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Abstract. The problem of integral similarity of block-triangular matrices over the ring of

integers is connected to that of finding representatives of the classes of an equivalence relation on

general integer matrices. A complete list of representatives of conjugacy classes of torsion in the

4× 4 general linear group over ring of integers is given. There are 45 distinct such classes and each

torsion element has order of 1, 2, 3, 4, 5, 6, 8, 10 or 12.
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1. Introduction. The problem that we consider in this paper is the determi-

nation of the conjugacy classes of torsion matrices in the n× n general linear group

over Z, the ring of integers.

Let Mn×m(Z) be the set of n×m matrices over Z. For a matrix A ∈ Mn×m(Z),

the transpose of A is denoted by AT. When n = m we simply denote Mn×m(Z) by

Mn(Z). Let In be the identity matrix in Mn(Z).

A unimodular matrix of size n is an n×n integer matrix having determinant

+1 or −1. The general linear group of size n over Z, denoted by GLn(Z), is the set

of unimodular matrices in Mn(Z) together with the operation of ordinary matrix

multiplication. That is,

GLn(Z) = {A ∈Mn(Z)
∣
∣|A| = ±1},

where |A| is the determinant of A. An element T of GLn(Z) is a torsion element if

it has finite order, i.e., if there is a positive integer m such that Am = I. A d-torsion

element is a torsion element that has order d.

Two matrices A, B of Mn(Z) are conjugates or integrally similar, denoted by

A ∼ B, if there is a matrix Q ∈ GLn(Z) such that B = Q−1AQ.

Finding finite groups or torsion of integral matrices up to conjugation has a long

history, see [5].
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Given a matrix A ∈Mn(Z), we denote the characteristic polynomial of A by

f
A
(x) = |xI −A|.

If A ∈ GLn(Z), then fA
(x) is a monic polynomial with constant term f(0) = ±1.

Let f(x) = xn + an−1x
n−1 + · · · + a1x + a0 ∈ Z[x], the polynomial ring over Z,

with f(0) = ±1. The set of all integral matrices with characteristic polynomial f(x)

is denoted by Mf . That is,

Mf = {A ∈ GLn(Z) | fA
(x) = f(x)}.

Let Mf be the set of all conjugacy classes of matrices in Mf . The size of Mf is

denoted by |Mf |.

The matrix Cf given by

Cf =











0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
...

...

0 0 · · · 1 −an−1











is known as the companion matrix of f(x) = xn + an−1x
n−1 + · · · + a1x + a0. It is

known that Cf ∈Mf , and thus, Mf 6= ∅.

For any A ∈ GLn(Z), we use C(A) to denote its centralizer in GLn(Z). If A is

similar to the companion matrix of a polynomial over Z, then its centralizer is

C(A) = {g(A) ∈ GLn(Z) | g(x) ∈ Z[x] is of degree less than n}.

For A ∈Mn×m(Z) and B ∈Ms×t(Z), the direct sum of A and B is

A⊕B =

[
A 0

0 B

]

∈M(n+s)×(m+t)(Z).

Obviously, A⊕B is a unimodular matrix if and only if both A and B are unimodular

matrices.

A matrix A ∈ GLn(Z) is decomposable if it is conjugate to a direct sum of two

matrices which have smaller sizes; otherwise, A is said to be indecomposable.

The characteristic polynomial of a decomposable matrix is reducible over Z, but

the converse is not true.
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In this paper, we mainly consider the integral similarity problem for upper block-

triangular matrices of the form

(1.1)

[
A X

0 B

]

,

where A, B are unimodular matrices with coprime minimal polynomials. Our results

are based on the following lemmas. We state them without proof.

Lemma 1.1. Each A in Mn(Z) is integrally similar to a block-triangular matrix








A11 A12 · · · A1r

0 A22 · · · A2r

...
...

...

0 0 · · · Arr







,

where the characteristic polynomial of Aii is irreducible, 1 ≤ i ≤ r. The block-

triangularization can be attained with the diagonal blocks in any prescribed order.

See [6, 9] for a proof.

