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RANK DROPS OF RECURRENCE MATRICES∗

SEBASTIAN J. BOZLEE†

Abstract. A recurrence matrix is a matrix whose terms are sequential members of a linear

homogeneous recurrence sequence of order k and whose dimensions are both greater than or equal

to k. In this paper, the ranks of recurrence matrices are determined. In particular, it is shown that

the rank of such a matrix differs from the previously found upper bound of k in only two situations:

When (aj) satisfies a recurrence relation of order less than k, and when the nth powers of distinct

eigenvalues of (aj ) coincide.
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1. Introduction. Let (aj) be a complex-valued sequence, where j starts at 0.

We define the m×n matrix of the sequence (aj), written Mm,n((aj)), to be the matrix

Mm,n((aj)) =











a0 a1 · · · an−1

an an+1 · · · a2n−1

...
...

...

a(m−1)n a(m−1)n+2 · · · amn−1











.

Consider the m× n matrix of the sequence (j + 1) = (1, 2, 3, . . .) Since (j + 1) is

such a simple sequence, we might ask what the rank of Mm,n((j +1)) is. The answer

is tantalizingly trivial:

rankMm,n((j + 1)) =

{

1 m = 1 or n = 1,

2 m,n ≥ 2.

Not only is the rank bounded, but the size of the matrix hardly matters. To see

this, note the rows of Mm,n((j + 1)) are linear combinations of
[

1 1 · · · 1
]

and
[

0 1 · · · n− 1
]

, since each row is of the form
[

a a+ 1 · · · a+ n− 1
]

, for

some a.
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Noting that (j + 1) is a recurrence sequence, we turn to recurrence sequences

to explore this behavior in a more general setting. A linear homogeneous recurrence

relation of order k (hereafter, a recurrence relation of order k) is an equation of the

form

(1.1) aj = c1aj−1 + c2aj−2 + · · ·+ ckaj−k,

where c1, c2, . . . , ck are complex numbers and ck 6= 0. A solution to a recurrence

relation is a complex-valued sequence (a1, a2, . . .) such that (1.1) holds for each j ≥ k.

Such a sequence is called a recurrence sequence of order k. Familiar examples of

recurrence sequences include geometric sequences and the Fibonacci numbers.

When (aj) is a recurrence sequence of order k and m,n ≥ k, we call Mm,n((aj))

a kth-order recurrence matrix. Our goal in this work is to investigate the ranks of re-

currence matrices. Although we will restrict our attention to homogeneous recurrence

sequences, there is a reduction (discussed in Section 2.1) that allows one to apply our

results to a large class of inhomogeneous recurrence sequences.

The following upper bound on the rank of a recurrence matrix was determined

previously by Lee and Peterson in [4, Theorem 1].

Theorem 1.1. (Lee and Peterson [4]) The rank of a kth-order recurrence matrix

is less than or equal to k.

Let us return to our example, Mm,n((j + 1)), this time assuming that m,n ≥ 2.

The sequence (aj) = (j + 1) satisfies the second-order recurrence aj = 2aj−1 − aj−2,

since

2aj−1 − aj−2 = 2(j)− (j − 1) = 2j − j + 1 = j + 1 = aj.

Hence, Theorem 1.1 applies. It follows that Mm,n((j + 1)) ≤ 2, in agreement with

our earlier calculation that Mm,n((j + 1)) = 2.

However, Theorem 1.1 only determines an upper bound on the rank of recurrence

matrices, leaving open the problem of determining the exact rank. As we just saw,

the bound is attained for some matrices, but it is possible that the rank of a kth-order

recurrence matrix is strictly less than k. When this occurs, we say that the matrix has

a rank drop. We will prove via an exact calculation of the rank that rank drops occur

in only two ways, each reflecting a kind of degeneracy of the recurrence sequence. We

begin with an example of each.

