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RECENT RESULTS ON THE MAJORIZATION THEORY OF GRAPH

SPECTRUM AND TOPOLOGICAL INDEX THEORY - A SURVEY∗
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Abstract. Suppose π = (d1, d2, . . . , dn) and π′ = (d′
1
, d′

2
, . . . , d′n) are two positive non-

increasing degree sequences, write π ⊳ π′ if and only if π 6= π′,
∑n

i=1
di =

∑n
i=1

d′i, and
∑j

i=1
di ≤

∑j

i=1
d′i for all j = 1, 2, . . . , n. Let ρ(G) and µ(G) be the spectral radius and signless Laplacian

spectral radius of G, respectively. Also let G and G′ be the extremal graphs with the maximal

(signless Laplacian) spectral radii in the class of connected graphs with π and π′ as their degree

sequences, respectively. If π ⊳ π′ can deduce that ρ(G) < ρ(G′) (respectively, µ(G) < µ(G′)), then

it is said that the spectral radii (respectively, signless Laplacian spectral radii) of G and G′ satisfy

the majorization theorem. This paper presents a survey to the recent results on the theory and

application of the majorization theorem in graph spectrum and topological index theory.
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1. Introduction. Throughout the paper, G = (V,E) is a connected undirected

(not necessarily simple) graph with V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}.
The degree of vertex v of G, denoted d(v), is the number of edges of G incident

with v, each loop counting as two edges. The degree sequence (d1, d2, . . . , dn) of G is

enumerated in a non-increasing ordering , i.e., d1 ≥ d2 ≥ · · · ≥ dn ≥ 1 (hereafter, we

assume that d(vi) = di for 1 ≤ i ≤ n). We use Γ(π) to denote the class of connected

graphs with degree sequence π, and we use S(π) to denote the class of connected

simple graphs with degree sequence π.

Denote the neighbor set of vertex v in G as N(v). Let Υuv be the number of edges

joining vertices u and v in G. In particular, Υuu indicates the number of loops incident

with vertex u in G. The adjacency matrix of G is an n × n matrix A(G) = (aij),
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where aij is the number of edges joining vertices vi and vj , each loop counting as two

edges.

Suppose f = (f(v1), f(v2), . . . , f(vn))
T 6= 0 is a column vector defined on V (G).

If there exists a real number q such that for each u ∈ V (G),

qf(u) = (A(G)f) (u) =
∑

v∈N(u)\{u}
Υuvf(v) + 2Υuuf(u),

then q is called an eigenvalue of A(G). The spectral radius of G, denoted ρ(G), is the

largest eigenvalue of A(G).

The signless Laplacian matrix of G is Q(G) = D(G) +A(G), where D(G) is the

diagonal matrix of vertex degrees of G. If there exists a real number p such that for

each u ∈ V (G),

pf(u) = (Q(G)f) (u) =
∑

v∈N(u)\{u}
Υuv(f(u) + f(v)) + 4Υuuf(u),

then p is called an eigenvalue of Q(G). It is easy to see that Q(G) is positive semi-

definite [14], and hence, we use µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) to denote the eigen-

values of Q(G) and use µ(G) to define the largest eigenvalue of Q(G). That means

µ(G) = µ1(G). The signless Laplacian spectral radius of G is µ(G).

Hereafter, unless specially indicated, we only concern with connected simple

graph. In this case, A(G) = (aij) is an (0, 1)-matrix, where aij = 1 if and only

if vi is adjacent with vj . Furthermore, there is a unique positive unit eigenvector cor-

responding to ρ(G) (respectively, µ(G)), we use f to denote such a unit eigenvector

corresponding to ρ(G) or µ(G), and we call f the Perron vector of G.

The Laplacian matrix of G is defined as L(G) = D(G) − A(G). When G is a

connected simple graph, it is well known that L(G) is positive semidefinite [45] so

that we can use λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) to denote the eigenvalues of L(G)

and we use λ(G) to denote the largest eigenvalue of L(G). From the definition,

λ(G) = λ1(G), and we will call λ(G) the Laplacian spectral radius of G.

As usual, if m = n + c − 1, then G is called a c-cyclic graph. When c = 0, 1,

2, or 3, G is always called a tree, unicyclic graph, bicyclic graph and tricyclic graph,

respectively.

When G is a tree, let ∂V be the set of pendant vertices (vertices of degrees one)

of G, and let V0 = V \∂V. In [18], ∂V is called the boundary vertices of G, while V0 is

called the interior vertices of G. A discrete Dirichlet operator L0(G) (see [18]) is the

Laplacian matrix restricted to interior vertices, i.e., L0(G) = D0(G) −A0(G), where

A0(G) is the adjacency matrix of the graph induced by V0, and where D0 is the degree

matrix D restricted to V0. From the definition of L0(G) and L(G), L0(G) is obtained
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from L(G) by deleting all rows and columns that correspond to boundary vertices.

The first Dirichlet eigenvalue of G, denote by λ0(G), is the smallest eigenvalue of

L0(G) (see [18]).

Suppose G ∈ Γ(π). If ρ(G) ≥ ρ(G′) (respectively, µ(G) ≥ µ(G′)) for any other

G′ ∈ Γ(π), then we say G has maximal (respectively, signless Laplacian) spectral

radius in Γ(π). Furthermore, we call G a maximal extremal graph of Γ(π) if G has

the maximal spectral radius or signless Laplacian spectral radius in Γ(π).

Suppose π = (d1, d2, . . . , dn) and π′ = (d′1, d
′
2, . . . , d

′
n) are two non-increasing

sequences of real numbers, we write π ⊳ π′ if and only if π 6= π′,
∑n

i=1 di =
∑n

i=1 d
′
i,

and
∑j

i=1 di ≤
∑j

i=1 d
′
i for all j = 1, 2, . . . , n. Such an ordering is sometimes called

majorization (see [23]).