Lemma 1.2. Let A ∈ GLn(Z) have irreducible minimal polynomial p(x) with

|Mp| = 1. Then A is integrally similar to

Cp ⊕ Cp ⊕ · · · ⊕ Cp,

where Cp is the companion matrix of p(x). That is |Mpk | = 1.

See also [6].

Consider two monic polynomials

f(x) = xn + an−1x
n−1 + · · ·+ a0 and g(x) = xm + bm−1x

m−1 + · · ·+ b0

in Z[x]. Recall that the resultant of f(x) and g(x) is the determinant

R (f, g) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 an−1 · · · a0 0 · · · · ·

0 1 an−1 · · · a0 0 · · · ·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

· · 0 1 an−1 · · · · · · a0
1 bm−1 · · b0 0 · · · · · ·

0 1 bm−1 · · b0 0 · · · · ·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

· · · 0 1 bm−1 · · · · · b0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣







m rows







n rows
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It is known that f(x) and g(x) are coprime if and only if R(f, g) 6= 0.

The following theorem, which is a corollary of Lemma 3.1, gives a sufficient con-

dition for decomposability.

Theorem 1.3. Let A ∈ Mn(Z) with its characteristic polynomial a product of

two coprime polynomials whose resultant is ±1. Then A is decomposable.

To explain our results, we need to develop some notation. For any A ∈ GLn(Z),

we use A+, A− to denote the block matrices

[
A e

0 1

]

,

[
A e

0 −1

]

respectively, where

e = (1, 0, . . . , 0)T ∈ Mn×1(Z). Clearly, A+, A− ∈ GLn+1(Z). Also, we let Cn denote

the companion matrix of Φn(x), the nth cyclotomic polynomial of degree ϕ(n), where

ϕ is the Euler’s totient function.

Our results are given in following theorems. We will prove them in Section 3.

Theorem 1.4. Let n > 1 and A = Cn⊕Cn⊕· · ·⊕Cn, the direct sum of s-copies

of Cn. Let

M =

[
A X

0 Im

]

, where X ∈Msϕ(n)×m(Z).

1. If n = pk, where p is a prime number and k ≥ 1, then

(1.2) M ∼ C+
n ⊕ · · · ⊕ C+

n
︸ ︷︷ ︸

t

⊕Cn ⊕ · · · ⊕ Cn
︸ ︷︷ ︸

s−t

⊕Im−t,

where the number t of C+
n satisfies 0 ≤ t ≤ min(s,m) and is uniquely deter-

mined by M.

2. If n is not a power of a prime, then M ∼ A⊕ Im.

The special case n = 2 was established by Hua and Reiner, [4]. Similarly, we have

the following.

Theorem 1.5. Let n > 2 and A = Cn⊕Cn⊕· · ·⊕Cn, the direct sum of s-copies

of Cn. Let

M =

[
A X

0 −Im

]

, where X ∈Msϕ(n)×m(Z).

1. If n = 2pk, where p is a prime and k ≥ 1, then

M ∼ C−

n ⊕ · · · ⊕ C−

n
︸ ︷︷ ︸

t

⊕Cn ⊕ · · · ⊕ Cn
︸ ︷︷ ︸

s−t

⊕ (−Im−t),
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where the number t of C−

n satisfies 0 ≤ t ≤ min(s,m) and is uniquely deter-

mined by M.

2. If n 6= 2pk, then M ∼ A⊕ (−Im).

A complete conjugacy list of torsion in GL2(Z) is already known.

Lemma 1.6. All torsion in GL2(Z) up to conjugation are given in the following

table together with the centralizers and minimal polynomials of the conjugacy class

representatives

order A C(A) m
A
(x)

1 I GL2(Z) Φ1(x) = (x− 1)

−I GL2(Z) Φ2(x) = (x+ 1)

2 K ±I,±K (x− 1)(x+ 1)

U ±I,±U (x− 1)(x+ 1)

3 W ±I,±W,±(I +W ) Φ3(x) = x2 + x+ 1

4 J ±I,±J Φ4(x) = x2 + 1

6 −W ±I,±W,±(I +W ) Φ6(x) = x2 − x+ 1

where I =

[
1 0

0 1

]

, K =

[
1 0

0 −1

]

, U =

[
1 1

0 −1

]

, W = C3 =

[
0 −1

1 −1

]

, J = C4 =

[
0 −1

1 0

]

.