Example 1.2. Consider the recurrence relation aj = 3aj−1 − 2aj−2 with initial

values (or seeds) a0 = 1, a1 = 2. Then aj = 2j and

M3,3((aj)) =





1 2 4

8 16 32

64 128 256



 .
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Since each row is a multiple of the first, this matrix has rank 1, although it is a

2nd-order recurrence matrix.

This can be explained by noting that aj = 2j also satisfies the first order recur-

rence aj = 2aj−1. Hence, by Theorem 1.1, rankM3,3((aj)) is bounded above by 1,

rather than 2 as initially predicted. We will call this an order rank drop. This pattern

was previously observed and characterized in the order 2 case in Theorem 2 of [4].

Order rank drops will be characterized in Section 3.

Example 1.3. Consider the recurrence relation aj = aj−2. The effect of this

recurrence relation is to periodically repeat the seed. In particular, let a0 = 2, a1 = 0.

Then aj = 2 for even j and aj = 0 for odd j. If we construct a 3×3 matrix from this

sequence,

M3,3((aj)) =





2 0 2

0 2 0

2 0 2



 ,

we have a rank 2 matrix. However, if we construct a 4×4 matrix from the sequence,

M4,4((aj)) =









2 0 2 0

2 0 2 0

2 0 2 0

2 0 2 0









,

the result has rank 1.

Here the rank of the matrix depends on its width. When this happens, we say

that the recurrence sequence has a width rank drop. These will be investigated in

Section 4.

2. Solution sets of recurrence relations. It will be convenient to develop

some basic facts about the solution sets of recurrence relations. Readers who are

already familiar with solutions to linear homogeneous recurrence relations may wish

to skip to Corollary 2.4.

To each recurrence relation of order k,

(2.1) aj = c1aj−1 + c2aj−2 + · · ·+ ckaj−k,

there is associated a characteristic polynomial of degree k,

f(λ) = λk − c1λ
k−1 − c2λ

k−2 − · · · − ck−1λ− ck.

The roots of the characteristic polynomial are called the eigenvalues of the recurrence

relation. (Note that since we have assumed that ck 6= 0, eigenvalues are always
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nonzero.) These definitions are justified by the fact that we may use the characteristic

polynomial f(λ) to create a linear operator that vanishes on solutions of (2.1).

Let Λ be the linear operator on sequences defined by Λ(aj) = (aj+1). We may

define an operator f(Λ) by

f(Λ) = Λk − c1Λ
k−1 − c2Λ

k−2 − · · · − ck−1Λ− ckI,

where I is the identity operator. Multiplication of two such operators f(Λ), g(Λ)

is taken to be their composition, which coincides with multiplication of ordinary

polynomials in the sense that f(Λ)g(Λ) = (fg)(Λ). Given these definitions, for an

arbitrary sequence (aj),

f(Λ)(aj) = (Λk − c1Λ
k−1 − c2Λ

k−2 − · · · − ck−1Λ− ckI)(aj)

= (aj+k − c1aj+k−1 − c2aj+k−2 − · · · − ck−1aj+1 − ckaj).

So, f(Λ)(aj) = (0) if and only if (aj) satisfies the recurrence relation (2.1). That is,

ker f(Λ) is the solution set of the recurrence relation.

For a concrete example, consider the Fibonacci sequence (aj) = (1, 1, 2, 3, 5, . . .)

It satisfies the recurrence aj = aj−1 + aj−2, which has the characteristic polynomial

f(λ) = λ2 − λ − 1. The corresponding operator obtained by evaluating f(λ) at Λ is

Λ2 − Λ− I. We apply this operator to the sequence and compute:

Λ2(aj) = 2 3 5 8 13 21 34 · · ·
− Λ(aj) = 1 2 3 5 8 13 21 · · ·
− I(aj) = 1 1 2 3 5 8 13 · · ·

(Λ2 − Λ− I)(aj) = 0 0 0 0 0 0 0 · · ·

So, (aj) is in the kernel of Λ2 − Λ − I, as expected.