This notion was introduced because of the following well-known theorem.

Theorem 1.1. [44, p. 218] The spectrum of a positive semidefinite Hermi-

tian matrix majorizes its main diagonal (when both are rearranged in non-increasing

order).

From Theorem 1.1, it easily follows:

Proposition 1.2. [33] Let G be a graph with n vertices. Then, (d1, d2, . . . , dn)⊳

(µ1, µ2, . . . , µn) and (d1, d2, . . . , dn)⊳ (λ1, λ2, . . . , λn).

From Proposition 1.2, λ1 ≥ d1. Indeed, when G has at least one edge, Grone and

Merris proved that λ1 ≥ d1+1 [19]and they also put forward the following conjecture.

Conjecture 1.3. [19] Let G be a connected graph on n ≥ 2 vertices. Then,

(d1 + 1, d2, . . . , dn − 1)⊳ (λ1, λ2, . . . , λn).

For a non-negative integral sequence d = (d1, d2, . . . , dn), we define its conjugate

degree sequence as the sequence d∗ = (d∗1, d
∗
2, . . . , d

∗
n), where

d∗k = #{i : di ≥ k}.

In [19], Grone and Merris raised another question on the Laplacian spectrum

sequence and the conjugate degree sequence, and they conjectured that

Conjecture 1.4. [19] For any graph G with n vertices,

(λ1, λ2, . . . , λn)⊳ (d∗1, d
∗
2, . . . , d

∗
n).

It is surprised that Conjecture 1.3 was proved in 1995 by Grone [20], while the

complete proof of Conjecture 1.4 was given in 2011 by Bai [4]. Furthermore, Liu and
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Liu [33] pointed out that the relation (d1 + 1, d2, . . . , dn − 1)⊳ (µ1, µ2, . . . , µn) does

not hold.

Motivated by the above results on the relation between the Laplacian spectrum

and the degree sequence of a graph, Bıyıkoğlu and Leydold [8] considered the relation

between the minimal first Dirichlet eigenvalues in two classes of trees with given degree

sequences, they proved:

Theorem 1.5. [8] Let π and π′ be two different non-increasing degree sequences

of trees with π ⊳ π′. Suppose T and T ′ are the trees with the minimal first Dirichlet

eigenvalues in S(π) and S(π′), respectively. Then, λ0(T ) < λ0(T
′).

By Theorem 1.5, we can deduce the size of the relationship between the minimal

first Dirichlet eigenvalues of S(π) and S(π′) from the majorization relationship of

two given degree sequences π and π′. Thus, such relation is called the majorization

theorem by Jiang et al. [26] and Liu and Liu [37]. This method (i.e., the majorization

theorem method) was discovered a long time ago, and was widely applied in different

branches of Mathematics. For instance, the following famous “majorization theorem”

of strictly Schur-convex function [23] was proved by Schur in 1923, and also discovered

by Hardy, Littlewood and Pólya in 1929. Recall that a strictly convex function is a

real valued function ϕ defined on a convex set B such that

ϕ(px+ (1 − p)y) < pϕ(x) + (1− p)ϕ(y)

for all 0 < p < 1 and all x, y ∈ B. A symmetric function φ: D → R, D ⊆ R
n,

is said to be strictly Schur-convex on D if a ⊳ b implies that φ(a) < φ(b), where

(a) = (a1, a2, . . . , an) and (b) = (b1, b2, . . . , bn) are two non-increasing sequences of

real numbers.

Theorem 1.6. [23] Given an interval I ⊆ R, and a strictly convex function

ϕ : I → R, the function φ(b) =
∑n

i=1 ϕ(bi) is strictly Schur convex on In.

The next result follows immediately from Theorem 1.6.

Corollary 1.7. [23] If (a) ⊳ (b) and ϕ is a strictly convex function, then
∑n

i=1 ϕ(ai) <
∑n

i=1 ϕ(bi).

Therefore, it seems impossible to give a survey of all the majorization theorems

appear in Mathematics, and hence, this survey mainly focuses on some recent results

of the theory and application to the majorization theorem in graph spectrum and

topological index theory.
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Fig. 2.1. The unicyclic graphs I1, I2 and I3.

Fig. 2.2. The graphs G1, G2, H1, H2, F1, and F2.

2. The majorization theorem of graph spectrum.

2.1. Some known majorization theorems of graph spectrum. Motivated

by Theorem 1.5, Bıyıkoğlu and Leydold [9] also considered the similar relation between

the spectral radii of the maximal extremal graphs in two classes of trees with given

degree sequences, and Zhang [54] considered the similar problem for the Laplacian

spectral radii (i.e., the signless Laplacian spectral radii since L(G) and Q(G) share

the same spectra [45] when G is a simple bipartite graph), and they showed that

Theorem 2.1. Let π and π′ be two different non-increasing degree sequences of

trees with π⊳π′. Suppose T and T ′ are the maximal extremal trees in S(π) and S(π′),

respectively. Then, [9] ρ(T ) < ρ(T ′) and [54] λ(T ) < λ(T ′).

Furthermore, the majorization theorems for unicyclic and bicyclic graphs were

also proved.

Theorem 2.2. Let π and π′ be two different non-increasing degree sequences of

unicyclic (respectively, bicyclic) graphs with π ⊳ π′.

(1) Suppose U and U ′ are the maximal extremal unicyclic graphs in S(π) and

S(π′), respectively. Then, [37] ρ(U) < ρ(U ′) and [55] µ(U) < µ(U ′).

(2) Suppose B and B′ are the maximal extremal bicyclic graphs in S(π) and

S(π′), respectively. Then, [26] ρ(B) < ρ(B′) and [25] µ(B) < µ(B′).