For a proof, see [8].

Although the maximal finite subgroups of GL4(Z) up to conjugation have been

determined by Dade [1], a complete set of non-conjugate classes of torsion in GL4(Z)

is of value. We have solved the closely related problem of classifying the conjugacy

classes of elements of finite order in the 4× 4 symplectic group over Z, see [12].

If A is a d-torsion element in GL4(Z), then its minimal polynomial m
A
(x) is a

factor of xd − 1, i.e., m
A
(x) is a product of cyclotomic polynomials. It is easy to

check that any torsion element A in GL4(Z) has order 1, 2, 3, 4, 5, 6, 8, 10 or 12.

Note that ϕ(5) = ϕ(8) = ϕ(10) = ϕ(12) = 4 and then Φn(x) is a quartic polynomial

for n = 5, 8, 10 or 12. According to Latimer, MacDuffee and Taussky [11], if the

characteristic polynomial of A is Φ5(x), Φ8(x), Φ10(x) or Φ12(x), then A is conjugate

to C5, C8, C10 or C12 respectively since Q(ζm), where ζm is a primitive mth root of

unity, has class number one for all positive integers m less than 12. We reduce the

problem to the case that the characteristic polynomial of A is reducible. The cases

where m
A
(x) is an irreducible quadratic polynomial, that is m

A
(x) = Φn(x), n = 3, 4
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or 6, can be solved by Lemma 1.2 and Lemma 1.6. Furthermore, the case where

A2 = I was solved in complete generality by Hua and Reiner [4]. We only need to

consider the cases where m
A
(x) is one of the following: (x2+1)(x−1), (x2+1)(x+1),

(x2 ± x+1)(x− 1), (x2 ± x+1)(x+1), (x2 ± x+1)(x2 +1), (x2 +x+1)(x2 − x+1),

(x2 − 1)(x2 + 1) and (x2 − 1)(x2 ± x + 1). As a consequence, by Lemma 1.1, A is

integrally similar to a block upper triangular matrix with different diagonal 2 × 2

blocks chosen from Lemma 1.6. By applying Theorem 1.4 or Theorem 1.5, we can

solve the problem for the first four cases where one and only one of ±1 is an eigenvalue.

The case where m
A
(x) = (x2 ± x+1)(x2 +1) can be solved by Theorem 1.3. For the

remaining three cases, we have the following result.

Theorem 1.7. All elements in GL4(Z) with some given reducible characteristic

polynomials f(x) up to conjugation are listed below:

1. When f(x) = (x2 − 1)(x2 + λx+ 1), where λ = ±1,

Mf =

{

λ

[
K 0

0 W

]

, λ

[
K E

0 W

]

, λ

[
U 0

0 W

]

, λ

[
U E

0 W

]}

;

2. When f(x) = (x2 − 1)(x2 + 1),

Mf =

{[
K 0

0 J

]

,

[
K E

0 J

]

,

[
K I

0 J

]

,

[
K I − E

0 J

]

,

[
U 0

0 J

]

,

[
U E

0 J

]

,

[
U I

0 J

]}

;

3. When f(x) = (x2 + x+ 1)(x2 − x+ 1),

Mf =

{[
W 0

0 −W

]

,

[
W E

0 −W

]}

,

where E =

[
1 0

0 0

]

.

To prove our results we need to develop some new tools. The idea we use in

this paper comes from Roth’s Theorem [10]. For a general form of Roth’s Theorem,

see [2] or [3]. We shall generalize Roth’s Theorem to the integral similarity problem

for upper block-triangular matrices of the form (1.1) with the diagonal blocks have

coprime characteristic polynomials. In Section 2 we shall study (A,B)-equivalence in

Mn×m(Z). Then we transform our similarity problem to the problem finding (A,B)-

equivalent classes and prove our results in Section 3. We use the programMathematica

to calculate some of results in this paper.