We will now derive a canonical set of basis vectors of ker f(Λ), which we will call

fundamental solutions.

Lemma 2.1. The solution set of an order k recurrence has dimension k. Equiv-

alently, dimker f(Λ) = deg f(λ).

Proof. Let f(λ) be the characteristic polynomial of the recurrence. The map-

ping φ : ker f(Λ) → Ck defined by taking a solution (aj) to its first k values,
[

a0 a1 · · · ak−1

]

, is an isomorphism of vector spaces. Therefore, dim ker f(Λ) =

k.

Suppose f(λ) =
∏q

l=1(λ − λl)
kl is a characteristic polynomial, where the eigen-

values λl are distinct. Then ker (Λ − λl)
kl is a subspace of ker f(Λ) for each l. As a

first step toward finding a fundamental solution set for the corresponding recurrence
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relation, we start by finding a basis of ker (Λ − λl)
kl for each l.

Lemma 2.2. Let λ be a nonzero complex number and let n be a positive integer.

Then ker((Λ − λ)n) has the basis {(λj), (jλj), . . . , (jn−1λj)}.

Proof. We will first prove that for each n, {(λj), (jλj), . . . , (jn−1λj)} ⊆ ker((Λ−
λ)n). The proof is by induction.

Let n = 1. Then (Λ− λ)(λj) = (λj+1 − λλj) = (0), so (λj) ∈ ker (Λ − λ).

Suppose {(λj), (jλj), . . . , (jn−1λj)} ⊆ ker (Λ − λ)n for n = k, for some integer

k ≥ 1. Clearly, {(λj), (jλj), . . . , (jn−1λj)} ⊆ ker (Λ− λ)n+1. It remains to show that

(jnλj) ∈ ker (Λ − λ)n+1. Now,

(Λ− λ)n+1(jnλj) = (Λ − λ)n((j + 1)nλj+1 − jnλj+1)

= (Λ − λ)n
(

λ

(

n

1

)

jn−1λj + λ

(

n

2

)

jn−2λj + · · ·+ λ

(

n

n

)

λj

)

= (0),

where we have used the binomial theorem on the second line and the induction hy-

pothesis on the third. Therefore, {(λj), (jλj), . . . , (jnλj)} ⊆ ker (Λ − λ)n+1.

Next we will show that (jnλj) 6∈ Span {(λj), (jλj), . . . , (jn−1λj)} for all n. The

result is trivial for n = 1. For n > 1, suppose that K1,K2, . . . ,Kn are complex

numbers so that (jnλj) = K1(λ
j) +K2(jλ

j) + · · ·+Kn(j
n−1λj). But then

jn = K1 +K2j + · · ·+Knj
n−1

for all j. This is impossible, since the left hand side is an nth degree polynomial

and the right hand side is an (n − 1)st degree polynomial. It follows that (jnλj) 6∈
Span {(λj), (jλj), . . . , (jn−1λj} for all n.

Therefore, for all n, {(λj), (jλ
j), . . . , (jn−1λj)} is a linearly independent subset

of ker (Λ − λ)n containing n vectors. Since ker (Λ − λ)n has dimension n, it follows

that {(λj), (jλ
j), . . . , (jn−1λj)} is a basis of ker (Λ− λ)n.

So far we have characterized the solution sets of recurrence relations with a sin-

gle eigenvalue, possibly repeated. For the remaining recurrences it suffices to piece

together the solutions corresponding to each eigenvalue.

Theorem 2.3. Let f(λ) =
∏q

l=1(λ − λl)
kl be the characteristic polynomial of a

kth order recurrence relation with q distinct eigenvalues λ1, λ2, . . . , λq with respective

multiplicities k1, k2, . . . , kq. Then the solution set of the recurrence has the basis
⋃q

l=1

{

(λj
l ), (jλ

j
l ), . . . , (j

kl−1λj
l )
}

.

