and next, by the positivity of $T_{\Phi(A)}$,

$$
T_{\Phi(A)} f_{2} T_{\Phi(A)}^{-} \Phi(B) \leq T_{\Phi(A)} g_{2} T_{\Phi(A)}^{-} \Phi(B)
$$

That is,

$$
\begin{equation*}
\Phi(A) \sigma_{T, f_{2}} \Phi(B) \leq \Phi(A) \sigma_{T, g_{2}} \Phi(B) \tag{2.23}
\end{equation*}
$$

It follows from Theorem 2.3 applied to the function $g=g_{2}$ that

$$
c_{g_{2}} \Phi(A) \sigma_{T, g_{2}} \Phi(B) \leq \Phi\left(A \sigma_{T, g_{2}} B\right) .
$$

For this reason, (2.23) implies

$$
\begin{equation*}
c_{g_{2}} \Phi(A) \sigma_{T, f_{2}} \Phi(B) \leq \Phi\left(A \sigma_{T, g_{2}} B\right) . \tag{2.24}
\end{equation*}
$$

This proves the left-hand side inequality of (2.22).
Furthermore, we find that

$$
\begin{equation*}
A \sigma_{T, g_{2}} B=A \sigma_{T, h \circ g_{1}} B=A \sigma_{T, h}\left(A \sigma_{T, g_{1}} B\right), \tag{2.25}
\end{equation*}
$$

where $h=g_{2} \circ g_{1}^{-1}$ and \circ means composition. Indeed, by (2.21) we get $g_{1} T_{A}^{-} B \in$ $\operatorname{Ran} T_{A}^{-}$. So, we have

$$
\begin{equation*}
g_{1} T_{A}^{-} B=T_{A}^{-} T_{A} g_{1} T_{A}^{-} B . \tag{2.26}
\end{equation*}
$$

Hence,

$$
\begin{gathered}
A \sigma_{T, h \circ g_{1}} B=T_{A} h g_{1} T_{A}^{-} B=T_{A} h T_{A}^{-} T_{A} g_{1} T_{A}^{-} B \\
=T_{A} h T_{A}^{-}\left(A \sigma_{T, g_{1}} B\right)=A \sigma_{T, h}\left(A \sigma_{T, g_{1}} B\right),
\end{gathered}
$$

which yields (2.25).
On the other hand, from the first inequality of (2.19) we obtain

$$
g_{1} T_{A}^{-} B \leq f_{1} T_{A}^{-} B,
$$

and further

$$
T_{A} g_{1} T_{A}^{-} B \leq T_{A} f_{1} T_{A}^{-} B
$$

by the positivity of T_{A}. Thus, we have

$$
\begin{equation*}
A \sigma_{T, g_{1}} B \leq A \sigma_{T, f_{1}} B . \tag{2.27}
\end{equation*}
$$

From (2.19) we see that

$$
\min _{t \in J} g_{1}(t) \leq \min _{t \in J} f_{1}(t)
$$

This together with (2.20) implies

$$
\begin{equation*}
f_{1}(J) \subset g_{1}(J) \tag{2.28}
\end{equation*}
$$

We now introduce

$$
Z_{0}=T_{A}^{-}\left(A \sigma_{T, g_{1}} B\right) \quad \text { and } \quad W_{0}=T_{A}^{-}\left(A \sigma_{T, f_{1}} B\right)
$$

Clearly, by (2.26) and (2.21),

$$
Z_{0}=g_{1} T_{A}^{-}(B) \quad \text { and } \quad W_{0}=f_{1} T_{A}^{-}(B)
$$

Then $\operatorname{Sp}\left(Z_{0}\right) \subset g_{1}(J)$ and $\operatorname{Sp}\left(W_{0}\right) \subset f_{1}(J) \subset g_{1}(J)$, because $\operatorname{Sp}\left(T_{A}^{-} B\right) \subset J$.
So, from (2.27) and (2.28), we obtain

$$
\begin{equation*}
A \sigma_{T, h}\left(A \sigma_{T, g_{1}} B\right) \leq A \sigma_{T, h}\left(A \sigma_{T, f_{1}} B\right) \tag{2.29}
\end{equation*}
$$

because h is operator monotone on $J^{\prime}=g_{1}(J)$, and T_{A} and T_{A}^{-}are positive.
From (2.25) and (2.29), it follows that

$$
\begin{equation*}
\Phi\left(A \sigma_{T, g_{2}} B\right) \leq \Phi\left(A \sigma_{T, g_{2} \circ g_{1}^{-1}}\left(A \sigma_{T, f_{1}} B\right)\right) \tag{2.30}
\end{equation*}
$$

Now, according to (2.24) and (2.30), we infer that (2.22) is satisfied.
The discussion of inequality (2.22) for the cases $f_{1}=f_{2}$ and $g_{1}=g_{2}$ with $T_{A}=$ $A^{-1 / 2}(\cdot) A^{-1 / 2}, A>0$, can be found in [11].

