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PSEUDO SCHUR COMPLEMENTS, PSEUDO PRINCIPAL PIVOT

TRANSFORMS AND THEIR INHERITANCE PROPERTIES∗

K. BISHT† , G. RAVINDRAN‡ , AND K.C. SIVAKUMAR§

Abstract. Extensions of the Schur complement and the principal pivot transform, where the

usual inverses are replaced by the Moore-Penrose inverse, are revisited. These are called the pseudo

Schur complement and the pseudo principal pivot transform, respectively. First, a generalization of

the characterization of a block matrix to be an M -matrix is extended to the nonnegativity of the

Moore-Penrose inverse. A comprehensive treatment of the fundamental properties of the extended

notion of the principal pivot transform is presented. Inheritance properties with respect to certain

matrix classes are derived, thereby generalizing some of the existing results. Finally, a thorough

discussion on the preservation of left eigenspaces by the pseudo principal pivot transformation is

presented.
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1. Introduction. Let M ∈ Rm×n be a block matrix partitioned as

(

A B

C D

)

,

where A ∈ R
k×k is nonsingular. Then the classical Schur complement of A in M

denoted by M/A is given by D − CA−1B ∈ R(m−k)×(n−k). This notion has proved

to be a fundamental idea in many applications like numerical analysis, statistics and

operator inequalities, to name a few. We refer the reader to [27] for a comprehen-

sive account of the Schur complement. In the formula for the Schur complement,

apparently, Albert [1] was the first to replace A−1 by A†, the Moore-Penrose inverse

of A. He studied positive definiteness and nonnegative definiteness for symmetric

matrices using this formula. This expression for the Schur complement was fruther

extended by Carlson [10] to include all matrices of the form D−CA{1}B, where A{1}

denotes any arbitrary {1}-inverse of A (A {1}-inverse of A is any matrix X which
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satisfies AXA = A). Carlson proved that this generalized Schur complement is in-

variant under the choice of A{1} if and only if B = 0 or C = 0 or R(B) ⊆ R(A) and

R(CT ) ⊆ R(AT ). Here R(X) denotes the range space of the matrix X . He also goes

on to refer to this as a “natural setting for clean results in the area of Schur com-

plements”. Henceforth, we shall refer to these as natural conditions. He studies the

relationship of the generalized Schur complements to certain optimal rank problems.

The expression D−CA†B, is also referred to in the literature as the generalized Schur

complement [11], where the Sylvester’s determinantal formula and a quotient formula

are proved, among other things. Nevertheless, since we will be concerned with the

case of the Moore-Penrose inverse (which is also called the pseudo inverse), we shall

refer to it as the pseudo Schur complement.

Let us now turn to the most important object that is being studied here. Again,

consider M , partitioned as above. If A is nonsingular, then the principal pivot trans-

form (PPT) of M [24] is the block matrix defined by

(

A−1 −A−1B

CA−1 F

)

,

where F is again, the Schur complement F = D−CA−1B. This operation of obtaining

the PPT arises in many contexts, namely mathematical programming, numerical

analysis and statistics, to name a few. For an excellent survey of PPT we refer the

reader to [23], and [20] for certain mapping and preserver properties of the PPT. This

transformation has also received attention by researchers in linear complementarity

theory for their inheritance properties with respect to many matrix classes. We refer

to [22] for more details of these results which are presented for symmetric cones in

Euclidean Jordan algebras. Just as in the case of the generalized Schur complement,

it is natural to study the PPT when the usual inverses are replaced by generalized

inverses. Meenakshi [17], was perhaps the first to study such a generalization for the

Moore-Penrose inverse. We shall refer to this generalization of the PPT as the pseudo

principal pivot transform (precise definition in Section 4). Recently, Rajesh Kannan

and Bapat [19] obtained certain interesting extensions of some of the well known

results on the principal pivot transform. They also studied almost skew-symmetric

matrices.

We organize the contents of the paper as follows. In the next section, we provide

a brief background for the rest of the material in the article. The main result in

the subsequent section is an extension to the case of the Moore-Penrose inverse of an

inheritance property rather well known for M -matrices. This is presented in Theorem

3.4. Section 4 collects certain basic properties of the pseudo principal pivotal trans-

form. In the process, we point to a couple of errors in a recent work [19] and provide

correct versions of these. Section 5 presents inheritance properties for the Schur com-

plement and the pseudo principal pivot transform for two classes of matrices studied
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recently. The main results here are Theorem 5.4, Theorem 5.5 and Theorem 5.10. In

the concluding section, a thorough treatment of preservation of left eigenspaces by

the principal pivot transform is undertaken, with Corollary 6.1 presenting a summary

of the results there.

2. Preliminaries. Let Rn denote the n dimensional real Euclidean space and

Rn
+ denote the nonnegative orthant in Rn. For a matrix M ∈ Rm×n, the set of all

m × n matrices of real numbers, we denote the null space and the transpose of M

by N(M) and MT , respectively. The Moore-Penrose inverse of a matrix M ∈ R
m×n,

denoted by M † is the unique solution X ∈ Rn×m of the equations: M = MXM ,

X = XMX , (MX)T = MX and (XM)T = XM . If M is nonsingular, then of

course, we have M−1 = M †. Recall that M ∈ Rn×n is called range-symmetric (or an

EP matrix) if R(MT ) = R(M). For this class of matrices, the Moore-Penrose inverse

M † commutes with M . Next, we collect some well known properties of M † that

will be frequently used in this paper [3]. For a subspace S ⊆ Rn, let PS denote the

orthogonal projection of Rn onto the subspace S. If T is a subspace complementary to

the subspace S, then PS,T stands for the projection of Rn onto the subspace S along

the subspace T . We have: R(MT ) = R(M †); N(MT ) = N(M †); MM † = PR(M);

M †M = PR(MT ). In particular, if x ∈ R(MT ), then x = M †Mx.

Next, we list certain results to be used in the sequel. The first result is well

known, for instance one could refer to [26].

Theorem 2.1. Let A ≥ 0 be a square matrix. If S is any principal square

submatrix of A then ρ(S) ≤ ρ(A). The inequality is strict if A is irreducible.