Proof. By Corollary II in [3, p. 386], ker f(Λ) =
⊕q

l=1 ker (Λ − λl)
kl . By the

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 422-436, August 2015



ELA

Recurrence Matrices 427

previous lemma, each ker(Λ − λl)
kl has the basis {(λj

l ), (jλ
j
l ), . . . , (j

kl−1λj
l )}. The

result follows.

An alternative proof of Theorem 2.3 using generating functions may be found in

[1, pp. 70–71]. Note that if f(λ), g(λ) are characteristic polynomials of recurrence

sequences and h(λ) = lcm(f(λ), g(λ)), then ker f(Λ)+ker g(Λ) = kerh(Λ). In partic-

ular, ker f(Λ) ⊆ ker g(Λ) only if f(λ) | g(λ). Combining this result with the fact that

ker f(Λ) ⊆ ker g(Λ) if f(λ) | g(λ), we obtain the following corollary (stated without

proof in [2, p. 13]).

Corollary 2.4. If f(λ) and g(λ) are characteristic polynomials of recurrence

sequences, ker f(Λ) ⊆ ker g(Λ) if and only if f(λ) | g(λ).

2.1. Extension to certain inhomogeneous recurrences. We have so far

assumed (and will continue to assume) that our recurrence sequences are homoge-

neous. This is not a great restriction, since many linear inhomogeneous recurrence

sequences may be transformed into homogeneous recurrence sequences. Suppose (aj)

is a sequence satisfying the kth-order inhomogeneous recurrence relation

(2.2) aj = c1aj−1 + · · ·+ ckaj−k + bj,

where bj =
∑q

i=1 pi(j)λ
j
i and each pi is a polynomial of degree ki. Let f(λ) =

λk − c1λ
k−1 − · · · − ck. Then equation (2.2) may also be written as an equation on

sequences:

(2.3) f(Λ)(aj) = (bj).

Note that (bj) is in the solution set of the recurrence with the characteristic polynomial

g(λ) =

q
∏

i=1

(λ− λi)
ki .

Applying g(Λ) to both sides of (2.3), the (bj) term disappears, leaving

g(Λ)f(Λ)(aj) = (0).

So (aj) satisfies the homogeneous recurrence with characteristic polynomial g(λ)f(λ).

We may then use our results for homogeneous recurrences on (aj).

3. Order rank drops. Let (aj) be a sequence satisfying a recurrence relation

of order k. As stated earlier, it is possible that (aj) satisfies a recurrence sequence of

order less than k, and if so, then Mm,n((aj)) will have an order rank drop. We now

have all of the tools in place to identify the least order recurrence relation satisfied

by (aj) (hereafter the minimal order of (aj)), and therefore when this occurs.

Theorem 3.1. Let (aj) be a sequence satisfying a recurrence relation of order

k with q distinct eigenvalues λ1, λ2, . . . , λq with respective multiplicities k1, k2, . . . , kq.
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Let Kl,i be the unique constants so that

(aj) =

q
∑

l=1

kl
∑

i=1

Kl,i

(

ji−1λj
l

)

.

Let Ml be the maximal value of i so that Kl,i is nonzero, or zero if Kl,i is zero for

all i. Then the minimal order recurrence satisfied by (aj) is the recurrence with the

characteristic polynomial f(λ) =
∏q

l=1(λ− λl)
Ml .

Proof. Since (aj) is in the span of
⋃q

l=1

{

(λj
l ), (jλ

j
l ), . . . , (j

Ml−1λj
l )
}

, (aj) is in

the solution set of this recurrence, by Theorem 2.3.

By Corollary 2.4, any recurrence relation of order less than deg f(λ) satisfied by

(aj) must have a characteristic polynomial that divides f(λ). To eliminate the pos-

sibility of satisfying an even lower recurrence relation, suppose (aj) is in the solution

set of a recurrence relation with characteristic polynomial g(λ) = f(λ)/(λ − λr), for

some r.