2. (A,B)-equivalence. Let A ∈ GLn(Z), B ∈ GLm(Z) and suppose that their

respective characteristic polynomials f(x) and g(x) are coprime. We define a linear
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transformation ψ on Mn×m(Z) by

ψ :Mn×m(Z) → Mn×m(Z), T 7→ AT − TB.

Since f(x), g(x) are coprime, ψ is injective. Let 〈A,B〉 be the image of ψ, that is

〈A,B〉 = {AT − TB | T ∈Mn×m(Z)}.

By choosing a suitable basis, the matrix of ψ is A ⊗ Im − In ⊗ BT, where ⊗ is the

Kronecker product of matrices. Then the determinant of ψ is equal to R(f, g), the

resultant of f(x) and g(x). Let r = |R(f, g)|, the absolute value of R(f, g). The

quotient module Mn×m(Z)/〈A,B〉, called the cokernel of ψ and denoted by cokerψ,

is of order r. Let X ∈ Mn×m(Z). Then an equivalent condition for X ∈ 〈A,B〉 is

that the Sylvester equation

(2.1) AT − TB = X

has a unique integral solution for matrix T . Clearly, if X ≡ 0 (mod r), then X ∈

〈A,B〉.

Lemma 2.1. Let Cf be the companion matrix of f(x) of degree n and α ∈

Mn×1(Z) be an integral column vector. Then α ∈ 〈Cf , I1〉 if and only if the integer

number f(1) divides ℓ(α), the sum of components of α.

Proof. Let f(x) = xn + an−1x
n−1 + · · · + a1x + a0 and α = (c1, c2, . . . , cn)

T. In

this case,

〈Cf , I1〉 = {(Cf − I)X | X = (x1, x2, . . . , xn)
T ∈Mn×1(Z)}.

So, α ∈ 〈Cf , I1〉 if and only if the system of linear equations







−x1 −a0xn = c1
x1 − x2 −a1xn = c2

x2 − x3 −a2xn = c3
...

xn−1 −(1 + an−1)xn = cn

has an integral solution. This system is equivalent to the following system,






−x1 −a0xn = c1
−x2 −(a0 + a1)xn = c1 + c2

...

−xn−1 −(a0 + a1 + · · ·+ an−1)xn = c1 + c2 + · · ·+ cn−1

−(1 + a0 + a1 + · · ·+ an−1 + an)xn = c1 + c2 + · · ·+ cn−1 + cn
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which has an integer solution for x1, x2, . . . , xn if and only if

f(1) = (1 + a0 + a1 + · · ·+ an−1 + an)|(c1 + c2 + · · ·+ cn−1 + cn) = ℓ(α).

Thus, α ∈ 〈Cf , I1〉 if and only if f(1) divides ℓ(α).

Similarly, α ∈ 〈Cf ,−I1〉 if and only if f(−1) divides c1 − c2 + · · · + (−1)n−1cn,

the alternating sum of components of α.

We now define an equivalence relation on Mn×m(Z).

Definition 2.2. Let X,Y ∈ Mn×m(Z) be any two matrices. X and Y are

said to be (A,B)-equivalent, denoted by X ∼= Y (mod A,B) or X ∼= Y for short,

if there exist P ∈ C(A) and Q ∈ C(B) such that XQ − PY ∈ 〈A,B〉. The set of

(A,B)-equivalent classes is denoted by S(A,B).

It is obvious that if X − Y ∈ 〈A,B〉, then X ∼= Y (mod A,B). But the converse

is not necessarily true.

Lemma 2.3. Let X,Y ∈Mn×m(Z). Then

1. X ∼= Y (mod A,B) if and only if X −PY Q−1 ∈ 〈A,B〉 for some P ∈ C(A),

Q ∈ C(B);

2. X ∼= PXQ (mod A,B), where P ∈ C(A) and Q ∈ C(B). In particular,

X ∼= −X;

3. If X ≡ Y (mod r), then X ∼= Y (mod A,B), where r = |R(f, g)|.

Proof. By definition, X ∼= Y if and only if there exist P ∈ C(A) and Q ∈ C(B)

such that

(2.2) XQ− PY = AT − TB

for some T ∈ Mn×m(Z). Since Q commutes B, so does Q−1, and then (2.2) is

equivalent to

X − PY Q−1 = A(TQ−1)− (TQ−1)B.