In the study of iterative schemes for systems of linear systems, the concept of

a matrix splitting has proved to be very important. Specifically, for a nonsingular

matrix A, a decomposition of the form A = U − V , when U is invertible, is referred

to as a splitting. There are various types of splittings that have been studied in the

literature. Let us only mention that the classical iterative techniques like the Gauss-

Jordan method, the Gauss-Siedel method and the successive over-relaxation method

are particular instances of a matrix splitting, as above [26]. When the matrix A is

singular, the notion of a proper splitting was introduced by Berman and Plemmons

[6]. For A, a decomposition of the form A = U − V is called a proper splitting if

R(A) = R(U) and N(A) = N(U). For many of the fundamental properties of a

proper splitting and their role in the convergence of iterative methods for singular

linear systems, we refer to the book [4]. In particular, the following will be useful in

our discussion.

Theorem 2.2. (Theorem 1, [6]) Let A = U − V be a proper splitting. Then:

(a) AA† = UU †; A†A = U †U ; V U †U = V .
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(b) A = U(I − U †V ).

(c) I − U †V is invertible.

(d) A† = (I − U †V )−1U †.

The next result gives two characterizations for the Moore-Penrose inverse to be

nonnegative. The frame work is that of a proper splitting.

Theorem 2.3. (Theorem 3, [5]) Let A = U − V be a proper splitting such that

U † ≥ 0 and U †V ≥ 0. Then the following are equivalent:

(a) A† ≥ 0.

(b) A†V ≥ 0.

(c) ρ(U †V ) < 1.

If A and B are square invertible matrices, then (AB)−1 = B−1A−1. However,

in case of generalized inverse this need not be true. The following result presents a

characterization for the reverse order law to hold for the case of the Moore-Penrose

inverse.

Theorem 2.4. (Theorem 2, [15]) Let A ∈ Cm×n and B ∈ Cn×p. Then (AB)† =

B†A† if and only if BB∗A†A and A∗ABB† are Hermitian.

3. The Moore-Penrose inverse and inheritance of nonnegativity. It is

well known that the Schur complement and formulae for inverses of partitioned ma-

trices go hand in hand. We proceed in the same spirit, where we first consider the

Moore-Penrose inverse of partitioned matrices. The following result is quite well

known. The necessary part was shown in Theorem 1 in [7] and Theorem 1 in [9]. In

Corollary 2 in [8] and Theorem 2.10 in [25], a proof is given.

Theorem 3.1. Let A ∈ Rm×n, B ∈ Rm×p, C ∈ Rs×n, D ∈ Rs×p and M =
(

A B

C D

)

such that F = D − CA†B. Then R(CT ) ⊆ R(AT ), R(B) ⊆ R(A),

R(C) ⊆ R(F ) and R(BT ) ⊆ R(FT ) if and only if

M † =

(

A† +A†BF †CA† −A†BF †

−F †CA† F †

)

.

Remark 3.1. Let M =

(

A B

C D

)

, where A ∈ Rn×n and D ∈ Rm×m. De-

fine U =

(

0 Im
In 0

)

, then U is orthogonal and UT =

(

0 In
Im 0

)

. Then N =
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UMUT =

(

D C

B A

)

. The pseudo Schur complement of A in M is F = D − CA†B

and the pseudo Schur complement of D in N is G = A−BD†C.

Let us reiterate that the two inclusions R(B) ⊆ R(A) and R(CT ) ⊆ R(AT ) are

the natural conditions that we had referred to, in the introduction. Next, we state

a complementary result. This does not seem to be as well known as the previous

result. However, we skip its proof. Note that this result uses the pseudo Schur

complement G = A−BD†C, which is called the complementary Schur complement in

[2]. This time, the natural conditions are R(BT ) ⊆ R(DT ) and R(C) ⊆ R(D). These

conditions guarantee that the complementary Schur complement G = A − BD{1}C

is invariant under any {1}-inverse D{1} of D. Again, we state the result and for a

proof, the reader may refer to Theorem 2.1 in [13].

Theorem 3.2. Let M =

(

A B

C D

)

with the blocks defined as in Theorem 3.1.

Suppose that R(BT ) ⊆ R(DT ), R(C) ⊆ R(D), R(B) ⊆ R(G) and R(CT ) ⊆ R(GT ),

where G = A−BD†C. Then

M † =

(

G† −G†BD†

−D†CG† D† +D†CG†BD†

)

.

By comparing the two expressions for M †, we obtain the formulae:

G† = A† +A†BF †CA† and F † = D† +D†CG†BD†,

in the presence of all the eight inclusions of Theorem 3.1 and Theorem 3.2. Using

these formulae, next we derive another expression for the Moore-Penrose inverse of

M involving the pseudo Schur complements of A and D. This will be used in the

subsequent result.

Theorem 3.3. Let M =

(

A B

C D

)

. Suppose that R(CT ) ⊆ R(AT ), R(B) ⊆

R(A), R(BT ) ⊆ R(FT ), R(C) ⊆ R(F ), R(C) ⊆ R(D), R(BT ) ⊆ R(DT ), R(B) ⊆

R(G) and R(CT ) ⊆ R(GT ), where F = D − CA†B and G = A−BD†C. Then

M † =

(

G† −A†BF †

−D†CG† F †

)

.

Remark 3.2. Let M be as above such that R(CT ) ⊆ R(AT ), R(B) ⊆ R(A),

R(BT ) ⊆ R(FT ), R(C) ⊆ R(F ), R(C) ⊆ R(D), R(BT ) ⊆ R(DT ), R(B) ⊆ R(G) and

R(CT ) ⊆ R(GT ). Then it may be verified that

M †M =

(

A†A 0

0 D†D

)

.
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Our first main result uses the theorem above to obtain a necessary and sufficient

condition for the nonnegativity of the Moore-Penrose inverse of a block matrix M .

This is expressed in terms of the nonnegativity of the Moore-Penrose inverse of the

principal subtransformations A and D and the nonnegativity of the Moore-Penrose

inverse of the pseudo Schur complements F and G. Let us recall the classical result

for Z-matrices. First, a square matrix S is called a Z-matrix, if all its off-diagonal

entries are nonpositive. If S is a Z-matrix, it then follows that we can write S = tI−T

where t ≥ 0 and T ≥ 0. Let L =

(

A B

C D

)

be a square matrix. Suppose that A

and D are square matrices of the same order and also are Z-matrices. Further, let B

and C be nonpositive matrices so that L itself is a Z-matrix. Markham, (Theorem

3, [16]) has shown that L is (an invertible) M -matrix if and only if A,D and the

two Schur complements, F = D − CA−1B and G = A − BD−1C are (invertible)

M -matrices. It is well known that an invertible M -matrix has the property that its

inverse is nonnegative [4]. Thus, L is an invertible M -matrix if and only if A−1 ≥

0, D−1 ≥ 0, F−1 ≥ 0 and G−1 ≥ 0. In what follows, we enlarge the applicability of

this result by considering the case of the Moore-Penrose inverse. To place this result

in a proper perspective, let us observe the following. Let us say that a decomposition

S = U − V is a pseudo splitting if U † ≥ 0 and U †V ≥ 0. If S is a Z-matrix with the

representation S = tI − T with t 6= 0, as above, we may set U = tI and V = T , so

that U † = U−1 ≥ 0 and since V ≥ 0, we also have U †V ≥ 0. Thus, a Z-matrix has

always a pseudo splitting. Below, a splitting which is both a proper splitting and a

pseudo splitting will be called a pseudo proper splitting.

