
ELA

VARIATIONAL CHARACTERIZATIONS OF THE SIGN-REAL
AND THE SIGN-COMPLEX SPECTRAL RADIUS∗

SIEGFRIED M. RUMP†

Key words. Generalized spectral radius, sign-real spectral radius, sign-complex spectral radius,
Perron-Frobenius theory.

AMS subject classifications. 15A48, 15A18

Abstract. The sign-real and the sign-complex spectral radius, also called the generalized spec-
tral radius, proved to be an interesting generalization of the classical Perron-Frobenius theory (for
nonnegative matrices) to general real and to general complex matrices, respectively. Especially the
generalization of the well-known Collatz-Wielandt max-min characterization shows one of the many
one-to-one correspondences to classical Perron-Frobenius theory. In this paper the corresponding
inf-max characterization as well as variational characterizations of the generalized (real and com-
plex) spectral radius are presented. Again those are almost identical to the corresponding results in
classical Perron-Frobenius theory.

1. Introduction. Denote R+ := {x ≥ 0 : x ∈ R}, and let K ∈ {R+, R, C}. The
generalized spectral radius is defined [6] by

ρK (A) := max{|λ| : ∃ 0 �= x ∈ K
n, ∃λ ∈ K, |Ax| = |λx|} for A ∈ Mn(K).(1.1)

Note that absolute value and comparison of matrices and vectors are always to be
understood componentwise. For example, A ≤ |C| for A ∈ Mn(R), C ∈ Mn(C) is
equivalent to Aij ≤ |Cij | for all i, j.

For K = R+ the quantity in (1.1) is the classical Perron root, for K ∈ {R, C} it
is the sign-real or sign-complex spectral radius, respectively. Note that the quantities
are only defined for matrices over the specific set K, and also note that for ρR the
maximum |λ| is only taken over real λ and real x. Vectors 0 �= x ∈ K

n and scalars
λ ∈ K satisfying the nonlinear eigenequation |Ax| = |λx| are also called generalized
eigenvectors and generalized eigenvalues, respectively.

Denote the set of signature matrices over K by S(K), which are diagonal matrices
S with |Sii| = 1 for all i. In short notation S ∈ S(K) : ⇔ S ∈ Mn(K) and |S| = I.
For K = R+ this is just the identity matrix I, for K = R the set of S = diag(±1) or
diagonal orthogonal, and for K = C the set of diagonal unitary matrices. Obviously,
for y ∈ K

n there is S ∈ S(K) with Sy ≥ 0. In case |y| > 0, this S is uniquely
determined. Note that S−1 = S∗ ∈ S(K) for all S ∈ S(K).

By definition (1.1) there is y ∈ K
n with |Ay| = |ry| = r|y| for r := ρK (A), and

therefore for K ∈ {R+, R, C},

∃S ∈ S(K), ∃ 0 �= y ∈ K
n : SAy = ry(1.2)
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and

∃S1, S2 ∈ S(K), ∃x ≥ 0, x �= 0 : S1AS2x = rx.(1.3)

Among the variational characterizations of the Perron root are

max
x≥0

min
xi �=0

(Ax)i
xi

= ρR+ (A) = ρ(A) = inf
x>0
max

i

(Ax)i
xi

for A ≥ 0(1.4)

and

max
x≥0

min
y≥0

yT x �=0

yT Ax

yT x
= ρ(A) = min

y≥0
max
x≥0

yT x �=0

yT Ax

yT x
for A ≥ 0.

The purpose of this paper is to prove a generalization of both characterizations for
the generalized spectral radius.

We note that the only non-obvious property of the generalized spectral radius we
use is [6, Corollary 2.4]

ρK (A[µ]) ≤ ρK (A) for K ∈ {R+, R, C}, A ∈ Mn(K) and µ ⊆ {1, . . . , n}.(1.5)

2. Variational characterizations. For the following results we need three
preparatory lemmata, the first showing that for K ∈ {R, C} there exists a gener-
alized eigenvector in every orthant.

Lemma 2.1. Let K ∈ {R, C} and A ∈ Mn(K) be given. Then

∀S ∈ S(K), ∃ 0 �= z ∈ K
n, ∃λ ∈ R+ : Sz ≥ 0, |Az| = λ|z|.

Remark 2.2. The condition Sz ≥ 0 for z ∈ K
n means Sz ∈ R

n and Sz ≥ 0,
or shortly Sz ∈ R

n
+. Note that Lemma 2.1 is also true for K = R+, in which case

S ∈ S(K) implies S = I.
Proof of Lemma 2.1. Let fixed S ∈ S(K) be given and define O := {z ∈ K

n :
‖z‖1 = 1, Sz ≥ 0}. The set O is nonempty, compact and convex. If there exists some
z ∈ O with Az = 0 we are finished with λ = 0. Suppose Az �= 0 for all z ∈ O and
define ϕ(x) := ‖Ax‖−1

1 · S∗|Ax|. Then ϕ is well-defined and continuous on O, and
ϕ : O → O, such that by Brouwer’s theorem there exists a fixed point z ∈ O with
ϕ(z) = ‖Az‖−1

1 · S∗|Az| = z. Then |Az| = λSz = λ|z| with λ = ‖Az‖1.
The next lemma states a property of vectors out of the interior of a certain

orthant.
Lemma 2.3. Let K ∈ {R, C}, A ∈ Mn(K) and define r := ρK (A). Then

∀S ∈ S(K), ∀ ε > 0, ∃ z ∈ K
n : Sz > 0, |Az| ≤ (r + ε) · |z|.