As usual, ρ1(G) ≥ ρ2(G) ≥ · · · ≥ ρn(G) denote the eigenvalues of A(G). Let I1,
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I2 and I3 be the unicyclic graphs as shown in Fig. 2.1, and also let G1, G2, H1, H2,

F1, and F2 be the graphs as shown in Fig. 2.2.

In view of Theorems 1.5, 2.1 and 2.2, it is natural for us to consider the following

problems:

Problem 2.3. Whether Theorem 1.5 also holds for ρn(G) λn(G), and/or µn(G)?

Problem 2.4. Whether Theorems 2.1 and 2.2 also hold for any connected simple

c-cyclic graphs?

The answer to Problem 2.3 is negative, since λn(G) = 0 holds for any graph and

we have the following example.

Example 2.5. Let π1 = (3, 3, 2, 1, 1), π2 = (3, 2, 2, 2, 1) and π3 = (2, 2, 2, 2, 2).

By an elementary computation, I1, I2 and I3 are the graphs with minimal smallest

adjacency eigenvalues (respectively, minimal smallest signless Laplacian eigenvalues)

in S(π1), S(π2) and S(π3), respectively. Clearly, π3 ⊳ π2 ⊳ π1, but ρn(I1) = ρn(I3) >

ρn(I2) and µn(I1) = µn(I3) > µn(I2).

Remark 2.6. Since the “symmetrical property” of the eigenvalues of A(G) for

a bipartite graph [12], Theorem 2.1 implies that “Let π and π′ be two different non-

increasing degree sequences of trees with π ⊳ π′. Suppose T and T ′ are the extremal

trees with minimal smallest adjacency eigenvalues in S(π) and S(π′), respectively.

Then, ρn(T ) > ρn(T
′)”.

The answer to Problem 2.4 is also negative, since we have the following three

examples.

Example 2.7. [41] Let π = (4, 3, 3, 3, 2, 2, 1) and π′ = (4, 4, 3, 2, 2, 2, 1). By the

data of the spectra of connected graphs with seven vertices [12], G1 and G2 are the

graphs with maximal spectral radii in S(π) and S(π′), respectively. Clearly, π ⊳ π′,

but ρ(G1) > ρ(G2).

Example 2.8. [28] Let π = (5, 4, 3, 3, 2, 2, 1) and π′ = (5, 4, 4, 2, 2, 2, 1). By the

table of the connected graphs with seven vertices [12], H1 and H2 are the graphs with

maximal signless Laplacian spectral radii in S(π) and S(π′), respectively. Clearly,

π ⊳ π′, but µ(H1) > µ(H2).

Example 2.9. [28] Let π = (4, 2, 2, 2, 1, 1) and π′ = (4, 3, 2, 1, 1, 1). By the

table of the connected graphs with six vertices [13], F1 and F2 are the graphs with

maximal Laplacian spectral radii in S(π) and S(π′), respectively. Clearly, π⊳π′, but

λ(F1) > λ(F2).

Though the answers to Problems 2.3 and 2.4 are negative, the majorization theo-

rem also holds for the maximal (signless Laplacian) spectral radii between two degree

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 402-421, August 2015



ELA

408 M. Liu, B. Liu, and K.Ch. Das

sequences with special restriction, as we will see below. To this aim we introduce

another important concept.

If π⊳π′ are two degree sequences of simple c-cyclic graphs, and there exists some

t (1 ≤ t ≤ n) such that d′t ≥ c + 1 and di = d′i holds for all t + 1 ≤ i ≤ n, then the

majorization π ⊳ π′ is called a normal majorization [37].

Clearly, a normal majorization must also be a majorization, but not the Vice-

Versa. For example, we have

Example 2.10. [37] Let π1 = (4, 4, 3, 2, 1, 1, 1), π2 = (5, 4, 2, 2, 1, 1, 1) and π3 =

(5, 3, 3, 2, 1, 1, 1). Then, π1, π2 and π3 are three bicyclic degree sequences. One can

easily see that π1⊳π2 is a majorization, but not a normal majorization, while π1⊳π3

is a normal majorization.

Actually, when π⊳ π′ are two degree sequences of trees, then π⊳ π′ must be also

a normal majorization. Thus, Theorem 2.1 can be improved to

Theorem 2.11. Let π and π′ be two different non-increasing c-cyclic (c ≥ 0)

degree sequences, and let G and G′ be the maximal extremal graphs in S(π) and S(π′),

respectively. If π ⊳ π′ and it is a normal majorization, then [37] ρ(G) < ρ(G′), and

[28] µ(G) < µ(G′).

Furthermore, some other majorization theorems between two special degree se-

quences were given in Liu [30]. For instance, the following is one of them.

Theorem 2.12. [30] Let π = (d1, d2, . . . , dn) and π′ = (d′1, d
′
2, . . . , d

′
n) be two

different c-cyclic degree sequences, and let G and G′ be the maximal extremal c-cyclic

graphs of S(π) and S(π′), respectively. Suppose π ⊳ π′, d1 = d′1 and c ≥ 4. If there

exists some t such that d′t ≥ c − 1 and di = d′i holds for all 1 + t ≤ i ≤ n, then

ρ(G) < ρ(G′) and µ(G) < µ(G′).

Astoundingly, when we relax the condition “simple connected graphs” to “general

connected graphs”, the result becomes more appealing. In Liu and Liu [40], the

following result was proved.

Theorem 2.13. [40] Let π and π′ be two different non-increasing degree se-

quences, and let G and G′ be the maximal extremal graphs in Γ(π) and Γ(π′), respec-

tively. If π ⊳ π′, then ρ(G) < ρ(G′), and µ(G) < µ(G′).

As claimed in [40], if π is a degree sequence of trees, then S(π) = Γ(π). So,

Theorem 2.13 is another extension to Theorem 2.1.