Theorem 3.4. Let M =

(

A B

C D

)

with A, B, C and D ∈ Rn×n such that

B ≤ 0 and C ≤ 0. Let A and D possess pseudo proper splittings. Further, suppose

that the inclusions in Theorem 3.3 hold. Then M † ≥ 0 if and only if A† ≥ 0, D† ≥ 0,

F † ≥ 0 and G† ≥ 0.

Proof. Sufficiency: Let A†, D†, F † and G† all be nonnegative. Since B and C

are nonpositive, it follows that M † =

(

G† −A†BF †

−D†CG† F †

)

is nonnegative.

Necessity: Let M † ≥ 0. Then G† ≥ 0 and F † ≥ 0. Next, we prove that A† ≥ 0.

Since A has a pseudo proper splitting, there exist matrices UA and VA such that

A = UA − VA, N(A) = N(UA), R(A) = R(UA), U
†
A ≥ 0 and U †

AVA ≥ 0. Similarly,

there exist matrices UD and VD such that D = UD − VD with N(D) = N(UD),

R(D) = R(UD), U †
D ≥ 0 and U †

DVD ≥ 0. Set UM =

(

UA 0

0 UD

)

and VM =

(

VA −B

−C VD

)

. Then M = UM −VM . Also, U †
M =

(

U †
A 0

0 U †
D

)

≥ 0 and U †
MVM =
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(

U †
AVA −U †

AB

−U †
DC U †

DVD

)

≥ 0. Next, we claim that M = UM − VM is a proper splitting,

i.e., N(M) = N(UM ) and R(M) = R(UM ).

Let x =

(

x1

x2

)

∈ N(UM ) so that UMx = 0. So, UAx
1 = 0 and UDx2 = 0 which

in turn give x1 ∈ N(A) and x2 ∈ N(D), since N(A) = N(UA) and N(D) = N(UD).

Since N(D) ⊆ N(B) and N(A) ⊆ N(C) we then have Mx =

(

Ax1 +Bx2

Cx1 +Dx2

)

= 0.

This proves that x ∈ N(M), and hence, N(UM ) ⊆ N(M). On the other hand, let

x ∈ N(M), so that M †Mx = 0. By Remark 3.2, we have M †M =

(

A†A 0

0 D†D

)

,

we then have A†Ax1 = 0 and D†Dx2 = 0. Thus, x1 ∈ N(A) = N(UA) and x2 ∈

N(D) = N(UD). Thus, UMx =

(

UAx
1

UDx2

)

= 0 showing that x ∈ N(UM ). Hence,

N(M) ⊆ N(UM ). So, N(M) = N(UM ). In order to show that R(M) = R(UM ), we

show instead, that N(MT ) = N(UT
M ). Let y =

(

y1

y2

)

∈ N(UT
M ), so that UT

Ay1 = 0

and UT
Dy2 = 0. So, y1 ∈ N(AT ) (since N(AT ) = N(UT

A )) and y2 ∈ N(DT ) (since

N(DT ) = N(UT
D)). Also, N(AT ) ⊆ N(BT ) and N(DT ) ⊆ N(CT ), so that MT y =

(

AT y1 + CT y2

BT y1 +DT y2

)

= 0. This proves that y ∈ N(MT ) and so N(UT
M ) ⊆ N(MT ).

By the rank-nullity dimension theorem, we conclude that N(UT
M ) = N(MT ) and so

we have R(UM ) = R(M). Thus, M = UM − VM is a pseudo proper splitting. Since

M † ≥ 0, by Theorem 2.3, we have ρ(U †
MVM ) < 1. By Theorem 2.1, we then have

ρ(U †
AVA) ≤ ρ(U †

MVM ) < 1. By Theorem 2.3 again, it follows that A† ≥ 0. Similarly,

D† ≥ 0.

Next, we give an example to illustrate the above result.

Example 3.1. Let A =

(

2 −1

−1 2

)

, B =

(

−1 −1

0 0

)

, C =

(

0 −1

0 −1

)

and D =

(

1 1

1 1

)

. Then the inclusions of Theorem 3.3 are satisfied. Set UA =

(

2 0

0 2

)

, VA = UA − A =

(

0 1

1 0

)

, UD =

(

2 2

2 2

)

and VD = UD − D =

(

1 1

1 1

)

. Then it is easy to verify that these are pseudo proper splittings for A and
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D, respectively. Observe that A† ≥ 0, D† ≥ 0, F † ≥ 0, G† ≥ 0 and M † ≥ 0. In fact,

M † =









1 1 1
2

1
2

1
2 1 1

4
1
4

1
4

1
2

3
8

3
8

1
4

1
2

3
8

3
8









.

4. The pseudo principal pivot transform. As mentioned in the introduction,

the principal pivot transform involving the Moore-Penrose inverse has been studied

in the literature. In what follows, we consider it once again, albeit with a different

name, the pseudo principal pivot transform. We also find it natural to consider the

complementary pseudo principal pivot transform.

Definition 4.1. Let M be defined as in Theorem 3.1. Then the pseudo principal

pivot transform of M relative to A is defined by

H := pppt(M,A)† =

(

A† −A†B

CA† F

)

,

where F = D − CA†B. The complementary pseudo principal pivot transform of M

relative to D is defined by

J := cpppt(M,D)† =

(

G BD†

−D†C D†

)

,

where G = A−BD†C.

Both the operations of pseudo principal transforms defined here are involutions.

Specifically, we have the following result. It is interesting to observe that in the next

results which are of a fundamental nature, the natural conditions provide the frame

work (see also Theorem 4.1).

Lemma 4.1. Let M be the same as above, and let H = pppt(M,A)† and J =

cpppt(M,D)†.

(i) Suppose that R(B) ⊆ R(A) and R(CT ) ⊆ R(AT ). Then pppt
(

H,A†
)

†
= M .

(ii) Suppose that R(C) ⊆ R(D) and R(BT ) ⊆ R(DT ). Then cpppt
(

J,D†
)

†
=

M .