By Theorem 2.3, the solution set ker g(Λ) has the basis

q
⋃

l=1

{

(λj
l ), (jλ

j
l ), . . . , (j

Ml−1λj
l )
}

\
{(

jMr−1λj
r

)}

.

Then (aj)−Kr,Mr
(jMr−1λj

l ) is in the solution set ker g(Λ), since it is in the span of

this basis. Next, since ker g(Λ) is a vector space,

1

Kr,Mr

[

(aj)−
(

(aj)−Kr,Mr
(jMr−1λj

l )
)]

= (jMl−1λj)

is also in ker g(Λ). But this contradicts that
⋃q

l=1

{

(λj
l ), (jλ

j
l ), . . . , (j

Ml−1λj
l )
}

is a

basis, since then the basis vector (jMr−1λj
r) is a linear combination of the other basis

vectors.

Thus, we may obtain the minimal order recurrence of (aj) by calculating its

representation as a linear combination of fundamental solutions, then dropping those

eigenvalues whose fundamental solutions are “unused.” This allows us to lower the

upper bound of Theorem 1.1:

Corollary 3.2. With (aj) as in Theorem 3.1, m,n ≥ ∑q

l=1 Ml,

rankMm,n((aj)) ≤
q

∑

l=1

Ml.

Other characterizations of the minimal order recurrence relation satisfied by a

sequence exist. For example, [5, p. 204] provides a characterization in terms of the

generating function of (aj).
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4. Width rank drops. In this section, we calculate the rank of recurrence

matrices provided a recurrence sequence and its minimal order recurrence relation.

We begin with a lemma.

Lemma 4.1. Suppose k1, k2, . . . , kq are positive integers with sum k and λ1, λ2,

. . . , λq are nonzero complex numbers. Let

Bl =











λ0
l 01λ0

l · · · 0kl−1λ0
l

λ1
l 11λ1

l · · · 1kl−1λ1
l

...
...

...

λk−1
l (k − 1)1λk−1

l · · · (k − 1)kl−1λk−1
l











.

Then the k × k matrix

M =
[

B1 B2 · · · Bq

]

has rank equal to the number of distinct columns of M .

Proof. Clearly, the rank of M is less than or equal to the number of distinct

columns, since repeated columns contribute nothing to the rank of M . To see that

the distinct columns are linearly independent, let f(λ) =
∏q

l=1(Λ − λl)
kl . Note that

then the distinct columns are the images of distinct basis vectors for ker f(Λ) under

the isomorphism φ : ker f(Λ) → C
k, defined in Lemma 2.1, that takes each sequence

to its initial k values.

This also proves the well-known fact that the rank of a Vandermonde matrix











1 1 · · · 1

λ1 λ2 · · · λn

...
...

...

λn
1 λn

2 · · · λn
n











is the number of distinct values taken on by λ1, λ2, . . . , λn.

We now calculate the rank of a recurrence matrix. We are motivated by the

following observation. Suppose (aj) satisfies a recurrence relation with non-repeated

eigenvalues λ1, . . . , λk. Then (aj) =
∑k

i=1 Ki(λ
j
i ) for some constants K1, . . . ,Kk, and

we have the factorization

Mm,n((aj)) =











1 · · · 1

λn
1 · · · λn

k

...
...

(λn
1 )

m · · · (λn
k )

m





















K1 0

K2

. . .

0 Kk





















1 λ1 · · · λn
1

1 λ2 · · · λn
2

...
...

...

1 λk · · · λn
k











.

Each row of the rightmost matrix consists of the first n values of a fundamental

solution. Similarly, each column of the leftmost matrix takes the form of the first m
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values of a fundamental solution. Lemma 4.1 then allows the rank of each matrix to

be determined. The following proof utilizes a factorization with the same properties

in the general case.