We now consider the case $g_{1}=g_{2}$ of (2.22) for arbitrary T_{A}.
Corollary 2.8. Under the assumptions (i)-(iii) of Theorem 2.3 for X, T_{X}, Φ, A and B, let f_{1}, f_{2}, g be continuous real functions defined on an interval $J=[m, M]$, $m<M$. Suppose that g is invertible positive concave and operator monotone on J, and

$$
\begin{gathered}
f_{2}(t) \leq g(t) \leq f_{1}(t) \quad \text { for } t \in J, \\
\max _{t \in J} g(t)=\max _{t \in J} f_{1}(t) \\
f_{1} \operatorname{Ran}\left(T_{A}^{-}\right) \subset \operatorname{Ran}\left(T_{A}^{-}\right) \text {and } g \operatorname{Ran}\left(T_{A}^{-}\right) \subset \operatorname{Ran}\left(T_{A}^{-}\right) .
\end{gathered}
$$

Then

$$
c_{g} \Phi(A) \sigma_{T, f_{2}} \Phi(B) \leq \Phi\left(A \sigma_{T, g} B\right) \leq \Phi\left(A \sigma_{T, f_{1}} B\right)
$$

where c_{g} is defined by (2.5).
Proof. It is enough to apply Theorem 2.7 with $g_{1}=g_{2}=g$ and $g_{2} \circ g_{1}^{-1}=\mathrm{id}$ and $A \sigma_{T, \text { id }}\left(A \sigma_{T, f_{1}} B\right)=A \sigma_{T, f_{1}} B$.

Some concrete versions of inequalities (2.22) of Theorem 2.7 which depend on the form of $g_{1} \circ g_{2}^{-1}$ are included in Corollary 2.9, By making use of affine, power and inverse-affine functions we obtain arithmetic, geometric and harmonic operator means of A and $A \sigma_{T, f_{1}} B$, respectively, on the right-hand side of (2.22).

Corollary 2.9. Under the assumptions of Theorem 2.7 with $A, B>0$:
(I) If $g_{2} \circ g_{1}^{-1}$ is an affine function, i.e., $g_{2} \circ g_{1}^{-1}(s)=a s+b$ for $s \in g_{1}(J), a>0$, then the right-hand side inequality of (2.22) reduces to

$$
\begin{equation*}
\Phi\left(A \sigma_{T, g_{2}} B\right) \leq a \Phi\left(A \sigma_{T, f_{1}} B\right)+b \Phi(A) \tag{2.31}
\end{equation*}
$$

(II) If $g_{2} \circ g_{1}^{-1}$ is a power function, i.e., $g_{2} \circ g_{1}^{-1}(s)=s^{\alpha}$ for $s \in g_{1}(J) \subset \mathbb{R}_{+}$, $\alpha \in[0,1]$, then the right-hand side inequality of (2.22) reduces to

$$
\begin{equation*}
\Phi\left(A \sigma_{T, g_{2}} B\right) \leq \Phi\left(T_{A}\left(T_{A}^{-}\left(A \sigma_{T, f_{1}} B\right)\right)^{\alpha}\right) \tag{2.32}
\end{equation*}
$$

(III) If $g_{2} \circ g_{1}^{-1}$ is an inverse function of the form $g_{2} \circ g_{1}^{-1}(s)=\left(\alpha s^{-1}+1-\alpha\right)^{-1}$ for $s \in g_{1}(J) \subset \mathbb{R}_{+}, \alpha \in[0,1]$, then the right-hand side inequality of (2.22) reduces to

$$
\begin{equation*}
\Phi\left(A \sigma_{T, g_{2}} B\right) \leq \Phi\left(\left[(1-\alpha) A^{-1}+\alpha\left(A \sigma_{T, f_{1}} B\right)^{-1}\right]^{-1}\right) \tag{2.33}
\end{equation*}
$$

Proof. (I) Since $a>0$, the function $g_{2} \circ g_{1}^{-1}(s)=a s+b$ is operator monotone (see [3, p. 113]). Moreover,

$$
A \sigma_{T, h}\left(A \sigma_{T, f_{1}} B\right)=T_{A} h T_{A}^{-}\left(A \sigma_{T, f_{1}} B\right)
$$