Proof. We prove (i). The proof for (ii) is similar. Set W = A†, X = −A†B and

Y = CA†. Then H =

(

W X

Y F

)

. So,

pppt(H,A†)† = pppt(H,W )† =

(

W † −W †X

YW † F − YW †X

)
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=

(

A −A(−A†B)

CA†A D − CA†B + CA†AA†B

)

=

(

A B

C D

)

= M.

We now prove two extensions of the domain-range exchange property, well known

in the nonsingular case.

Lemma 4.2. (i) Suppose that R(B) ⊆ R(A) and R(CT ) ⊆ R(AT ). Then M and

H = pppt(M,A)† are related by the formula:

M

(

x1

x2

)

=

(

AA†y1

y2

)

if and only if H

(

y1

x2

)

=

(

A†Ax1

y2

)

.

(ii) Suppose that R(C) ⊆ R(D), R(BT ) ⊆ R(DT ) and J = cpppt(M,D)†. Then

M and J are related by the formula:

M

(

x1

x2

)

=

(

y1

DD†y2

)

if and only if J

(

y1

x2

)

=

(

x1

D†Dy2

)

.

Proof. We prove (i). The proof for (ii) is similar. Suppose that M

(

x1

x2

)

=

(

AA†y1

y2

)

. Then

Ax1 +Bx2 = AA†y1(4.1)

and

Cx1 +Dx2 = y2.(4.2)

Premultipling (4.1) by A† (and rearranging) we get A†y1 − A†Bx2 = A†Ax1. Pre-

multiplying this equation by C, we then have CA†y1 − CA†Bx2 = CA†Ax1 = Cx1.

So, CA†y1+Fx2 = CA†y1+Dx2−CA†Bx2 = Cx1+Dx2 = y2. Thus, H

(

y1

x2

)

=

(

A†y1 −A†Bx2

CA†y1 + Fx2

)

=

(

A†Ax1

y2

)

.

Conversely, let H

(

y1

x2

)

=

(

A†Ax1

y2

)

. Then A†y1 − A†Bx2 = A†Ax1 and

CA†y1+(D−CA†B)x2 = y2. Premultiplying (4.1) by A, we have AA†y1−Bx2 = Ax1

so that Ax1 +Bx2 = AA†y1. Again, premultiplying the (4.1) by C, we get CA†y1 −

CA†Bx2 = Cx1. Hence, using (4.2) we have, Cx1+Dx2 = CA†y1−CA†Bx2+Dx2 =
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y2, proving that M

(

x1

x2

)

=

(

AA†y1

y2

)

.

Let M =

(

A B

C D

)

. Let T1 be the block matrix with the same block sizes as M

such that T1 =

(

0 0

0 I

)

and T2 = I −T1. Let C1 = T2 +T1M and C2 = T1 +T2M .

In Theorem 3.2 [19], it is claimed that C1C
†
2 = pppt(M,A)†. First, we give a counter

example to show that this is not true and then present a correct result with a short

proof.

Example 4.1. Let A =

(

1 −1

2 −2

)

, B =

(

1

1

)

, C =
(

−1 1
)

and D =

(

0
)

. Then M =





1 −1 1

2 −2 1

−1 1 0



 and H = pppt(M,A)† =
1
10





1 2 −3

−1 −2 3

−2 −4 6



.

Now, C1 =

(

I 0

C D

)

=





1 0 0

0 1 0

−1 1 0



, C2 =

(

A B

0 I

)

=





1 −1 1

2 −2 1

0 0 1



 and

C†
2 =





0 1
4 − 1

4

0 − 1
4

1
4

1
3 − 1

6
5
6



. Here C1C
†
2 =





0 1
4 − 1

4

0 − 1
4

1
4

0 − 1
2

1
2



 6= H .

Lemma 4.3. Let M =

(

A B

C D

)

, such that R(B) ⊆ R(A). Let T1, T2, C1 and

C2 be as defined earlier. Then pppt(M,A)† = C1C
†
2 .

Proof. We have C1 =

(

I 0

C D

)

, C2 =

(

A B

0 I

)

and C†
2 =

(

A† −A†B

0 I

)

so that C1C
†
2 =

(

A† −A†B

CA† D − CA†B

)

= pppt(M,A)†.

Let M =

(

A B

C D

)

with R(B) ⊆ R(A) and R(CT ) ⊆ R(AT ). In Theorem 3.3,

[19] the formula H† = J is claimed to hold. First, in the following example, we show

that this is not true.

Example 4.2. Let A =

(

1 −1

2 −2

)

, B =

(

1

2

)

, C =
(

−1 1
)

and D =

(

0
)

. Then M =





1 −1 1

2 −2 2

−1 1 0



, R(B) ⊆ R(A), R(CT ) ⊆ R(AT ), H =
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pppt(M,A)† = 1
10





1 2 −5

−1 −2 5

−2 −4 10



, J = cpppt(M,D)† =





1 −1 0

2 −2 0

0 0 0



 and

H† = 1
18





1 −1 −2

2 −2 −4

−5 5 10



 6= J .

Now, we prove a correct version. Once again, the natural conditions are handy.

Theorem 4.1. Let A ∈ Rm×n, B ∈ Rm×p, C ∈ Rs×n, D ∈ Rs×p and M =
(

A B

C D

)

. Suppose that R(B) ⊆ R(A), R(CT ) ⊆ R(AT ), R(C) ⊆ R(D) and

R(BT ) ⊆ R(DT ). Then H† = J , where H = pppt(M,A)† and J = cpppt(M,D)†.

Proof. In Lemma 4.3, it is shown that pppt(M,A)† = C1C
†
2 . Also, pppt(M,D)† =

(

A−BD†C BD†

−D†C D†

)

= C2C
†
1 . So, it is enough to prove that (C1C

†
2)

† = C2C
†
1 .

Now,

CT
1 C1C

†
2C2 =

(

A†A+ CTC CTD

DTC DTD

)

and

C†
2(C

†
2)

TC†
1C1 =

(

A†(A†)T +A†BBT (A†)T −A†B

−BT (A†)T D†D

)

.

Observe that CT
1 C1C

†
2C2 and C†

2(C
†
2)

TC†
1C1 both are symmetric. From Theorem 2.4,

it follows that (C1C
†
2)

† = C2C
†
1 .

The next result is a generalization of Proposition 3.3, [23].

Theorem 4.2. Let M = (A|B) be a partitioned matrix with A ∈ R
n×r and

B ∈ Rn×(n−r). Suppose that R(B) ⊆ R(A). Then pppt(MTM,ATA) is a {1}-inverse

of MTM .