Theorem 4.2. Let (aj) be a recurrence sequence with minimal order k and q

distinct eigenvalues λ1, . . . , λq with multiplicities k1, . . . , kq respectively. Let Sn be

the set of distinct values taken by λn
1 , . . . , λ

n
q . Then if m,n ≥ k,

rankMm,n(aj) =
∑

s∈Sn

max
l

{kl : λn
l = s}.

Proof. By Theorem 2.3,

(aj) =

q
∑

l=1

kl
∑

i=1

Kl,i

(

ji−1λj
l

)

for some constants Kl,i. Since (aj) has minimal order k, Kl,kl
is nonzero for each l.

Let Al,i = Mm,n

(

(ji−1λj
l )
)

. Then

Mm,n((aj)) =

q
∑

l=1

kl
∑

i=1

Kl,iAl,i.

Let al,i be the first row of Al,i,

al,i =
[

0i−1λ0
l 1i−1λ1

l · · · (n− 1)i−1λn−1
l

]

.

The cth row of Al,i (with c starting at 0) is
[

(cn)i−1λcn
l (cn+ 1)i−1λcn+1

l · · · (cn+ n− 1)i−1λcn+n−1
l

]

.

We would like to rewrite this as linear combinations of al,1, . . . , al,i, in order to factor

Mm,n((aj)). By the binomial theorem, the element in the cth row and jth column of

Al,i is

(j + cn)i−1λj+cn
l =

i−1
∑

r=0

(

i− 1

r

)

jr(cn)(i−1)−rλj+cn
l

=

i−1
∑

r=0

(cn)(i−1)−r(λn
l )

c

(

i− 1

r

)

jrλj
l .

So, the cth row of Al,i may be expressed as the product

[

(cn)i−1(λn
l )

c · · · cn(λn
l )

c (λn
l )

c
]











(

i−1
0

)

0
(

i−1
1

)

. . .

0
(

i−1
i−1

)





















al,1

al,2
...

al,i











.
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Let

bl,i =

















0i−1(λn
l )

0

ni−1(λn
l )

1

...

((m− 2)n)i−1(λn
l )

m−2

((m− 1)n)i−1(λn
l )

m−1

















.

Then we may factor Al,i as

Al,i = Bl,iCl,iDl,i,

where Bl,i is the m× i matrix

Bl,i =
[

bl,i bl,i−1 · · · bl,1

]

,

Cl,i is the i× i diagonal matrix

Cl,i =











(

i−1
0

)

0
(

i−1
1

)

. . .

0
(

i−1
i−1

)











,

and finally, Dl,i is the i× n matrix

Dl,i =











al,1

al,2
...

al,i











.

Since for an eigenvalue λl the Bl,i matrices share columns and the Dl,i matrices

share rows, we may combine the matrices Bl,i, Cl,i, and Dl,i as follows:

ql
∑

i=1

Kl,iAl,i =

ql
∑

i=1

Bl,i(Kl,iCl,i)Dl,i = BlClDl,

where Bl = Bl,ql , Dl = Dl,ql , and Cl is the ql × ql lower triangular matrix

Cl =

















Kl,ql

(

ql−1
0

)

0 · · · 0 0

Kl,ql−1

(

ql−2
0

)

Kl,ql

(

ql−1
1

)

· · · 0 0
...

...
. . .

...
...

Kl,2

(

1
0

)

Kl,3

(

2
1

)

· · · Kl,ql

(

ql−1
ql−2

)

0

Kl,1

(

0
0

)

Kl,2

(

1
1

)

· · · Kl,ql−1

(

ql−2
qi−2

)

Kl,ql

(

ql−1
ql−1

)

















.
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Now we may write Mm,n((aj)) =
∑q

l=1 BlClDl as BCD, where B is the block matrix

[

B1 B2 · · · Bq

]

,

C is the block diagonal matrix











C1 0 · · · 0

0 C2 · · · 0
...

...
. . .

...

