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Abstract. Recently, some research has been devoted to finding the explicit forms of the η-

Hermitian and η-anti-Hermitian solutions of several kinds of quaternion matrix equations and their

associated least-squares problems in the literature. Although exploiting iterative algorithms is su-

perior than utilizing the explicit forms in application, hitherto, an iterative approach has not been

offered for finding η-(anti)-Hermitian solutions of quaternion matrix equations. The current paper

deals with applying an efficient iterative manner for determining η-Hermitian and η-anti-Hermitian

least-squares solutions corresponding to the quaternion matrix equation AXB + CYD = E. More

precisely, first, this paper establishes some properties of the η-Hermitian and η-anti-Hermitian ma-

trices. These properties allow for the demonstration of how the well-known conjugate gradient least-

squares (CGLS) method can be developed for solving the mentioned problem over the η-Hermitian

and η-anti-Hermitian matrices. In addition, the convergence properties of the proposed algorithm

are discussed with details. In the circumstance that the coefficient matrices are ill-conditioned, it is

suggested to use a preconditioner for accelerating the convergence behavior of the algorithm. Nu-

merical experiments are reported to reveal the validity of the elaborated results and feasibility of the

proposed iterative algorithm and its preconditioned version.

Key words. Quaternion matrix equation, η- Hermitian matrix, η-Anti-Hermitian matrix,

Iterative algorithm, Convergence, Preconditioner.
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1. Introduction. Let us first present some notations and symbols used through-

out this paper. We use Qm×n to refer the set of all m×n matrices over the quaternion

ring

Q = {a1 + a2i+ a3j + a4k | i2 = j2 = k2 = ijk = −1, a1, a2, a3, a4 ∈ R},

and Rm×n stands for the set of all m×n real matrices. For a givenm×nmatrix A, the

symbols AT , Ā, AH and tr(A) are respectively utilized to represent the transpose, the

conjugate, the conjugate transpose and the trace of A. The real part of a quaternion

a is denoted by Re(a), i.e., if a = a1 + a2i + a3j + a4k then Re(a) = a1. For given

a = a1+a2i+a3j+a4k ∈ Q, the conjugate of a is defined by ā = a1−a2i−a3j−a4k.
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The inner product over Qm×n is defined as follows:

〈A,B〉 = Re(tr(BHA)) for A,B ∈ Qm×n,

and the induced matrix norm is specified by

‖A‖ =
√

〈A,A〉 =
√

Re(tr(AHA)).

As a natural way, the inner product over Qm×n ×Qm×n can be elucidated by

〈[A1, A2] , [B1, B2]〉 = 〈A1, B1〉+ 〈A2, B2〉 ,

where [A1, A2] and [B1, B2] belong to Qm×n×Qm×n. The set of all n×n real symmet-

ric and anti-symmetric matrices are respectively indicated by SR
n×n and ASR

n×n.

A matrix A ∈ Qn×n is η-Hermitian if AηH = A and it is called η-anti-Hermitian if

AηH = −A where AηH = −ηAHη and η ∈ {i, j, k}. The set of all η-Hermitian and

η-anti-Hermitian matrices are respectively signified by ηHQ
n×n and ηAQn×n.

The linear matrix equations have a crucial role in many branches of applied and

pure mathematics such as control and system theory, stability theory, perturbation

analysis, etc; for further details one may refer to [1, 2, 9, 18, 42, 43, 44] and the

references therein. So far, several types of iterative algorithms have been proposed

for solving various kinds of (coupled) matrix equations in the literature. For instance,

Beik and Salkuyeh [3] have presented the Global Full Orthogonalization Method (Gl-

FOM) and Global Generalized Minimum Residual (Gl-GMRES) method to determine

the unique solution group (X1, X2, . . . , Xp) of the subsequent coupled linear matrix

equations

p
∑

j=1

AijXjBij = Ci,

where the nonsingular matrices Aij ∈ Rn×n and Bij ∈ Rn×n and the right hand side

Ci ∈ Rn×n are known matrices for i, j = 1, 2, . . . , p. In [4], an efficient algorithm has

been presented to solve the next coupled Sylvester-transpose matrix equations over