Given a connected simple graph G = (V,E), the discrete p-Laplacian Lp(G) of a

column vector g = (g(v1), g(v2), . . . , g(vn))
T defined on V (G) (1 < p < ∞) is given
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by

Lp(G)g(v) =
∑

u∈V,uv∈E

(g(v)− g(u))[p−1],

where the symbol t[q] denotes a “power” function that preserves the sign of t, i.e.,

t[q] = sign(t)|t|q. In Bıyıkoğlu et al. [10], it is shown that L2(G) = L(G) and L2(G)

is a non-linear operator. If there exists a column vector g (6= 0) defined on V (G)

such that Lp(G)g(v) = λg(v)[p−1], then the real number λ is called an eigenvalue of

Lp(G). Denote by λp(G) the maximal eigenvalue of Lp(G).

As another extension to Theorem 2.1, Bıyıkoğlu et al. [10] showed that

Theorem 2.14. [10] Let π and π′ be two different non-increasing degree sequences

of trees with π ⊳ π′. Let T and T ′ be the maximal extremal trees in S(π) and S(π′),

respectively. Then, λp(T ) < λp(T
′).

Furthermore, Zhang and Zhang [53] extended Theorem 2.14 to p-Laplacian spec-

tral radii of weighted trees with a positive weight set.

For any k ≥ 0, the k-th spectral moment of G is defined by Zk(G) =
∑n

i=1 ρ
k
i (G).

Very recently, Andriantiana and Wagner [1] showed that

Theorem 2.15. [1] Let π and π′ be two different non-increasing degree sequences

of trees with π⊳π′. Let T and T ′ be the trees with maximal k-th spectral moments in

S(π) and S(π′), respectively. Then, Zk(T ) ≤ Zk(T
′). Furthermore, if k ≥ 4 is even,

then the inequality is strict.

2.2. How to prove the majorization theorem of graph spectrum. The

fundamental tool to prove Proposition 1.2, Conjecture 1.3 and Conjecture 1.4 depends

on Theorem 1.1. Different from this, the proofs to majorization theorems of (signless

Laplacian) spectral radii are based on the structure of maximal extremal graphs of

S(π). Thus, the investigation of majorization theorem is closely related with the

maximal extremal graphs of S(π). In this section, we shall introduce some results on

the maximal extremal graphs of S(π), and we first need the important concepts of

BFS-ordering and BFS-graphs. The BFS-ordering was firstly introduced by Pruss

in [46] and called the spiral like ordering. Bıyıkoğlu and Leydold [9] found that the

extremal graphs with maximal spectral radii of S(π) are BFS-graphs, and Zhang [55]

discovered that the extremal graphs with maximal signless Laplacian spectral radii of

S(π) are also BFS-graphs. The following concept proposed by Liu [30] is originally

from [9, 55].

Definition 2.16. [9, 30, 55] Let G be a connected graph and f be the Perron

vector of G. A well-ordering v1 ≺ v2 ≺ · · · ≺ vn of V (G) is called a BFS-ordering if

the following hold for all vertices u, v ∈ V (G) :
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Fig. 2.3. The BFS-tree T ∗
π .

(i) d(v1) ≥ d(v2) ≥ · · · ≥ d(vn), f(v1) ≥ f(v2) ≥ · · · ≥ f(vn) and h(v1) ≤
h(v2) ≤ · · · ≤ h(vn), where h(vi) is the distance between vi and v1.

(ii) If v ∈ N(u)\N(x), y ∈ N(x)\N(u) such that h(u) = h(x) = h(v) − 1 =

h(y)− 1, then f(u) > f(x) if and only if f(v) > f(y), and f(u) = f(x) if and

only if f(v) = f(y).

Furthermore, if V (G) has a BFS-ordering, then G is called a BFS-graph.

A BFS-tree is also called a greedy tree in [47, 48]. For example, for a given tree

degree sequence π∗ = (4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), T ∗
π is the BFS-tree

of order 19 (see Fig. 2.3). Bıyıkoğlu and Leydold [9] and Zhang [55], independently,

showed the following theorem.

Theorem 2.17. [9, 55] Let π be a tree degree sequence. Then, there is a unique

BFS-tree, which is the maximal extremal tree of S(π).

Let U∗
π be the unique unicyclic graph in S(π), where v1, v2 and v3 are mutually

adjacent to form C, the unique cycle of U∗
π , and the remaining vertices appear in

BFS-ordering with respect to C starting from v4 which is adjacent to v1 [3, 55].

Theorem 2.18. [3, 55] Let π be a unicyclic degree sequence. Then, U∗
π is the

unique maximal extremal unicyclic graph of S(π).

Denote by R(G) the reduced graph obtained from G by recursively deleting pen-

dant vertices of the resultant graph until no pendant vertices remain. If G is a

connected c-cyclic graph, it is easy to see that R(G) is unique and R(G) is also a

connected c-cyclic graph.

Let θ(p1, p2, . . . , pr) denote the graph, which is obtained from r vertex-disjoint

paths (of orders p1 + 1, p2 + 1, . . . , pr + 1, respectively) by identifying the r initial

(respectively, terminal) vertices of them. Specially, let BD = θ(2, 1, 2) be the bicyclic

graph such that V (BD) = {v1, v2, v3, v4} and E(BD) = {v1v2, v1v3, v1v4, v2v3, v2v4}.

Let C(q1, q2, . . . , qr) denote the graph obtained from r cycles Cq1 , Cq2 , . . . , Cqr

by identifying a vertex of them. If π = (d1, d2, . . . , dn) is a bicyclic degree sequence, π

should be one of the following four cases since
∑n

i=1 di = 2n+ 2 (recently, Bianchi et

al. [6] presented the characterization of integers n− 1 ≥ d1 ≥ d2 ≥ · · · ≥ dn to be the
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degree sequence of a c-cyclic graph for 0 ≤ c ≤ 6). Moreover, we construct a special

bicyclic graph B∗
π with degree sequence π as follows (For more detail, see [25, 42]).