0 0 · · · Cq











,

and D is the block matrix











D1

D2

...

Dq











.

Since the Kl,qls are nonzero and the corresponding binomial coefficients are nonzero,

C is a triangular matrix with a nonzero diagonal, and therefore, C has full rank. Also,

rankD = rankDT = k by Lemma 4.1.

Since C is a k × k matrix of rank k and D is a k ×m matrix of rank k, CD is a

k ×m matrix of rank k, and it follows rankMm,n((aj)) = rankBCD = rankB. The

columns of B have the same form as the canonical fundamental solutions of recurrence

relations. By Lemma 4.1, the rank of B is the number of distinct columns of B. Thus,

rankMm,n((aj)) = rankB =
∑

s∈Sn

max
l

{ql : λn
l = s},

as desired.

Corollary 4.3. Let (aj) be a recurrence sequence with minimal order k and

non-repeated eigenvalues λ1, . . . , λk. Then Mm,n((aj)), where m,n ≥ k, has rank

equal to the number of distinct values taken on by λn
1 , . . . , λ

n
k .

For a given recurrence sequence (aj), calculating the rank of Mm,n((aj)) proceeds

in two steps. First, one uses Theorem 3.1 to calculate the minimal order recurrence

relation satisfied by (aj). Then one uses Theorem 4.2 to obtain the actual rank. The

same procedure may be followed for an inhomogeneous recurrence sequence after first

applying the reduction of Section 2.1.

Corollary 4.4. If the rank of a recurrence matrix drops as in Theorem 4.2 for

a matrix with n columns, then it also drops for a matrix with kn columns, for any

natural number k.
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Proof. By Theorem 4.2, the rank drops whenever λn
i = λn

j for distinct i, j. Then

for any natural number k, λkn
i = λkn

j .

Thus, if there are rank drops associated with the width of the recurrence matrix,

those rank drops are periodic in n. Moreover, if λn
i = λn

j , then λi differs from λj

by a factor of an nth root of unity. Accordingly, we say a recurrence relation with

eigenvalues λ1, . . . , λq has a width rank drop of periodicity p if for some i 6= j, λi = ωλj ,

where ω is a primitive pth root of unity.

Width rank drops of any periodicity p are possible, even for recurrences of order

two. To see this, consider the recurrence with characteristic polynomial (λ−1)(λ−ζ),

where ζ is a primitive pth root of unity.

Remark 4.5. Recurrence relations whose eigenvalues differ by a factor of a root

of unity are called degenerate (See, for example [2, p. 16]). By our previous discussion,

the recurrence relations that result in matrices with periodic rank drops coincide with

the degenerate recurrence sequences.

To see concretely what Theorem 4.2 says about width dependence, let us return

to Example 1.3.

Example 4.6. The characteristic polynomial of the recurrence aj = aj−2 is

λ2 − 1, which has the roots λ1 = 1, λ2 = −1. Therefore, the recurrence relation

has fundamental solutions (1j) and ((−1)j). In particular, the sequence (aj) from

Example 1.3 may be expressed as

aj = 1j + (−1)j =

{

2 if n even,

0 if n odd.

Consider the 3× 3 matrix

M5,5((aj)) =





2 0 2

0 2 0

2 0 2



 .

We may apply the factorization from the proof to obtain

M3,3((aj)) =





1 1

1 −1

1 1





[

1 0

0 1

] [

1 1 1

1 −1 1

]

.

In this case, B, C, and D have rank 2, so M3,3((aj)) has rank 2. Since λ3
2 = (−1)3 =

−1 while λ3
1 = 13 = 1, the number of distinct values taken by λn

i is also 2.
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Meanwhile, the 4×4 matrix factors as

M4,4((aj)) =









2 0 2 0

2 0 2 0

2 0 2 0

2 0 2 0









=









1 1

1 1

1 1

1 1









[

1 0

0 1

] [

1 1 1 1

1 −1 1 −1

]

.