the generalized centro-symmetric matrices

q
∑

j=1

AijXjBij + CijX
T
j Dij = Ci, i = 1, . . . , p,

in which Aij , Cij ∈ Rri×nj , Bij , Dij ∈ Rnj×si and Ci ∈ Rri×si are given matrices

and the matrices Xj ∈ Rnj×nj are unknown for j = 1, 2, . . . , q. By making use of

convex optimization theory, Cai and Chen [8] have proposed an iterative algorithm

for finding the least-squares bisymmetric solutions of the coupled matrix equations
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(A1XB1, A2XB2) = (C1, C2). Ding and Chen [15, 16, 17] have developed some

stationary iterative methods named gradient-based iterative methods to solve some

kinds of matrix equations. In [11, 13], Dehghan and Hajarian have developed the

well-known conjugate gradient (CG) method to solve the ensuring coupled matrix

equations















l
∑

i=1

AiXBi +
l
∑

i=1

CiY Di = M

l
∑

i=1

EiXFi +
l
∑

i=1

GiY Hi = N

and


















A11X1B11 +A12X2B12 + · · ·+ A1lXlB1l = C1

A21X1B21 +A22X2B22 + · · ·+ A2lXlB2l = C2

...

Al1X1Bl1 +Al2X2Bl2 + · · ·+AllXlBll = Cl

,

respectively. In [12], the extended version of the CG method has been examined to

solve the succeeding system of matrix equations

p
∑

j=1

AijXjBij = Ci, i = 1, 2, . . . , p,

over the generalized bisymmetric matrices. In [14], the authors have exploited the idea

of the CG method to construct an iterative algorithm to find the generalized reflexive

and anti-reflexive solutions of the following system of linear operator equations



















F1(X) = A1

F2(X) = A2

...

Fn(X) = An

.

The outline of this paper is organized as follows. Before ending the current

section, we momentarily describe our inspiration for presenting this paper and express

two main problems of concern. Section 2 is devoted to proving some properties of

the η-Hermitian and η-anti-Hermitian matrices. In Section 3, we propose an iterative

algorithm to solve our main mentioned problems and analyze the convergence of

the proposed algorithm. The preconditioned version of the algorithm is proposed

to accelerate the convergence rate of the method in Section 4. In Section 5, some

numerical examples are solved to demonstrate the validity of the established results

and effectiveness of the proposed algorithm. Finally the paper is ended with a brief

conclusion and some suggestions for further works in Section 6.
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1.1. Motivations and highlight points. Recently, there is a growing interest

to find the solutions of quaternion matrix equations. A linear quaternion matrix

equation is a linear matrix equation over the quaternion ring; see [20, 21, 22, 35, 40, 41]

for more details. We would like to comment here that the quaternion matrices and

quaternion matrix equations arise in the fields of quantum physics, signal and color

image processing, computer science and so on; for further details see [5, 6, 23, 25, 33]

and the references therein. Lately, some research has focused on developing iterative

methods to solve such problems, for instance one may refer to [22, 28, 35].

Obtaining the explicit forms of the η-Hermitian and η-anti-Hermitian solutions of

linear quaternion matrix equations have been studied in [19, 39, 40]. It is well-known

that the explicit forms are not computationally practical even in the case that the size

of coefficient matrices are moderate. More precisely, Yuan et al. [40] have derived the

explicit forms of η-Hermitian and η-anti-Hermitian solutions of AXB + CY D = E

and also the explicit forms of the solution pair [X,Y ] with least-norm theoretically.

Nevertheless there exist some drawbacks for utilizing these forms such as:

• The complicated forms of the obtained explicit solutions and the requirement

to compute the Moore-Penrose pseudoinverse which would be expensive for

large scale quaternion least-squares problems.

• For deriving solutions by means of obtained explicit forms, Kronecker product

of matrices is required to be explicitly formed. Therefore the size of original

problem increases and causes high computational cost.

These disadvantages in using explicit forms inspire us to develop an iterative

algorithm for computing the η-Hermitian and η-anti-Hermitian solutions of AXB +

CY D = E. We would like to emphasize that, to the best of our knowledge, a neat

and feasible iterative technique to solve such solutions has not been examined so far.