Proof. We proceed by induction. For n = 1, it is r = |A11| ∈ R+, and z := sign(S11) ∈
K does the job. Suppose the lemma is proved for dimension less than n. For given
S ∈ S(K) there exists by Lemma 2.1 some 0 �= z ∈ K

n and λ ∈ R+ with Sz ≥ 0
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and |Az| = λ|z|. Then λ ≤ r by definition (1.1). If Sz > 0 we are finished. Let
µ := {j : zj �= 0} and let µ := {1, . . . , n}\µ such that

∣∣∣∣
[

T U
V W

] [
x
0

]∣∣∣∣ = λ

∣∣∣∣
[

x
0

]∣∣∣∣ with

T = A[µ], U = A[µ, µ], V = A[µ, µ], W = A[µ], z[µ] = x and z[µ] = 0.

Then |Tx| = λ|x|, V x = 0 and |x| > 0.
By the induction hypothesis there exists y′ ∈ K

|µ| with S[µ]y′ > 0 and

|Wy′| ≤ (ρK (W ) + ε)|y′| ≤ (r + ε)|y′|,
where the latter inequality follows by (1.5). Define

α :=



min

i

∣∣∣∣ xi

(Uy′)i

∣∣∣∣ for Uy′ �= 0
1 otherwise,

and set y := αy′. Then |y| > 0 and
∣∣∣∣A ·

[
x
εy

]∣∣∣∣ =
∣∣∣∣
[

Tx+ εUy
εWy

]∣∣∣∣ ≤
[

λ|x| + εα|Uy′|
εα(r + ε)|y′|

]
≤ (r + ε)

[ |x|
ε|y|

]
.

The above lemma is obviously not true when replacing r+ ε by r, as the example

A =
[
1 1
0 1

]
with ρK (A) = 1 for K ∈ {R+, R, C} shows. It is, at least for K = R,

also not valid for irreducible |A|. Consider

A =


 0 1 1

−1 0 1
−1 −1 0


 .

It has been shown in [5, Lemma 5.6] that ρR (A) = 1. We show that |Au| ≤ u is not
possible for u > 0. Set u := (x, y, z)T , then |Au| ≤ u is equivalent to

−x ≤ y + z ≤ x
−y ≤ −x+ z ≤ y
−z ≤ −x − y ≤ z.

The second and third row imply that

x ≤ y + z and y ≤ −x+ z,

and by the first and second row,

x = y + z and y = −x+ z

so that y = x − z = −x+ z and therefore y = 0, which means u cannot be positive.
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Third, we need a generalization of a theorem by Collatz [3, Section 2] to the
complex case.

Lemma 2.4. Let A ∈ Mn(C), A∗z = λz for 0 �= z ∈ R
n, λ ∈ C. Then for all

x ∈ R
n with |x| > 0 and xizi ≥ 0 for all i the following estimations hold true:

minReµi ≤ Reλ ≤ maxReµi

min Imµi ≤ Imλ ≤ max Imµi,

where µi := (Ax)i/xi for 1 ≤ i ≤ n.
Remark 2.5. Note that x and the left eigenvector z of A are assumed to be

real.
Proof of Lemma 2.4. Similar to Collatz’s original proof for the case A ≥ 0 we

note that∑
i

(λ − µi)xizi =
∑

i

xi(A∗z)i −
∑

i

(Ax)izi = x∗A∗z − z∗Ax = 0,

the latter because x and z are real. Now xizi are real nonnegative for all i, and by
|x| > 0 not all products xizi can be zero. The assertion follows.

With these preparations we can prove the first two-sided characterization of ρK .
Theorem 2.6. Let K ∈ {R+, R, C} and A ∈ Mn(K). Then

max
S∈S(K)

max
x∈K

n

Sx≥0

min
xi �=0

∣∣∣∣ (Ax)i
xi

∣∣∣∣ = ρK (A) = max
S∈S(K)

inf
x∈K

n

Sx>0

max
i

∣∣∣∣ (Ax)i
xi

∣∣∣∣ .(2.1)

Remark 2.7. The characterization is almost identical to the classical Perron-
Frobenius characterization (1.4). The difference is that for nonnegative A the non-
negative orthant is the generic one, and vectors x can be restricted to this generic
orthant. For general real or complex matrices, there is no longer a generic orthant, and
therefore the max-min and inf-max characterization is maximized over all orthants.
Note that in the left hand side the two maximums can be replaced by maxx∈K

n , but
are separated for didactic purposes.