Proof. Let MTM =

(

ATA ATB

BTA BTB

)

. First, we observe that AA†B = B

(since R(B) ⊆ R(A)). Set P =

(

I 0

BT (AT )† I

)

, Q =

(

I A†B

0 I

)

and N =

(

ATA 0

0 0

)

. Then the expression for MTM can be written as

MTM =

(

I 0

BT (AT )† I

)(

ATA 0

0 0

)(

I A†B

0 I

)

= PNQ.
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Let N (1) denote a {1}-inverse of N . Then a {1}-inverse of MTM is given by

Q−1N (1)P−1 =

(

I −A†B

0 I

)(

(ATA)† 0

0 0

)(

I 0

−BT (AT )† I

)

=

(

(ATA)† −A†B

(A†B)T 0

)

= pppt(MTM,ATA).

5. Inheritance properties of matrix classes. In this section, we consider

inheritance properties of the pseudo principal pivot transform with regard to two ma-

trix classes. These classes are generalizations of the corresponding classes of matrices

which are relevant in the context of the linear complementarity problem. First, we

consider P†-matrices, recently studied in [18]. Let us add that these matrices have

not been fully understood. In particular their relationship with solutions of linear

complementarity problems has not been explored. Nevertheless, certain interesting

generalizations of connections between P†-matrices and interval matrices have been

derived in [18]. To begin with, let us first recall the definition of a P -matrix. A

square matrix A is called a P -matrix if all its principal minors are positive [14].

P -matrices have been studied widely in the literature due to many of their interest-

ing properties and important applications. We refer the reader to [14] for many of

these properties and [12] for their applications to the linear complementarity prob-

lem. Given Q ∈ Rn×n and q ∈ Rn, the linear complementarity problem denoted by

LCP (Q, q) is to determine if there exists x ∈ Rn such that x ≥ 0, y = Qx + q ≥ 0

and 〈x, y〉 = xT y = 0. A well known result [12] states that Q is a P -matrix iff the

problem above has a unique solution for every q ∈ Rn. This property is referred to

as the globally uniquely solvable property.

Let us now recall the definition of a P†-matrix.

Definition 5.1. (Definition 2.1, [18]) A square matrix A is said to be a P†-matrix

if for each non zero x ∈ R(AT ) there is an i ∈ {1, 2, . . . , n} such that xi(Ax)i > 0.

Equivalently, for any x ∈ R(AT ) the inequalities xi(Ax)i ≤ 0 for i = 1, 2, . . . , n imply

that x = 0.

Let us just include a fundamental property of a P†-matrix, similar to that of a

P -matrix.

Theorem 5.1. (Theorem 2.3, [18]) A is a P†-matrix if and only if A† is a

P†-matrix.

In [18], the relationships of P†-matrices with certain subsets of intervals of ma-

trices were studied. Let A,B ∈ Rm×n with A ≤ B. Set J(A,B) := {C ∈ Rm×n :

A ≤ C ≤ B}. Let r(A,B) denote the set of all matrices whose rows are convex linear
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combinations of the corresponding rows of A and B. Similarly, let c(A,B) denote the

set of all matrices whose columns are convex linear combinations of the corresponding

columns of A and B. Then r(A,B) and c(A,B) are subsets of J(A,B). Now, sup-

pose that A,B are such that R(A) = R(B) and N(A) = N(B). Finally, let K(A,B)

denote the set

K(A,B) := {C ∈ J(A,B) : R(C) = R(A) and N(C) = N(A)}.

Next, we state some results which characterize the inclusions r(A,B) ⊆ K(A,B)

and c(A,B) ⊆ K(A,B) in terms of certain P†-matrices.

Theorem 5.2. (Theorem 3.2, [18]) Let A, B ∈ Rn×n be such that R(A) = R(B)

and N(A) = N(B). Then r(A,B) ⊆ K(A,B) if and only if BA† is a P†-matrix.

Theorem 5.3. (Theorem 3.3, [18]) Let A,B ∈ Rn×n be such that R(A) = R(B)

and N(A) = N(B). Then c(A,B) ⊆ K(A,B) if and only if B†A is a P†-matrix.

It is quite well known that if M is a P -matrix, then the principal pivot trans-

form is also a P -matrix (Theorem 5.2, [23]). More generally, for symmetric cones

in Euclidean Jordan algebras, it has been shown that M is a P -matrix if and only

if the (principal subtransformations) A and D and the principal pivot transform are

P -matrices (Theorem 1 and Theorem 3, [22]). In what follows, we prove extensions

of these results to the case of P†-matrices.

First, we show that if M is a P†-matrix it does not necessarily follow that

pppt(M,A)† is a P†-matrix.

Example 5.1. Let M =





2 −2 1

2 −2 1

−1 1 −0.5



, with A =

(

2 −2

2 −2

)

, B =

(

1

1

)

, C =
(

−1 1
)

and D =
(

−0.5
)

. Let x ∈ R(MT ). Then x = α(2,−2, 1)T ,

α ∈ R. Suppose that xi(Mx)i ≤ 0 for i = 1, 2, 3. Then 18α2 ≤ 0 so that x = 0. Thus,

M is a P†-matrix. It can be verified that

H = pppt(M,A)† =





0.125 0.125 −0.25

−0.125 −0.125 0.25

−0.25 −0.25 0



.

Let x0 =





0

0

−1



. Then 0 6= x0 ∈ R(HT ) and x0
i (Hx0)i ≤ 0 for i = 1, 2, 3. This
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shows that H is not a P†-matrix.

Theorem 5.4. For M =

(

A B

C D

)

, suppose that the four inclusions of Theo-

rem 3.1 hold. If M is a P†-matrix, then pppt(M,A)†, A and D are P†-matrices.