In the literature, the well-known CGLS method has been successfully implemented to

solve different types of matrix equations; the reader may refer to [26, 27, 29, 30, 31]

and the references therein. Hence, our main goal is to extend the CGLS method for

resolving the least-squares problem corresponding to the quaternion matrix equation

AXB + CY D = E over the η- Hermitian and η-anti-Hermitian matrix pair [X,Y ].

To this end, we first need to establish some properties of η- Hermitian and η-anti-

Hermitian matrices. For improving the convergence speed of the proposed algorithm,

the application of a preconditioner is examined.

1.2. Problem reformulation. For simplicity, we consider the linear operator

M : Qn×n ×Qn×n → Qn×n such that

M(X,Y ) = M1(X) +M2(Y ),
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whereMi : Q
n×n → Qn×n for i = 1, 2. The linear operatorsM1 andM2 are specified

by

M1(X) = AXB and M2(Y ) = CY D.(1.1)

Using (1.1), the matrix equation AXB + CY D = E can be reformulated in the

following form

(1.2) M(X,Y ) = E.

Definition 1.1. Let L be a linear operator from Qm×n onto Qm×n, then the

adjoint of L is denoted by L∗ and satisfies

〈L (X) , Z〉 = 〈X,L∗ (Z)〉 .

By straightforward computations and using the fact that tr (XY ) = tr (Y X), we

may conclude that the adjoint operators corresponding to the linear operators M1

and M2 have the next forms

M∗
1(Z) = AHZBH and M∗

2(Z) = CHZDH ,

which implies that M∗ = (M∗
1,M

∗
2).

In this paper, we focus on the solutions of the subsequent two problems.

Problem 1.2. Presume that the n × n quaternion matrices A,B,C,D and E

are given. Find the matrices X and Y such that

(1.3) ‖AXB + CY D − E‖ is minimized,

and X ∈ ηHQ
n×n and Y ∈ ηAQn×n.

Problem 1.3. Presume that the n × n quaternion matrices A,B,C,D and

E are given. Suppose that SE stands for the solution set of Problem 1.2. Given

X̃ ∈ ηHQn×n and Ỹ ∈ ηAQn×n, find X∗ ∈ ηHQn×n and Y ∗ ∈ ηAQn×n such that

∥

∥

∥
X̃ −X∗

∥

∥

∥
+
∥

∥

∥
Ỹ − Y ∗

∥

∥

∥
= min

[X,Y ]∈SE

∥

∥

∥
X̃ −X

∥

∥

∥
+
∥

∥

∥
Ỹ − Y

∥

∥

∥
.

2. On the η-Hermitian and η-anti-Hermitian matrices. In this section, we

scrutinize some properties of the η-Hermitian and η-anti-Hermitian matrices which

have an essential role for constructing our algorithm to solve the mentioned problems.

Exploiting the derived results, two new linear operators are also expounded.
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For an arbitrary given A ∈ Rn×n, suppose that the operators H(A) and S(A)

give the Hermitian and skew-Hermitian parts of matrix A, respectively. That is,

H : Rn×n → SRn×n

A 7→ H (A) =
1

2
(A+AT ),

and,

S : Rn×n → ASR
n×n

A 7→ S (A) =
1

2
(A−AT ).

The following theorem reveals that the set of all n × n quaternion matrices can

be written as a direct sum of ηHQ
n×n and ηAQn×n. The theorem supplies a cardinal

tool for extending the CGLS algorithm to solve Problems 1.2 and 1.3.

Theorem 2.1. Presume that ηHQ
n×n and ηAQn×n stand for the set of all n×n

η-Hermitian and η-anti-Hermitian matrices, respectively. Then,

Qn×n = ηHQ
n×n ⊕ ηAQn×n.

Proof. We only demonstrate the validity of the assertion for η = i, the strategy

of the proof for η = j (η = k) is similar. For clarification, the proof is divided into

three steps as follows:

Step 1. In this step, we show that for an arbitrary given matrix A ∈ Qn×n, there

exist matrices B ∈ iHQ
n×n and C ∈ iAQn×n such that

(2.1) A = B + C.

To do so, it is required to characterize the structure of the members of iHQn×n and

iAQn×n. Let B = B1 +B2i+B3j +B4k be an i-Hermitian matrix, i.e, −iBHi = B.

Straightforward computations reveal that

(2.2) B1 +B2i+B3j +B4k = BT
1 −BT

2 i+BT
3 j +BT

4 k.