Proof of Theorem 2.6. The result is well-known for K = R+, and the left equality
was shown in [5, Theorem 3.1] for K = R, and for K = C it was shown in a different
context in [4] and [2]; see also [6, Theorem 2.3]. We need to prove the right equality for
K ∈ {R, C}. Let S ∈ S(K) be fixed but arbitrary and denote r := ρK (A). By Lemma
2.3, for every ε > 0 there exists some x ∈ K

n with Sx > 0 and |Ax| ≤ (r + ε)|x|,
so that r is larger than or equal to the r.h.s. of (2.1). We will show r is less than or
equal to the r.h.s. of (2.1) to finish the proof. By (1.3) and ρK (A∗) = ρK (A) there
is S1, S2 ∈ S(K) and 0 �= z ∈ R

n with z ≥ 0 and S1A
∗S2z = rz. Then for any x ∈ K

n

with S1x > 0, Lemma 2.4 implies that

max
i

∣∣∣∣ (Ax)i
xi

∣∣∣∣ = maxi

∣∣∣∣ ((S
∗
2AS∗

1 ) · S1x)i
(S1x)i

∣∣∣∣ ≥ Re r = r.

Finally we give a second two-sided characterization of the generalized spectral
radius.
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Theorem 2.8. Let K ∈ {R+, R, C} and A ∈ Mn(K). Then

max
S1,S2∈S(K)

max
x∈K

n

S1x≥0

min
y∈K

n

S2y≥0
|y∗| |x|�=0

|y∗Ax|
|y∗| |x| = ρK (A) = max

S1,S2∈S(K)
min

y∈K
n

S2y≥0

max
x∈K

n

S1x≥0
|y∗| |x|�=0

|y∗Ax|
|y∗| |x| .(2.2)

Proof. Let, according to (1.2), SAx = rx for S ∈ S(K), 0 �= x ∈ K
n and

r = ρK (A). Define S1 such that S1x ≥ 0 and set S2 = S1S. Then for every y ∈ K
n

with S2y ≥ 0 and |y∗| |x| �= 0, it is S1x = |x|, S2y = |y|, S∗
2S1S = I and

y∗Ax = y∗S∗
2S1SAx = ry∗S∗

2S1x = r|y∗| |x|, or |y∗Ax| = r|y∗| |x|.
That means for the specific choice of S1, S2 and x, the ratio |y∗Ax|/(|y∗| |x|) is equal
to r independent of the choice of y provided S2y ≥ 0. Therefore, both the left and
the right hand side of (2.2) are greater than or equal to r = ρK (A). This proves also
that the extrema are actually achieved.

On the other hand, let S1, S2 ∈ S(K) and x ∈ K
n, S1x ≥ 0 be fixed but arbitrarily

given. Denote µ := {j : xj �= 0}, k := |µ|, and µ := {1, . . . , n}\µ. By Lemma 2.1,
there exists ỹ ∈ K

k with ỹ �= 0, S2[µ] ỹ ≥ 0 and |A∗[µ] · ỹ | = λ| ỹ | for λ ≥ 0.
Therefore λ ≤ ρK (A∗[µ]) = ρK (A[µ]). Define y ∈ K

n by y[µ] := ỹ and y[µ] := 0.
Then |y∗| |x| = |y[µ]∗| |x[µ]| �= 0 and x[µ] = 0 imply that

|y∗Ax| = |y[µ]∗A[µ]x[µ]| ≤ |y[µ]∗A[µ]| · |x[µ]| = λ|y[µ]∗| |x[µ]| = λ|y∗| |x|.
By (1.5),

|y∗Ax|
|y∗| |x| ≤ λ ≤ ρK (A).

Therefore, for that choice of y (depending on S1, S2 and x) the left hand side of (2.2)
is less than or equal to ρK (A). It remains to prove that the right hand side of (2.2)
is less than or equal to ρK (A). Let S1, S2 be given, fixed but arbitrary. By Lemma
2.1, there exists 0 �= y ∈ K

n with S2y ≥ 0 and |A∗y| = λ|y| for λ ∈ R+. Then for all
x ∈ K

n,

|y∗Ax| ≤ |y∗A| |x| = λ|y∗| |x|,
such that for that choice of y (depending on S1, S2) the ratio |y∗Ax|/(|y∗| |x|) is less
than or equal to λ for all x ∈ K

n with |y∗| |x| �= 0. It follows that the right hand side
of (2.2) is less than or equal to λ ≤ ρK (A∗) = ρK (A), and the proof is finished.

We note that Theorem 2.8 and its proof cover the case K = R+, where in this
case S(R+) consists only of the identity matrix. That means for general A ≥ 0,

max
x≥0

min
y≥0

yT x �=0

yT Ax

yT x
= ρ(A) = min

y≥0
max
x≥0

yT x �=0

yT Ax

yT x
.
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Finally we note that for the classical Perron-Frobenius theory this characteri-
zation is mentioned without proof in the classical book by Varga [7] for irreducible
matrices. As in other textbooks, the result is referenced as if it were included in [1],
where in turn we only found a reference to an internal report.
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