(1) π = (4, 2, . . . , 2). Let B∗
π = C(3, n− 2).

(2) π = (3, 3, 2, . . . , 2). Let B∗
π = θ(1, 2, n− 2).

(3) dn = 1 and d2 = 2. Then we have d1 > 4, di = 2 (i = 3, 4, 5), and dj ≤ 2

(6 ≤ j ≤ n − 1). Denote by B∗
π the bicyclic graph of order n obtained from C(3, 3)

by attaching d1 − 4 paths of almost equal lengths (i.e., their lengths differ by at most

one) to v1 of C(3, 3).

(4) dn = 1 and d1 ≥ d2 ≥ 3. Let B∗
π be the bicyclic graph with R(B∗

π) = BD,

and the remaining vertices appear in BFS-ordering with respect to BD starting from

v5 that is adjacent to v1.

Theorem 2.19. [25, 42] Let π be a bicyclic degree sequence. Then, B∗
π is the

unique maximal extremal bicyclic graph of S(π).

For the case of tricyclic graphs, the maximal extremal graphs become much more

complicated.

Theorem 2.20. [30] Let π be a tricyclic degree sequence, and let J∗
π be a maximal

extremal tricyclic graph of S(π). Suppose Pn−4 = w1w2 . . . wn−4.

(1) If d1 = 6 and d2 = · · · = dn = 2, then J∗
π = C(3, 3, n− 6);

(2) If d1 = 5, d2 = 3 and d3 = · · · = dn = 2, then J∗
π is obtained from BD and

Pn−4 by adding two edges v1w1 and v1wn−4;

(3) If d1 = d2 = 4 and d3 = · · · = dn = 2, then J∗
π = θ(2, 1, 2, n− 3);

(4) If d1 = 4, d2 = d3 = 3 and d4 = · · · = dn = 2, then J∗
π is obtained from BD

and Pn−4 by adding two edges v1w1 and v3wn−4;

(5) If d1 = d2 = d3 = d4 = 3 and d5 = · · · = dn = 2, then J∗
π is obtained from

BD and Pn−4 by adding two edges v3w1 and v4wn−4.

In the following, let J1, J2, . . . , J6 be the tricyclic graphs as shown in Fig. 2.4.

Let W1 (respectively, W2, W5, W6) be the unique tricyclic graph with R(W1) = J1

(respectively, R(W2) = J2, R(W5) = J5, R(W6) = J6), and the remaining vertices

appear in BFS-ordering with respect to J1 (respectively, J2, J5, J6) starting from

v5 (respectively, v6 , v7, v6) that is adjacent to v1. Denote W3 the unique tricyclic

graph with R(W3) = J3 so that the remaining vertices appear in BFS-ordering with

respect to J3 starting from v6 that is adjacent to v5. Let W4 be the unique tricyclic

graph obtained from J4 by attaching k paths of almost equal lengths to v1 of J4.

Theorem 2.21. [30] Let π be a tricyclic degree sequence and let J∗
π be a maximal

extremal tricyclic graph of S(π) with dn = 1.
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Fig. 2.4. The tricyclic graphs J1, J2, . . . , J6.

(1) If d1 ≥ 4 and d4 ≥ 3, then J∗
π = W1 or J∗

π = W2;

(2) If d1 = 3 and d4 = 3, then J∗
π = W3;

(3) If d2 = d3 = d4 = 2, then J∗
π = W4;

(4) If d2 = 3 and d3 = d4 = 2, then J∗
π = W5;

(5) If d2 = d3 = 3 and d4 = 2, then J∗
π = W6;

(6) If d2 ≥ 4 and d4 = 2, then J∗
π = W2.

For the general case, some properties were given to the maximal extremal graphs

of S(π) [9, 30, 55], and the main property of maximal extremal graphs of S(π) is

Theorem 2.22. [9, 30, 55] Suppose π is a non-increasing degree sequence. If G

is a maximal extremal graph of S(π), then it is a BFS-graph.

Recently, more extra properties of maximal extremal graphs of S(π) were added

by Liu in [30]. Furthermore, for the maximal extremal graphs of Γ(π), similar results

as those in Theorem 2.22 were obtained in Liu and Liu [40].

Theorem 2.22 shows that the maximal extremal graphs of S(π) are BFS-graphs,

but the BFS-graphs of S(π) are not unique. Thus, from Theorems 2.17–2.20, it is

natural for us to consider the following question: Whether the maximal extremal

graph of S(π) is unique for any c-cyclic degree sequence π? Actually, Belardo et al.

[3] conjectured that the answer is positive.

Conjecture 2.23. [3] Let π be a c-cyclic degree sequence. Then, the extremal

graph with the maximal spectral radius of S(π) is unique.

It is rather interesting that the structure of maximal extremal graphs of S(π) is

not unique, as the size of the relationship between W1 and W2 in Theorem 2.21 is un-

certain [30]. Actually, Belardo et al. [3] gave a routine to build the maximal extremal

graph, but a counterexample to the routine was given by Liu [30] (see Example 24 of
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[30]).

At the end of this section, let us come back to deal with the proof of majorization

theorems of (signless Laplacian) spectral radii. In addition to the maximal extremal

graphs theo- rems, the following results hold.

Proposition 2.24. [50, 54] Let u, v be two vertices of the connected graph G,

and w1, w2, . . . , wk (1 ≤ k ≤ d(v)) be some vertices of N(v) \ (N(u) ∪ {u}). Let G′

be a new graph obtained from G by deleting the edges w1v, . . ., wkv, and then adding

the edges w1u, . . ., wku. Suppose f is the Perron vector of G. If f(u) ≥ f(v), then

ρ(G′) > ρ(G) and µ(G′) > µ(G).