Therefore, Part 1 is true.

Part 2 is obtained by PXQ− (PXQ) = 0, and (−In) ∈ C(A).

Part 3 is true since X − Y ∈ 〈A,B〉, whenever X ≡ Y (mod r).

Suppose that the cokernel of ψ has a set of representative

cokerψ = {S1, S2, . . . , Sr | Si ∈Mn×m(Z)},
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where Si = Si + 〈A,B〉, i = 1, . . . , r, are all cosets of 〈A,B〉 in Mn×m(Z). We define

a group action of C(A) × C(B) on cokerψ given by

PSiQ = PSiQ

for any (P,Q) ∈ C(A) × C(B). The action is well defined since P 〈A,B〉 = 〈A,B〉 =

〈A,B〉Q. The set of orbits is denoted by cokerψ/C(A)× C(B).

Lemma 2.4. Let X,Y ∈ Mn×m(Z). Then a necessary and sufficient condition

for X ∼= Y is that X and Y are in the same orbit of the action. That is

S(A,B) = cokerψ/C(A)× C(B).

Proof. Note that X ∼= Y if and only if X − PY Q ∈ 〈A,B〉 for some (P,Q) ∈

C(A) × C(B), which is equivalent to X = PY Q. Therefore, X ∼= Y if and only if X

and Y are in the same orbit.

From Lemma 2.4, when r = 1, |S(A,B)|, the class number of (A,B)-equivalence,

is equal to 1. If r > 1, then 1 < |S(A,B)| ≤ r, because 〈A,B〉 is a fixed point for all

elements in C(A) × C(B). In particular, if r = 2, |S(A,B)| = 2.

LetM = A⊕A⊕· · ·⊕A be the direct sum of s-copies of A, andN = B⊕B⊕· · ·⊕B

be the direct sum of t-copies of B. Let

X =








X11 X12 · · · X1t

X21 X22 · · · X2t

...
...

...

Xs1 Xs2 · · · Xst







∈Msn×tm(Z),

where Xij ∈Mn×m. Then we have the following.

Lemma 2.5. X ∈ 〈M,N〉 if and only if Xij ∈ 〈A,B〉, for i = 1, . . . , s; j =

1, . . . , t.

It is also easy to prove that the following block row/column elementary operations

on X preserve the equivalence:

1. Row/column switching

Ri ↔ Rj : switch the i-th row blocks and the j-th row blocks;

Ci ↔ Cj : switch the i-th column blocks and the j-th column blocks.

2. Row/column multiplication

Ri → PRi: left-multiply the i-th row blocks by P , where P ∈ C(A);

Ci → CiQ: right-multiply the i-th column blocks by Q, where Q ∈ C(B).
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3. Row/column addition

Ri → Ri+PRj: add the j-th row blocks left-multiplied by P to the i-th row;

Ci → Ci+CjQ: add the j-th column blocks right-multiplied by Q to the i-th

column, where P ∈Mn(Z) commutes A, and Q ∈Mm(Z) commutes B.

3. Proofs. Before the proof, we need to give a connection of (A,B)-equivalence

with integral similarity of matrices of the form (1.1).

Lemma 3.1. Let A ∈ Mn(Z), B ∈ Mm(Z) and suppose that they have co-

prime characteristic polynomials. Then

[
A X

0 B

]

∼

[
A Y

0 B

]

if and only if X ∼= Y

(mod A,B).

Proof. First suppose that

[
A X

0 B

]

∼

[
A Y

0 B

]

. There is Q =

[
Q11 Q12

Q21 Q22

]

∈

GLn+m(Z) such that

[
A X

0 B

] [
Q11 Q12

Q21 Q22

]

=

[
Q11 Q12

Q21 Q22

] [
A Y

0 B

]

.