We see C and D have rank 2, but B has rank 1, so rankM4,4((aj)) = 1. Since

λ4
2 = (−1)4 = 1 = 14 = λ4

1, the numbers λn
i take only 1 value, in accordance with the

rank of M4,4((aj)).

We might appear to have a counterexample if we seed the sequence with a1 =

1, a2 = 1, since then

M3,3((aj)) =





1 1 1

1 1 1

1 1 1





which has rank 1 although (−1)3 6= 13. However, this particular solution is given by

(aj) = 1 × (1j) + 0 × ((−1)j). Since one of the coefficients is zero, aj = aj−2 is the

not the minimal order recurrence of the sequence, and therefore, the hypotheses of

the theorem are not satisfied.

5. Width rank drops in the order two case. As an application of the theory

we have developed, we now calculate the rank of order 2 recurrence matrices in terms

of their seeds. This completes Theorem 2 of [4].

Theorem 5.1. Suppose m,n ≥ 2 and (aj) satisfies the second order recurrence

relation aj = c1aj−1 + c2aj−2. Then

rankMm,n((aj)) =































0 if a0 = a1 = 0,

1 if a21 − c1a1a0 − c2a
2
0 = 0,

1 if c21 + 4c2 6= 0 and

(

c1+
√

c2
1
+4c2

c1−
√

c2
1
+4c2

)n

= 1,

2 else.

Proof. If a0 = a1 = 0, then (aj) = (0), yielding the result. For the remainder of

the proof, we assume that a0 6= 0 or a1 6= 0.

Let λ1, λ2 be the eigenvalues of the recurrence relation. We first calculate the

expression of (aj) in terms of fundamental solutions to find its minimal order. Suppose

first that λ1 6= λ2. Then (aj) = K1(λ
j
1)+K2(λ

j
2). The initial values determine K1,K2
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by the formula
[

1 1

λ1 λ2

] [

K1

K2

]

=

[

a0
a1

]

.

Multiplying by the inverse,
[

K1

K2

]

=
1

λ2 − λ1

[

λ2 −1

−λ1 1

] [

a0
a1

]

=
1

λ2 − λ1

[

λ2a0 − a1
−λ1a0 + a1

]

By Theorem 3.1, the minimal order of (aj) is 1 if and only if K1 or K2 is zero. This

happens if and only if

0 = (λ2a0 − a1)(λ1a0 − a1)

= λ1λ2 − (λ1 − λ2)a0a1 + a21

= a21 − c1a1a0 − c2a
2
0,

since λ1, λ2 are roots of the characteristic polynomial.

Next suppose λ1 = λ2. Then (aj) = K1(λ
j
1) +K2(jλ

j
1). K1,K2 are determined

by
[

1 0

λ1 λ1

] [

K1

K2

]

=

[

a0
a1

]

.

Multiplying by the inverse,
[

K1

K2

]

=
1

λ1

[

λ1 0

−λ1 1

] [

a0
a1

]

=
1

λ1

[

λ1a0
−λ1a0 + a1

]

K1 is necessarily nonzero. However, K2 is zero if and only if

0 = (λ1a0 − a1)
2 = a21 − c1a1a0 − c2a

2
0.

If the minimal order is 1, then, since (aj) is not identically 0, Mm,n((aj)) = 1.

This proves the second case of the theorem.

It remains to apply Theorem 4.2 to the case that the minimal order of (aj) is 2.

If λ1 = λ2, there are no width rank drops. Thus, if the discriminant c21 +4c2 = 0, the

rank is two. If λ1 6= λ2, then it remains to check whether λn
1 = λn

2 . By the quadratic

formula, this occurs when (c1 +
√

c21 + 4c2)
n = (c1 −

√

c21 + 4c2)
n.

In the theorem above, the lowered rank in the first two cases is due to an order

rank drop, while the reduced rank in the third case is due to a width rank drop.
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