Proof. First, we show that H = pppt(M,A)† is a P†-matrix. Let z =

(

z1

z2

)

∈

R(HT ). There exists v =

(

v1

v2

)

such thatHT v = z. Then z1 = (A†)T v1+(CA†)T v2

and z2 = (−A†B)T v1 + FT v2. Thus, z1 ∈ R(A) and so z1 = AA†z1. Also, since

R((A†B)T ) ⊆ R(FT ), we have z2 ∈ R(FT ) so that z2 = F †Fz2. Set w =

(

w1

w2

)

=

Hz. Then w1 = A†z1 − A†Bz2 and w2 = CA†z1 + Fz2. Observe that w1 ∈ R(A†)

and so w1 = A†Aw1. So, H

(

z1

z2

)

=

(

A†Aw1

w2

)

. By (i) of Lemma 4.2, we have

M

(

w1

z2

)

=

(

AA†z1

w2

)

=

(

z1

w2

)

. Set x =

(

w1

z2

)

. Now, let us suppose that

zi(Hz)i ≤ 0 for all i. Then z1iw
1
i ≤ 0 for all i and z2jw

2
j ≤ 0 for all j. It then follows

that xi(Mx)i ≤ 0 for all i. Further by Theorem 3.1, M †Mx =

(

A†A 0

0 F †F

)

x = x,

proving that x ∈ R(MT ). Since M is a P†-matrix, we then have x = 0. That is,

w1 = 0 and z2 = 0. So z1 = 0, and hence, z = 0. This proves that H is a P†-matrix.

Next, we show that A is a P†-matrix. Let x1 ∈ R(AT ) (so that x1 = A†Ax1) and

suppose that (x1)i(Ax
1)i ≤ 0 for all i. Define x =

(

x1

0

)

. Then M †Mx = x so that

x ∈ R(MT ). Also, xj(Mx)j =

(

x1
j (Ax

1)j
0

)

≤ 0 for all j. Since M is a P†-matrix

we then have x = 0 so that x1 = 0. Hence, A is a P†-matrix.

Finally, we show that D is a P†-matrix. Let x2 ∈ R(DT ) so that x2 = D†Dx2.

Then x2 = F †Fx2 (since F = D − CA†B, and hence, R(DT ) ⊆ R(FT )). Suppose

that (x2)i(Dx1)i ≤ 0 for all i. Define x =

(

0

x2

)

. Then M †Mx = x, so that

x ∈ R(MT ). Also, xj(Mx)j =

(

0

x2
j (Dx2)j

)

≤ 0 for all j. Since M is a P†-matrix

we then have x = 0 so that x2 = 0. Hence, D is a P†-matrix.

Again, it may be shown that if H = pppt(M,A)† is a P†-matrix, then M need

not be a P†-matrix. We present sufficient conditions which guarantee that such an
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implication holds.

Theorem 5.5. For H = pppt(M,A)†, suppose that R(B) ⊆ R(A), R(CT ) ⊆

R(AT ), R(C) ⊆ R(D) and R(BT ) ⊆ R(DT ). If H is a P†-matrix, then M is a

P†-matrix.

Proof. Set W = A†, X = −A†B and Y = CA†. Then H =

(

W X

Y F

)

. Since

R(B) ⊆ R(A) and R(CT ) ⊆ R(DT ), by (i) of Lemma 4.1, we have pppt(H,A†)† = M .

Now R(X) = R(−A†B) ⊆ R(A†) = R(W ), R(Y T ) = R((CA†)T ) ⊆ R((A†)T ) =

R(WT ). Note that the pseudo Schur complement of H in W is F − YW †X =

F + CA†AA†B = D. We also have R(YW †) = R(CA†A) = R(C) ⊆ R(D) and

R((W †X)T ) = R((AA†B)T ) = R(BT ) ⊆ R(DT ). So, the assumptions of Theorem

5.4 for the matrix H are satisfied. We conclude that M is a P†-matrix.

A similar result also holds for the complementary pseudo principal pivot trans-

form. We simply state it and skip its proof.

Theorem 5.6. For M =

(

A B

C D

)

, suppose that the four inclusions of Theo-

rem 3.2 hold. If M =

(

A B

C D

)

is a P†-matrix, then cpppt(M,D)†, D and A are

P†-matrices.

Next, we consider a converse of the result above. Its proof is similar, and hence

it is omitted.

Theorem 5.7. For J = cpppt(M,D)†, suppose that R(B) ⊆ R(A), R(CT ) ⊆

R(AT ), R(C) ⊆ R(D) and R(BT ) ⊆ R(DT ). If J is a P†-matrix, then M is a

P†-matrix.

In the last part of this section, we consider another class of matrices which remains

invariant under the pseudo principal pivot transform. First, we recall the concept of

R0-matrices.

Definition 5.2. M ∈ Rn×n is said to be an R0-matrix if LCP (M, 0) has zero

as the only solution.

The importance of R0-matrices is due to the following result. The solution set of

LCP (M, q) is the set of all x ∈ Rn such that x ≥ 0 and Mx+ q ≥ 0.

Theorem 5.8. (Part of Proposition 3.9.23, [12]) Let M ∈ Rn×n. Then M is an

R0-matrix if and only if for every q ∈ Rn, the solution set of LCP (M, q) is bounded.

Recently, an extension of R0-matrices was studied, typically for singular matrices.
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We recall its definition.

Definition 5.3. (Definition 3.4, [21]) Let M ∈ Rn×n and S be a subspace of

Rn. Then M is called an R0-matrix relative to S if the only solution for LCP (M, 0)

in S is the zero solution. In other words, M is an R0-matrix relative to S if x = 0

is the only vector x ∈ S such that x ≥ 0, y = Mx ≥ 0 and xT y = 0. In particular,

M ∈ Rn×n is called an R†-matrix if M is an R0-matrix relative to R(MT ).

Recall that M ∈ Rn×n is copositive if 〈x,Mx〉 ≥ 0 for all x ≥ 0 and strictly

copositive if 〈x,Mx〉 > 0 for all x ≥ 0, x 6= 0. The following result presents sufficient

conditions under which a matrix is an R†-matrix.

Theorem 5.9. (Theorem 3.7, [21]) For M ∈ Rn×n, let M = U − V be a pseudo

proper splitting with U † strictly copositive. If ρ(U †V ) < 1, then M is an R†-matrix.

Now, we present inheritance results on R†-matrices.

Theorem 5.10. Let M =

(

A B

C D

)

, where A, B, C and D are square matrices

of the same order satisfying the conditions of Theorem 3.1. We have the following:

(a) If M is an R†-matrix, then pppt(M,A)† is also an R†-matrix.

(b) If M is an R†-matrix and CA† ≥ 0, then A is an R†-matrix.

Proof. (a) As before, we denote pppt(M,A)† by H . Let z ∈ R(HT ) such that

z ≥ 0,

(

v1

v2

)

= v = Hz ≥ 0 and 〈z, v〉 = 0. We then have v1 = A†z1 −A†Bz2 and

v2 = CA†z1+Fz2. Thus, v1 ∈ R(A†) so that v1 = A†Av1. Since z ∈ R(HT ), we have

z1 = (A†)Tu1 + (CA†)Tu2 and z2 = (−A†B)Tu1 + FTu2 for some u1 and u2. Note

that z1 ∈ R((A†)T ) = R(A) and so, z1 = AA†z1. Also, since R((A†B)T ) ⊆ R(FT ),

we obtain that z2 ∈ R(FT ) and so z2 = F †Fz2.