We get that

AQ11 +XQ21 = Q11A,(3.1)

AQ12 +XQ22 = Q11Y +Q12B,(3.2)

BQ21 = Q21A,(3.3)

BQ22 = Q21Y +Q22B.(3.4)

By hypothesis, (3.3) implies Q21 = 0. Then Q =

[
Q11 Q12

0 Q22

]

, and (3.1), (3.4) say

that Q11 ∈ C(A) and Q22 ∈ C(B). Thus, (3.2) means X ∼= Y .

Conversely, if X ∼= Y by some (P,Q) ∈ C(A) × C(B) and T ∈ Mn×m(Z), then
[
A X

0 B

]

∼

[
A Y

0 B

]

via the similarity

[
P −T

0 Q

]

.

According to Lemma 3.1, integral similarity problem for block-triangular matrices

of the form (1.1) can be transformed to the problem of finding (A,B)-equivalent

classes.

Now we can prove our theorems.

Proof of Theorem 1.4. For any matrix X ∈Msϕ(n)×m(Z), we write X as a block
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matrix

X =








α11 α12 · · · α1m

α21 α22 · · · α2m

...
...

...

αs1 αs2 · · · αsm







,

where αij ∈ Mϕ(n)×1(Z). Then by Lemma 2.5, X ∈ 〈A, Im〉 if and only if αij ∈

〈Cn, I1〉, which is equivalent to that Φn(1) is a factor of ℓ(αij) by Lemma 2.1, for all

αij . Note that for n > 2, see [7],

(3.5) Φn(1) =

{
p, n = pk, p prime, k ≥ 1

1, otherwise.

Case 1. n = pk is a power of prime p, then Φn(1) = p.

We first show that S(Cn, I1) = {0, e}. For any α ∈Mϕ(n)×1(Z), let b = ℓ(α).

ℓ(α− be) = ℓ(α)− bℓ(e) = b− b · 1 = 0.

So, α ∼= be (mod Cn, I1). We only need to show be ∼= e (mod Cn, I1) provided p ∤ b.

Without loss of generality, we assume 0 < b ≤ p−1. Let P = I+Cn+C
2
n+ · · ·+Cb−1

n .

Then P (I − Cn) = I − Cb
n, and thus, the determinant of P satisfies

|P ||I − Cn| = |I − Cb
n|.

Since (b, p) = 1, Cn and Cb
n have the same characteristic polynomial Φn(x). So,

|I − Cn| = |I − Cb
n| = Φn(1) = p.

Therefore, |P | = 1 and P ∈ GLϕ(n)(Z). Also, P commutes with Cn. It is easy to

verify that ℓ(Pe) = b, and then ℓ(be− Pe) = 0. So be ∼= e (mod Cn, I1), and hence,

S(Cn, I1) = {0, e}.

Now suppose that there is αij /∈ 〈Cn, I1〉. We can use row or column switchings

move it to the left-top position. So, we may assume that α11 /∈ 〈Cn, I1〉. There is

P ∈ Cn such that Pα11− e ∈ 〈Cn, I1〉. Then by a row multiplication and Lemma 2.5,

X
R1→PR1−−−−−−−−−−→








Pα11 β12 · · · β1m
β21 β22 · · · β2m
...

...
...

βs1 βs2 · · · βsm








∼=








e β12 · · · β1m
β21 β22 · · · β2m
...

...
...

βs1 βs2 · · · βsm







.
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By row additions, Ri → Ri − ℓ(βi1)R1, and column additions, Cj → Cj − ℓ(β1j)C1,

we get








e β12 · · · β1m
β21 β22 · · · β2m
...

...
...

βs1 βs2 · · · βsm







−−−→








e γ12 · · · γ1m
γ21 γ22 · · · γ2m
...

...
...

γs1 γs2 · · · γsm








∼=








e 0 · · · 0

0 γ22 · · · γ2m
...

...
...