If d = (d1, d2, . . . , dn) is a non-increasing integer sequence and di ≥ dj + 2, then

the following operation is called a unit transformation from i to j on d: subtract 1

from di and add 1 to dj . The following famous majorization of integer sequences, is

due to Muirhead (see [44]).

Proposition 2.25. [44] (Muirhead’s Lemma) If d and d′ are two non-increasing

integer sequences and d ⊳ d′, then d can be obtained from d′ by a finite sequence of

unit transformations.

Suppose π ⊳ π′, G and G′ are the maximal extremal graphs of Γ(π) and Γ(π′)

(or S(π) and S(π′)), respectively. In order to prove the majorization theorems of

(signless Laplacian) spectral radii, by Proposition 2.25, we may always suppose that

π and π′ differ only in two positions where the difference is 1, that is, di = d′i, i 6= p, q,

1 ≤ p < q ≤ n, and d′p = dp + 1, d′q = dq − 1. In this case, π ⊳ π′ is also called a star

majorization and written as π ⊳
∗ π′ [26]. Let Pvpvq be a shortest path from vp to vq.

By the choice of G and p < q, f(vp) ≥ f(vq) follows from Theorem 2.22 and Definition

2.16. In the following, if w is a vertex of G such that w ∈ N(vq) \ (N(vp)∪ {vp}) and
w 6∈ V (Pvpvq ), then we call w a surprising vertex of G. If G contains some surprising

vertex, say w, let G∗ = G + vpw − vqw. Then, G∗ ∈ Γ(π′). Since f(vp) ≥ f(vq), by

Proposition 2.24, ρ(G) < ρ(G∗) ≤ ρ(G′) and µ(G) < µ(G∗) ≤ µ(G′). Therefore, if G

contains a surprising vertex, then ρ(G) < ρ(G′) and µ(G) < µ(G′).

Generally speaking, a surprising vertex cannot always exist for G ∈ S(π), as the

case N(vp) = N(vq) may occur. That is the reason “why majorization theorems

cannot hold for any c-cyclic graphs”. But from the structure of maximal extremal

graph G as described in Theorems 2.17–2.19, we can deduce that G must contain a

surprising vertex if G is a maximal extremal graph of S(π) when c ∈ {0, 1, 2}. In

the following, as an illustrated example, we will provide the proof of Theorem 2.2.

Actually, the main idea of the proofs of Theorems 2.1, 2.2, 2.11–2.14 is similar.

Proof of Theorem 2.2. By Proposition 2.25, we may suppose that π⊳∗π′. Theorem

2.18 implies that U = U∗
π . If 2 ≤ q ≤ 3, then dq ≥ 3 and vq ∈ C3 since U ′ ∈ S(π′).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 402-421, August 2015



ELA

414 M. Liu, B. Liu, and K.Ch. Das

Fig. 2.5. The unicyclic graphs U1, U2, U3, U4 and U5.

If q ≥ 4, then dq ≥ 2 and vq does not lie on any cycle. In both cases, there exists a

vertex vk (k > q) such that vk ∈ N(vq) \ (N(vp) ∪ {vp}) and vk 6∈ V (Pvpvq ), namely,

vk is a surprising vertex. Let U ′′ be the graph obtained from U by deleting the edge

vqvk, and then adding the edge vpvk. Note that U
′′ is connected and U ′′ ∈ S(π′). By

Proposition 2.24, ρ(U) < ρ(U ′′) ≤ ρ(U ′).

2.3. The application of majorization theorem to graph spectrum. In

1981, Cvetković [11] indicated 12 directions for further investigations of graph spectra,

one of which is classifying and ordering graphs. Hence, ordering graphs with various

properties by their spectra, especially by their (Laplacian) spectral radii, became an

attractive topic (see [24, 35, 43]). Up to now, more than 50 papers were published

on this item, but a simple and general method has not yet been obtained. Not long

before, we found that the majorization theorem is a good tool to deal with the above

Cvetkovic’s problem on the ordering of graphs according to their largest (signless

Laplacian) spectral radii [35].

Next we will use an examples to illustrate the application of the majorization

theorem to solve Cvetković’s problem. Let Un be the class of unicyclic graphs on

n vertices, and Un,k be the class of unicyclic graphs with n vertices and k pendant

vertices.

Example 2.26. Let U1, U2, . . . , U5 be the unicyclic graphs on n vertices as shown

in Fig. 2.5. Clearly, U1 is the unique unicyclic graph with d1 = n− 1, U2, U3, U4 are

all the unicyclic graphs with d1 = n− 2.

If U ∈ Un\{U1, U2, . . . , U5}, then d1(U) ≤ n−3. Let (b) = (n−3, 4, 2, 1, . . . , 1). It

is easily checked that U5 is the unique unicyclic graph with (b) as its degree sequence.

Suppose the degree sequence of U is (a) = (d1, d2, d3, . . . , dn). Then, (a) ⊳ (b), and

hence, ρ(U) < ρ(U5) follows from Theorem 2.2.

Clearly, U1 is the unique unilcyclic graph with (c) = (n − 1, 2, 2, 1, . . . , 1) as its

degree sequence, U2 is the unique unilcyclic graph with (d) = (n− 2, 3, 2, 1, . . . , 1) as

its degree sequence and S(e) = {U3, U4}, where (e) = (n − 2, 2, 2, 2, 1, . . . , 1). Since

(e) ⊳ (d) ⊳ (c), ρ(U3) < ρ(U2) < ρ(U1) according to Theorem 2.2. From Theorem

2.18, ρ(U4) < ρ(U3).
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Let Φ(G, x) denote the characteristic polynomial of A(G). By an elementary

computation, it easily follows that

Φ(U4, x) = xn−4
(

x4 − nx2 + 2n− 8
)

,(2.1)

Φ(U5, x) = xn−4
(

x4 − nx2 − 2x+ 3n− 13
)

.(2.2)

From Equation (2.1), it is easy to see that ρ(U4) =

√

n+
√
n2−8n+32

2 <
√
n when

n ≥ 12. When x ≥ √
n and n ≥ 12, by Equations (2.1) and (2.2), we have

Φ(U5, x) − Φ(U4, x) = xn−4(n− 5− 2x) ≥ n
n−4

2 (n− 5− 2
√
n) > 0.