Now H

(

z1

z2

)

=

(

v1

v2

)

=

(

A†Av1

v2

)

. By (i) of Lemma 4.2, we have

M

(

v1

z2

)

=

(

AA†z1

v2

)

=

(

z1

v2

)

.

Set x =

(

v1

z2

)

and y =

(

z1

v2

)

. Clearly, x ≥ 0 and Mx = y ≥ 0. Also 〈x, y〉 =

〈z, v〉 = 0. Next, we show that x ∈ R(MT ). Since, v1 = A†Av1 and z2 = F †Fz2,

we have M †Mx =

(

A†A 0

0 F †F

)

x = x, proving that x ∈ R(MT ). Since M is an

R†-matrix, we conclude that x = 0. That is, v1 = 0 and z2 = 0. In turn, we then

have z1 = 0 and hence z = 0, proving that H is an R†-matrix.
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(b) Let x ∈ R(AT ) be such that x ≥ 0, y = Ax ≥ 0 and 〈x, y〉 = 0. Define z =
(

x

0

)

≥ 0. Then M †Mz = z, since A†Ax = x. Since C†A ≥ 0 and Ax ≥ 0, we have

Cx = (CA†)(Ax) ≥ 0. Set v = Mz =

(

Ax

Cx

)

. Then v ≥ 0 and 〈z, v〉 = 〈x, y〉 = 0.

Since M is an R† matrix, we have z = 0 and hence x = 0. This proves that A is an

R†-matrix.

Again, an analogous result holds for the complementary pseudo principal pivot

transform. The proof is similar to the proof of the theorem above and hence, it is

omitted.

Theorem 5.11. Let M =

(

A B

C D

)

, where A, B, C and D are square matrices

of the same order satisfying the conditions of Theorem 3.2. Then the following hold:

(a) If M is an R†-matrix then so is the matrix cpppt(M,D)†.

(b) If M is an R†-matrix and B†D ≥ 0 then so is D.

6. Eigenvalue and eigenvector relationships. In this concluding section,

we discuss relationships between the spectra and the left eigenspaces of the pseudo

principal pivot transform pppt(M,A)† and M =

(

A B

C D

)

. Almost the entire

theory corresponding to the invertible case, as discussed in [20], is recovered for the

singular case in a suitable frame work. In the rest of the section, we suppose that A

is range-symmetric and that the inclusions in Theorem 3.1 hold. Let T1 be the block

matrix with the same block sizes as M such that T1 =

(

0 0

0 I

)

and T2 = I − T1.

Let

C1 = T2 + T1M and C2 = T1 + T2M.(6.1)

Suppose that R(B) ⊆ R(A) then, by Lemma 4.3 C1C
†
2 = pppt(M,A)†. We investigate

the question of whenM andH = pppt(M,A)† share a left eigenvector. In other words,

we ask when there exists a nonzero x ∈ Rn such that

xTM = λxT and xTH = µxT(6.2)

for λ, µ ∈ R. First, we consider the case λ = µ = −1. The following result may be

compared with observation 5.1 in [20].

Theorem 6.1. Let M be defined as above such that A is a range-symmetric.

Then −1 ∈ σ(M) if and only if −1 ∈ σ(H). Also, the corresponding left eigenvectors

are common to M and H.
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Proof. We have, xTM = −xT ⇔ xT (C1 + C2 − I) = −xT ⇔ xT (C1 + C2) =

0 ⇔ xTC1 = −xTC2. Post multiplying by C†
2 , we then have xTH = −xTC2C

†
2 .

Since A is range-symmetric, we then have AA† = A†A which further implies that

C2C
†
2 = C†

2C2. Also, using the facts that MC†
2C2 = M and xTM = −xT , we

conclude that −xTC2C
†
2 = −xTC†

2C2 = −xT .

Conversely, let xTH = −xT . Then xTC1C
†
2 = −xT so that xTC1C

†
2C2 = −xTC2.

Now, C1C
†
2C2 =

(

AA† 0

C D

)

and so we have, (C1C
†
2C2)

Tx =

(

AA†u CT v

0 DT v

)

=

(

u CT v

0 DT v

)

= CT
1 x, where x =

(

u

v

)

. Thus, xTC1C
†
2C2 = xTC1. So, we have

xTC1 = −xTC2 which implies that xTM = −xT . Thus, −1 ∈ σ(H) implies that

−1 ∈ σ(M).

The next result is an analogue of Theorem 5.2, [20].

Theorem 6.2. Let M be defined as above. Suppose that xTM = λxT and

xTH = µxT for some nonzero x ∈ Rn. Then both the following statements hold:

(a) If λ 6= µ, then 1+λ
1+µ

∈ σ(A).

(b) If λ 6= 1
µ
, then µ 1+λ

1+µ
∈ σ(D).

Proof. (a) We have xT (C1 + C2 − I) = λxT and xTC1C
†
2 = µxT . Post-

multiplying the second equation by C2 we have xTC1C
†
2C2 = µxTC2. As before,

since xTC1C
†
2C2 = xTC1, we have xTC1 = µxTC2. Substituting this in the first

equation, we get xT [(1 + µ)C2 − (1 + λ)I] = 0. Thus, every common left eigenvector

of M and H is a left eigenvector of X := (1 + µ)C2 − (1 + λ)I, corresponding to the

eigenvalue zero. Then X is a singular matrix. Similarly, it follows that every common

left eigenvector of M and H is a left eigenvector of Y := (1 + µ)C1 − µ(1 + λ)I,

corresponding to the eigenvalue zero. Rewriting X in the block form, we have

X =

(

(1 + µ)A− (1 + λ)I (1 + µ)B

0 (µ− λ)I

)

.

Let λ 6= µ. If µ = −1, then λ 6= −1 and so the diagonal blocks of X are non-singular

so that X would be non-singular, a contradiction. Hence µ + 1 6= 0. Let xTX = 0,

with x =

(

u

v

)

. Then (1 + µ)ATu = (1 + λ)u and (1 + µ)BTu + (µ − λ)v = 0. If

u = 0, then v 6= 0 so that λ = µ, a contradiction. Hence, u 6= 0. Thus, 1+λ
1+µ

∈ σ(A),

proving (a).