0 γs2 · · · γsm







,

where γi1 = βi1 − ℓ(βi1)e, γ1j = β1j − ℓ(β1j)e ∈ 〈Cn, I1〉. Continue this process to the

submatrix obtained by deleting first row block and first column, and so on, we obtain

X ∼=

[
Y 0

0 0

]

, where Y = e ⊕ e⊕ · · · ⊕ e
︸ ︷︷ ︸

t

for some 1 ≤ t ≤ min(s,m). Therefore, by Lemma 3.1,

[
A X

0 Im

]

∼
























Cn e
. . .

. . .

Cn e

Cn

. . .

Cn

1
. . .

1

Im−t
























,

where the number of Cn is s and the number of e is t. By some pairs of row and

column switchings, we get the matrix on the right is conjugate to the matrix (1.2).

For the uniqueness, let Xi = e⊕ e⊕ · · · ⊕ e
︸ ︷︷ ︸

ti

, i = 1, 2, with t1 > t2 and suppose

that
[
X1 0

0 0

]

∼=

[
X2 0

0 0

]

.

There are P =

[
P11 P12

P21 P22

]

∈ C(A), Q =

[
Q11 Q12

Q21 Q22

]

∈ C(B), where P11 is t1 × t2

matrix, Q11 is t1 × t2 matrix, such that

[
X1 0

0 0

]

Q− P

[
X2 0

0 0

]

=

[
X1Q11 − P11X2 X1Q12

−P21X2 0

]

∈ 〈A, Im〉.
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We get X1Q12 ≡ 0 (mod p), so Q12 ≡ 0 (mod p). Note that the block Q12 is a

t1× (m− t2) matrix and t1+(m− t2) > m, the size of Q. Therefore, the determinant

of Q satisfies |Q| ≡ 0 (mod p). This is impossible since Q is an unimodular matrix.

This completes the proof of uniqueness.

Case 2. n is not a power of prime. From (3.5), Φn(1) = 1, and thenMϕ(n)×1(Z) =

〈Cn, I1〉. There is only one (A, Im)-equivalent class. Therefore, M ∼ A⊕ Im.

The proof of Theorem 1.5 is similar. In this case, we use the fact that

(3.6) Φn(−1) =

{
p, n = 2pk, p prime, k ≥ 1

1, otherwise,

see [7].

Proof of Theorem 1.7. By Lemma 1.1 and Lemma 3.1, we only need to calculate

(A,B)-equivalent classes for some special pairs of 2× 2 matrices in Lemma 1.6.

When A = K and B = W . Clearly, r = 3. The linear transformation ψ is given

by ψ(T ) = KT − TW. Then the Sylvester equation (2.1) becomes

[
1 0

0 −1

]

T − T

[
0 −1

1 −1

]

=

[
a b

c d

]

.

It is equivalent to the system of linear equations







t11 − t12 = a

t11 + 2t12 = b

−t21 − t22 = c

t21 = d,

which has integral solutions if and only if 3|a− b. Thus, the submodule 〈K,W 〉, the

image of ψ, is

〈K,W 〉 =

{[
a b

c d

]

∈M2(Z)
∣
∣
∣a ≡ b (mod 3)

}

.

It is obvious that E, 2E /∈ 〈K,W 〉. Therefore, cokerψ =M2(Z)/〈K,W 〉 = {0, E, 2E}.

By choosing P = −I ∈ C(K), Q = I ∈ C(W ), we see that

EQ− P (2E) =

[
3 0

0 0

]

∈ 〈K,W 〉,

and thus, E ∼= 2E (mod K,W ). Note that |S(K,W )| > 1, hence S(K,W ) = {0, E}.
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When A = U and B =W . We also have r = 3. This time the Sylvester equation

is equivalent to







t11 − t12 + t21 = a

t11 + 2t12 + t22 = b

− t21 − t22 = c

t21 = d.

It is clear that

〈U,W 〉 =

{[
a b

c d

]

∈M2(Z)
∣
∣
∣a+ d ≡ b+ c (mod 3)

}

.

So, cokerψ = {0, E, 2E} and then S(U,W ) = {0, E}.

Since 〈−A,−B〉 = 〈A,B〉 for any A and B, we obtain that S(−K,−W ) =

S(−U,−W ) = {0, E}.