Simultaneously,

$$
A \sigma_{T, f_{1}} B=T_{A} f_{1} T_{A}^{-} B \in \operatorname{Ran}\left(T_{A}\right)
$$

So, for $h(s)=a s+b$, by (2.1) we have

$$
\begin{aligned}
& A \sigma_{T, h}\left(A \sigma_{T, f_{1}} B\right)=T_{A}\left(a T_{A}^{-}\left(A \sigma_{T, f_{1}} B\right)+b I_{n}\right) \\
= & a T_{A} T_{A}^{-}\left(A \sigma_{T, f_{1}} B\right)+b T_{A}\left(I_{n}\right)=a A \sigma_{T, f_{1}} B+b A .
\end{aligned}
$$

Now, to see (2.31) it is enough to employ (2.22).
(II) The function $g_{2} \circ g_{1}^{-1}(s)=s^{\alpha}$ with $\alpha \in[0,1]$ is operator monotone (see [3, p. 115]). So, to prove (2.32), it is sufficient to apply (2.22).
(III) Inequality (2.33) follows from (2.22) applied to the operator monotone function $g_{2} \circ g_{1}^{-1}(s)=\left(\alpha s^{-1}+1-\alpha\right)^{-1}$ with $\alpha \in[0,1]$ (see [3, p. 114]).

Theorem 2.7 simplifies if in addition T_{X} is invertible.
Corollary 2.10. Assume that
(i) for any $X \geq 0, T_{X}: \mathbb{H}_{n} \rightarrow \mathbb{H}_{n}$ is an invertible bounded positive linear operator with positive inverse T_{X}^{-1} such that $T_{X}\left(I_{n}\right)=X$,
(ii) $\Phi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{k}$ is a strictly positive linear map,
(iii) A and B are $n \times n$ positive definite matrices with $\operatorname{Sp}\left(T_{A}^{-1} B\right) \subset J=[m, M]$, $0<m<M$.

Let $f_{1}, f_{2}, g_{1}, g_{2}$ be continuous real functions defined on J satisfying conditions (2.19) and (2.20). Suppose that g_{1} is invertible on J, g_{2} is positive concave and operator monotone on J, and $g_{2} \circ g_{1}^{-1}$ is operator monotone on interval $J^{\prime}=g_{1}(J)$.

Then inequality (2.22) is satisfied with (2.5) for $g=g_{2}$.
Proof. With $T_{X}^{-}=T_{X}^{-1}$ conditions (2.8) and (2.21) hold automatically. Now it is sufficient to use Theorem 2.7.

Acknowledgment. The author would like to thank an anonymous referee for his/her useful suggestions that improved the presentation of the paper.

REFERENCES

[1] T. Ando. Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl., 26:203-241, 1979.
[2] J.S. Aujla and H.L. Vasudeva. Inequalities involving Hadamard product and operator means. Math. Japon., 42:265-272, 1995.
[3] R. Bhatia. Matrix Analysis. Springer-Verlag, New York, 1997.
[4] R. Harte and M. Mbekhta. On generalized inverses in C^{*}-algebras. Studia Math., 103:71-77, 1992.
[5] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.
[6] R. Kaur, M. Singh, and J.S. Aujla. Generalized matrix version of reverse Hölder inequality. Linear Algebra Appl., 434:636-640, 2011.
[7] R. Kaur, M. Singh, J.S. Aujla, and M.S. Moslehian. A general double inequality related to operator means and positive linear maps. Linear Algebra Appl., 437:1016-1024, 2012.
[8] F. Kubo and T. Ando. Means of positive linear operators. Math. Ann., 246:205-224, 1980.
[9] J. Mičić, J. Pečarić, and Y. Seo. Complementary inequalities to inequalities of Jensen and Ando based on the Mond-Pečarić method. Linear Algebra Appl., 318:87-107, 2000.
[10] M. Niezgoda. Choi-Davis-Jensen's inequality and generalized inverses of linear operators. Electron. J. Linear Algebra, 26:406-416, 2013.
[11] M. Niezgoda. On f-connections of positive definite matrices. Ann. Funct. Anal., 5(2):147-157, 2014.
[12] M. Niezgoda. Jointly subadditive mappings induced by operator convex functions. Math. Inequal. Appl., 18(1):169-184, 2015.
[13] Y. Seo. Reverses of Ando's inequality for positive linear maps. Math. Inequal. Appl., 14:905910, 2011.

[^0]: *Received by the editors on January 23, 2014. Accepted for publication on June 30, 2015. Handling Editor: Bryan L. Shader.
 ${ }^{\dagger}$ Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland (marek.niezgoda@up.lublin.pl, bniezgoda@wp.pl).