(b) As in part (a), the block matrix
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Y =

(

(1− µλ)I 0

(1 + µ)C (1 + µ)D − µ(1 + λ)I

)

is a singular matrix. Let 1 − µλ 6= 0. If µ = −1 then λ 6= −1 and so the diagonal

blocks of Y are non-singular so that Y would be non-singular, a contradiction. Hence,

1 + µ 6= 0. Let x =

(

u

v

)

such that xTY = 0. Then (1 + µ)DT v = µ(1 + λ)v and

(1−µλ)u+(1+µ)CTv = 0. If v = 0, then u 6= 0 so that 1−µλ = 0, a contradiction.

Hence, v 6= 0. Thus, µ 1+λ
1+µ

∈ σ(D), proving (b).

The following result extends Theorem 5.3 (a), [20].

Theorem 6.3. Let M be partitioned as above. Let M and H have a common

eigenvector corresponding to the eigenvalues λ ∈ σ(M) and µ ∈ σ(H), respectively.

Let λ = µ (6= −1). Then there exist vectors u and v with at least one of them being

nonzero such that

ATu = u, BTu = 0, CT v + (1− λ)u = 0 and DT v = λv.(6.3)

In this case, either λ = 1 and 1 ∈ σ(A), or λ ∈ σ(D).

Conversely, if there exist vectors u and v, not both zero, that satisfy the equation

(6.3) then M and H have a common eigenvector corrresponding to the eigenvalue

λ ∈ σ(M) ∩ σ(H).

Proof. As argued earlier, if x is a common eigenvector for M and H corresponding

to the eigenvalues λ and µ, respectively, then x satisfies the equations XTx = 0 and

Y Tx = 0. Here

X = (1 + λ)

(

A− I B

0 0

)

and Y = (1 + λ)

(

(1− λ)I 0

C D − λI

)

.

Set x =

(

u

v

)

. Then at least one of u, v is nonzero. It may be verified that u and v

satisfy the equations as in the proof of Theorem 6.2. If v = 0, then u 6= 0 and so the

equation ATu = u implies that 1 ∈ σ(A). The equation CT v + (1 − λ)u = 0 yields

λ = µ = 1. On the other hand, if u = 0, then v 6= 0 and so the equation DT v = λv

implies that λ ∈ σ(D).

Conversely, suppose that u and v, not both zero, satisfy the four equations as

above. With 0 6= x =

(

u

v

)

we then have
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CT
2 x =

(

ATu

BTu+ v

)

=

(

u

v

)

= x.

We also have

CT
1 x =

(

u+ CT v

DT v

)

= λ

(

u

v

)

= λx.

Thus,

MTx = (CT
1 + CT

2 − I)x = λx.

Further,

HTx = (C1C
†
2)

Tx = (C†
2)

TCT
1 x = λ(C†

2)
Tx.

Since x = CT
2 x and C2C

†
2 =

(

AA† 0

0 I

)

, we have

HTx = λ(C†
2)

TCT
2 x = λ(C2C

†
2)

Tx = λC2C
†
2x = λ

(

AA†u

v

)

.

Since A is range-symmetric and u ∈ R(AT ), we have AA†u = A†Au = u. Thus,

HTx = λx, completing the proof of the converse part.

The case λ = 1
µ
is considered next.

Theorem 6.4. Let M and H have a common eigenvector corresponding to the

eigenvalues λ ∈ σ(M) and µ ∈ σ(H), respectively. Let λ = 1
µ
(6= 1,−1). Then there

exist vectors u and v with at least one of them being nonzero such that

ATu = λu, BTu+ (1 − λ)v = 0, CT v = 0 and DT v = v.(6.4)

In this case, λ ∈ σ(A).

Conversely, if there exist vectors u and v, not both zero, that satisfy the equations

(6.4) then M and H have a common eigenvector corresponding to the eigenvalues

λ ∈ σ(M) and µ ∈ σ(H), respectively with λ = 1
µ
.

Proof. Here X = 1+λ
λ

(

A− λI B

0 (1− λ)I

)

and Y = 1+λ
λ

(

0 0

C D − I

)

. Let

x be a common eigenvector, with x =

(

u

v

)

. Then at least one of u, v is nonzero.

It may now be verified that the equations as above, hold.

If u = 0, then v 6= 0. However, this contradicts the equation BTu+ (1− λ)v = 0,
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as λ 6= 1. So, u 6= 0, showing that λ ∈ σ(A).

For the converse part, we have

CT
2 x =

(

ATu

BTu+ v

)

=

(

λu

λv

)

= λx.

We also have

CT
1 x =

(

u+ CT v

DT v

)

=

(

u

v

)

= x.

A calculation similar to the previous result shows that MTx = λx and HTx = 1
λ
x,

completing the proof.

The results above are summarized in the following result. This could be consid-

ered as an analogue of Corollary 5.4, [20].

Corollary 6.1. Let M =

(

A B

C D

)

and H denote the pseudo principal pivot

transform of M . Let A be range-symmetric and assume that the inclusion relations

of Theorem 3.1 are satisfied, i.e., R(CT ) ⊆ R(AT ), R(B) ⊆ R(A), R(C) ⊆ R(F ) and

R(BT ) ⊆ R(FT ). Suppose that M and H have a common eigenvector corresponding

to the eigenvalues λ ∈ σ(M) and µ ∈ σ(H), respectively with neither being equal to

−1. Then there exist numbers α, β such that α+β− 1 = λ and µ = β
α
with α ∈ σ(A)

or β ∈ σ(D).

Proof. Case (i): Let λ = µ. Set α = 1 and β = λ. If λ 6= 1, by Theorem 6.3,

we have β ∈ σ(D). On the other hand, if β /∈ σ(D), again by Theorem 6.3, we have

λ = 1 and α ∈ σ(A). Also, α+ β − 1 = λ and β
α
= λ = µ.

Case (ii): λ 6= µ. Set α = 1+λ
1+µ

and β = µ 1+λ
1+µ

. Then, by (a) of Theorem 6.2, we

have α ∈ σ(A). Also, α+ β − 1 = λ and β
α
= µ.

Case (iii): λ = 1
µ
. Define α = λ and β = 1. Then, by Theorem 6.4, we have

α ∈ σ(A). Also, α+ β − 1 = λ and β
α
= 1

λ
= µ.

Case (iv): λ 6= 1
µ
. Set β = µ 1+λ

1+µ
and α = 1+λ

1+µ
. Then by (b) of Theorem 6.2, we

have β ∈ σ(D). Further, α+ β − 1 = 1 + λ− 1 = λ and β
α
= µ.

This completes the proof.
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