Similarly, we have

〈K, J〉 =

{[
a b

c d

]

∈M2(Z)
∣
∣
∣a+ b ≡ c+ d ≡ 0 (mod 2)

}

, S(K, J) = {0, E, I, I−E},

〈U, J〉 =

{[
a b

c d

]

∈M2(Z)
∣
∣
∣a+ b+ c ≡ c+ d ≡ 0 (mod 2)

}

, S(U, J) = {0, E, I},

〈W,−W 〉 =

{[
a b

c d

]

∈M2(Z)
∣
∣
∣a+ b+ c ≡ a ≡ d (mod 2)

}

, S(W,−W ) = {0, E}.

In summary, we have the following table

A B S(A,B)

K or U W 0, E

−K or −U −W 0, E

K J 0, E, I, I−E

U J 0, E, I

W −W 0, E

We can use the results in this table, Lemma 1.1 and Lemma 3.1 to complete the

proof.

From above theorems, and some simple calculations, all torsion in GL4(Z) up to
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conjugation are listed as follows:

d = 1 I4;

d = 2 − I4; K ⊕ (−I), U ⊕ (−I);

I ⊕ (−I), K ⊕ U, U ⊕ U ; I ⊕K, I ⊕ U ;

d = 3 W ⊕W ; I ⊕W,

[
I E

0 W

]

;

d = 4 J ⊕ J ; I ⊕ J,

[
I E

0 J

]

; (−I)⊕ J,

[
−I E

0 J

]

;

K ⊕ J,

[
K E

0 J

]

,

[
K I

0 J

]

,

[
K I − E

0 J

]

;

U ⊕ J,

[
U E

0 J

]

,

[
U I

0 J

]

;

d = 5 C5;

d = 6 − (W ⊕W ); I ⊕ (−W ); (−I)⊕W ; − (I ⊕W ),

[
−I E

0 −W

]

;

K ⊕W,

[
K E

0 W

]

; U ⊕W,

[
U E

0 W

]

;

− (K ⊕W ),

[
−K E

0 −W

]

; − (U ⊕W ),

[
−U E

0 −W

]

;

W ⊕ (−W ),

[
W E

0 −W

]

;

d = 8 C8;

d = 10 − C5;

d = 12 C12; J ⊕W ; J ⊕ (−W ).

Acknowledgment. The author would like to thank the referee for helpful

comments.

REFERENCES

[1] E.C. Dade. The maximal finite groups of 4 × 4 integral matrices. Illinois J. Math., 9:99–122,

1965.

[2] R. Guralnick. Roth’s theorems and decomposition of modules. Linear Algebra Appl., 39:155–165,

1981.

[3] R. Guralnick. Roth’s Theorems for sets of matrices. Linear Algebra Appl., 71:113–117, 1985.

[4] L.K. Hua and I. Reiner. Automorphisms of the unimodular group. Trans. Amer. Math. Soc.,

71(3):331–348, 1951.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 478-493, September 2015



ELA

Conjugacy Classes of Torsion in GLn(Z) 493

[5] J. Kuzmanovich and A. Pavlichenkov. Finite groups of matrices whose entries are integers.

Amer. Math. Monthly, 109(2):173–186, 2002.

[6] T.J. Laffey. Lectures on Integer Matrices. Unpublished lecture notes, 1997.

[7] S. Lang. Algebra. Graduate Texts in Mathematics, Vol. 211, Springer-Verlag, New York, 2002.

[8] G. Mackiw. Finite groups of 2× 2 integer matrices. Math. Mag., 69(5):356–361, 1996.

[9] M. Newman. Integral Matrices. Academic Press, New York, 1972.

[10] W. Roth. The equations AX − Y B = C and AX − XB = C in matrices. Proc. Amer. Math.

Soc., 3(3):392–396, 1952.

[11] O. Taussky. On a theorem of Latimer and Macduffee. Canadian J. Math., 1:300–302, 1949.

[12] Q. Yang. Conjugacy classes of Torsion in 4 × 4 integral symplectic group. J.Math. Res. Expo-

sition, 28(1):177–191, 2008.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 478-493, September 2015