Thus, ρ(U5) < ρ(U4), and hence ρ(U) < ρ(U5) < ρ(U4) < ρ(U3) < ρ(U2) < ρ(U1)

when n ≥ 12. Now, the five unicyclic graphs with the first five largest spectral radii

in Un are determined for n ≥ 12.

As mentioned before, the majorization theorem holds for the maximal (signless

Laplacian) spectral radii of the extremal graphs between two classes of trees, unicyclic

and bicyclic graphs with given degree sequences. Thus, as claimed in Liu and Liu

[35], it is not a difficult problem to order trees, unicyclic graphs and bicyclic graphs

via their largest (signless Laplacian) spectral radii by applying the corresponding

majorization theorem. But unfortunately, the majorization theorem can not holds

for general c-cyclic graphs, and hence, this method cannot be applied to deal with

Cvetković’s problem in the general case.

The majorization theorem is also effective when we deal with the other extremal

problems in some special graph categories. For instance,

Example 2.27. Suppose U ∈Un,k, and suppose the degree sequence of U is

(a) = (d1, d2, . . . , dn−k, 1, . . . , 1), where the multiplicity of 1 is k. Let (b) = (k +

2, 2, 2, . . . , 2, 1, . . . , 1), where the multiplicity of 1 is k. If (a) 6= (b), then (a) ⊳ (b).

By Theorems 2.2 and 2.18, ρ(U) < ρ(U∗), where U∗ is obtained from a triangle by

attaching k paths of almost equal lengths to a vertex of the triangle.

More examples on the application of majorization theorem to the extremal prob-

lem of graph spectrum can be referred to [25, 54, 55].

3. The majorization theorem of topological index. In this section, we

will explain how the theory of majorization can be applied to face other problems

in different branches of graph theory; in particular we will focus on some theorems

concerning topological indices.

The first and second Zagreb indices are, respectively, defined as

M1(G) =
∑

v∈V (G)

d2(v), M2(G) =
∑

uv∈E(G)

d(u)d(v).
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The first and second Zagreb indices are two important topological indices, which

were first introduced by Gutman and Trinajstić in 1972 [22]. Before 2009, similar

with the case of (signless Laplacian) spectral radii, many papers concerned with the

ordering of M1(G) and M2(G) among some given graph categories were published

[15, 51], but a simple and general method has not yet been obtained.

In 2009, Liu [29] proved that the majorization theorem holds for the first Zagreb

index for any c-cyclic graphs. That is

Theorem 3.1. [29] Let π and π′ be two different non-increasing degree sequences

with π ⊳ π′. If G ∈ S(π) and G′ ∈ S(π′), then M1(G) < M1(G
′).

By applying Theorem 3.1, Liu extended [29] almost all known results before 2009

on the ordering of the first Zagreb index in some given graph categories like c-cyclic

graphs. Note that the proof of Theorem 3.1 follows easily from Corollary 1.7, since

the function ϕ(x) = x2 is strictly convex. A similar approach allowed Liu and Liu to

extend Theorem 3.1 in [32] to the first general Zagreb index Mα
1 (G) =

∑

v∈V d(v)α

[27], where α is a given real number not equal to 0 and 1.

Theorem 3.2. [32] Let π and π′ be two different non-increasing degree sequences

with π ⊳ π′. Suppose G ∈ S(π) and G′ ∈ S(π′).

(1) If α < 0 or α > 1, then Mα
1 (G) < Mα

1 (G
′);

(2) If 0 < α < 1, then Mα
1 (G) > Mα

1 (G
′).

Motivated from the definition of M1(G) and M2(G), Došlić [16] defined two new

graphical invariants M1(G) and M2(G), where

M1(G) =
∑

uv 6∈E(G)

(d(u) + d(v)), M2(G) =
∑

uv 6∈E(G)

d(u)d(v).

Došlić called M1(G) and M2(G), the first and second Zagreb coindices of G,

respectively. For the relationship between M1(G) and M1(G), it is well-known that

M1(G) = 2m(n− 1)−M1(G) [2]. Thus, from Theorem 3.1, we have

Theorem 3.3. [31] Let π and π′ be two different non-increasing degree sequences

with π ⊳ π′. If G ∈ S(π) and G′ ∈ S(π′), then M1(G) > M1(G′).

The first and second multiplicative Zagreb indices of a connected graph G, are

defined as
∏

1(G) =
∏

v∈V (G) d
2(v) and

∏

2(G) =
∏

uv∈E(G) d(u)d(v), respectively

[21]. Recently, by applying Corollary 1.7, Eliasi proved that

Theorem 3.4. [17] Let π and π′ be two different non-increasing degree sequences

with π ⊳ π′. If G ∈ S(π) and G′ ∈ S(π′), then
∏

1(G) >
∏

1(G
′) and

∏

2(G) <
∏

2(G
′).
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While the proofs of Theorem 3.1–3.4 are essentially based on Corollary 1.7, it is

not evident how M2(G) can be expressed as a suitable Schur-convex function in order

to apply Corollary 1.7. To this point we can refer the reader to Bianchi et al. [5].

However, up to now, the following majorization theorem holds for M2(G).

Theorem 3.5. [38, 39, 52] Let π and π′ be two different non-increasing tree

(respectively, unicyclic, bicyclic) degree sequences with π ⊳ π′. Let G and G′ be the

trees (respectively, unicyclic graphs, bicyclic graphs) with the maximal second Zagreb

indices in S(π) and S(π′), respectively. Then, M2(G) < M2(G
′).

In Ashrafi et al. [2], it was proved that M2(G)= 2m2 −M2(G) − 1
2M1(G), and

hence, by Theorem 3.5, we have:

Theorem 3.6. [31] Let π and π′ be two different non-increasing tree (respectively,

unicyclic, bicyclic) degree sequences with π ⊳ π′. Suppose G and G′ have the minimal

second Zagreb coindices in S(π) and S(π′), respectively. If π ⊳ π′, then M2(G) >

M2(G′).

Similar to the proofs of the majorization theorems for (signless Laplacian) spectral

radii, the proof of Theorem 3.5 also mainly depends on the structure of the extremal

graphs with maximal second Zagreb indices in S(π). In 2008, Zhang and Xiang [56]

used this method (as to our best knowledge, [56] is the first literature applying the

majorization theorem to topological index theory) to prove the majorization theorem

for the Wiener index W (G), where W (G) is the sum of topological distances between

all pairs of vertices in G [49]. If we use d(u, v) to denote the distance of u and v, then

W (G) =
∑

{u,v}⊆V (G) d(u, v).

Theorem 3.7. [56] Let π and π′ be two different non-increasing tree degree

sequences with π ⊳ π′. Suppose T and T ′ have the minimal Wiener indices in S(π)

and S(π′), respectively. Then, W (T ) > W (T ′), and T and T ′ are the unique BFS-

trees of S(π) and S(π′) respectively.

Let Pr(T ) be the number of pairs (u, v) of vertices such that d(u, v) ≤ r. Recently,

as an extension of Theorem 3.7, Wagner et al. [47] showed that

Theorem 3.8. [47] Let π and π′ be two different non-increasing tree degree

sequences with π ⊳ π′. Suppose T and T ′ have the maximal number of pairs (u, v) of

vertices such that d(u, v) ≤ r in S(π) and S(π′), respectively, where r is an arbitrary

positive integer. Then, Pr(T ) < Pr(T
′), and T and T ′ are the unique BFS-trees of

S(π) and S(π′), respectively.

Let γ(T ) denote the number of subtrees of T . The following majorization theorem

for γ(T ) was proved by Zhang et al. [57].

Theorem 3.9. [57] Let π and π′ be two different non-increasing tree degree
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sequences with π⊳π′. Suppose T and T ′ have the maximal number of subtrees in S(π)

and S(π′), respectively. Then, γ(T ) < γ(T ′), and T and T ′ are the unique BFS-trees

of S(π) and S(π′), respectively.

As shown in Example 2.26, by Theorem 2.2, we can easily determine the first five

largest spectral radii in Un, but it become much more complicated to deal with the

smallest case. The crucial problem is that it is a difficult problem to determine the

exact value of spectral radius of a given graph. Analogous with the spectral theory,

the majorization theorem of topological index can be applied to deal with the ordering

or extremal problems of the corresponding topological indices in some given graph

categories. Moreover, since the exact values of many topological indices of a given

graph can be determined easily, we can obtain a better result when we employ the

majorization theorem to deal with the ordering problem of topological indices. For

instance,

Example 3.10. Let π1 = (2, 2, 2, . . . , 2), π2 = (3, 2, 2, . . . , 2, 1) and π3 =

(3, 3, 2, . . . , 2, 1, 1). Suppose U ∈ Un. If π(U) 6∈ {π1, π2, π3}, then π1 ⊳ π2 ⊳ π3 ⊳

π(U).

By Theorem 3.1, the cycle has the smallest first Zagreb index in Un, the unicyclic

graphs of S(π2) have the second smallest first Zagreb index in Un, and the unicyclic

graphs of S(π3) have the third smallest first Zagreb index in Un.

By applying Corollary 1.7, we can obtain good bounds for some topological in-

dices. For instance, by Corollary 1.7, bounds for the sum of the α-th power of the

non-zero Laplacian eigenvalues of G were given in [34, 58], for the sum of the α-th

power of the non-zero signless Laplacian eigenvalues of G were given in Liu and Liu

[36], and for the sum of power of Laplacian Estrada index of G were given in Zhou

[59].

Recently, Bianchi et al. [5] presented a unified approach for localizing some rele-

vant graph topological indices via majorization techniques. Furthermore, via charac-

terizing c-cyclic graphs (0 ≤ c ≤ 6) as those whose degree sequence belongs to partic-

ular subsets of Rn, Bianchi et al. [6] identified the maximal and minimal vectors of

these subsets with respect to the majorization order. They also employed a majoriza-

tion technique for a suitable class of graphs to derive upper and lower bounds for

some topological indices depending on the degree sequence over all vertices. Through

this method, old and new bounds can be easily reobtained and improved [5, 6]. If the

reader is interested in this topic, he can refer to [5, 6, 7] and the references therein.

4. Further discussion. As referred in the former sections, the majorization

theorem has important application in graph spectrum and topological index theory.

Actually, lots of open problems were solved by this tool [1, 31, 47, 57]. Thus, we hope
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that more scholars can pay their attention to this interesting research field.

Though several majorization theorems have been proved, a number of questions

have been left unsolved. Here, we present two problems for further study.

Problem 4.1. Does there exist some other majorization theorem for graph

spectrum (of the orientated or unorientated graph, the hypergraph and so on) or for

other topological indices?

Problem 4.2. Give more accurate description of the maximal extremal graphs

of S(π) or Γ(π). Furthermore, prove or disprove Conjecture 2.23.
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[2] A.R. Ashrafi, T. Došlić, and A. Hamzeh. The Zagreb coindices of graph operations. Discrete

Appl. Math., 158:1571–1578, 2010.
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