In view of (2.2), it can be deduced that

BT
1 = B1, BT

2 = −B2, BT
3 = B3 and BT

4 = B4.

On the other hand if BT
1 = B1, B

T
2 = −B2, B

T
3 = B3 and BT

4 = B4, then it is not

difficult to verify that B = B1 + B2i + B3j + B4k is an i-Hermitian matrix. With

a similar manner, it can be seen that C ∈ iAQn×n (i.e., iCH i = C) if and only
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if CT
1 = −C1, C

T
2 = C2, C

T
3 = −C3, and CT

4 = −C4. Consequently, we may set

A = B + C in which

B = H (A1) + S (A2) i+H (A3) j +H (A4) k,

C = S (A1) +H (A2) i+ S (A3) j + S (A4) k,

where the operators H and S are defined as before. Evidently, B ∈ iHQn×n and

C ∈ iAQn×n.

Step 2. Here it is demonstrated that if B ∈ iHQn×n and C ∈ iAQn×n then

〈B,C〉 = 0.

Suppose that B = B1 +B2i+B3j +B4k and C = C1 + C2i+ C3j + C4k, then

CHB =
(

CT
1 − CT

2 i− CT
3 j − CT

4 k
)

(B1 +B2i+B3j +B4k)

=
(

CT
1 B1 + CT

2 B2 + CT
3 B3 + CT

4 B4

)

+
(

CT
1 B2 − CT

2 B1 − CT
3 B4 + CT

4 B3

)

i

+
(

CT
1 B3 + CT

2 B4 − CT
3 B1 − CT

4 B2

)

j +
(

CT
1 B4 − CT

2 B3 + CT
3 B2 − CT

4 B1

)

k.

Thence, we have

〈B,C〉 = Re
(

tr
(

CHB
))

= tr
(

CT
1 B1 + CT

2 B2 + CT
3 B3 + CT

4 B4

)

.

From the earlier discussions in the first step, it is not onerous to see that

Re
(

tr
(

CT
i Bi

))

= 0 for i = 1, 2, 3, 4.

Step 3. In this part, it is shown that the splitting (2.1) is unique. In fact,

if A = B + C = B′ + C′ such that B,B′ ∈ iHQ
n×n and C,C′ ∈ iAQn×n then

B−B′ = C −C′. On the other hand, B−B′ ∈ iHQ
n×n and C−C′ ∈ iAQn×n. Now

Step 2 implies that B = B′ and C = C′. The result can be concluded immediately

from Steps 1, 2 and 3.

The following corollary is a direct conclusion of Theorem 2.1.

Corollary 2.2. For each A ∈ Qn×n, there exist unique matrices U1 ∈ ηHQ
n×n

and U2 ∈ ηAQn×n such that A = Uη
1 + Uη

2 and 〈Uη
1 , U

η
2 〉 = 0.

Based on the above lemma, we introduce two useful linear operators as follows:

Lη
1 : Qn×n → ηHQ

n×n

U 7→ Lη
1 (U) = Uη

1 ,

and

Lη
2 : Hn×n → ηAQn×n

U 7→ Lη
2 (U) = Uη

2 .
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We finish the current section by presenting the next two useful remarks.

Remark 2.3. In view of Theorem 2.1, we conclude that for given arbitrary

matrices U ∈ Qn×n, Q ∈ ηHQ
n×n and W ∈ ηAQn×n, we have

(2.3) 〈U,Q〉 = 〈Lη
1 (U) , Q〉 and 〈U,W 〉 = 〈Lη

2 (U) ,W 〉 .

Remark 2.4. Note that Theorem 2.1 helps us to derive the explicit forms of the

operators Lη
1(U) and Lη

2(U). For instance, consider the case that η = i. Then,

Lη
1(U) = H (U1) + S (U2) i+H (U3) j +H (U4) k,

Lη
2(U) = S (U1) +H (U2) i+ S (U3) j + S (U4) k,

where the operators H and S are defined as before and U = U1 + U2i+ U3j + U4k.

3. Proposed iterative scheme. The well-known CGLS method for resolving

the following least-squares problem

‖Ax− b‖2 ,

is obtained by applying the conjugate gradient (CG) algorithm on the normal equa-

tions ATAx = AT b and the derived algorithm is called CGLS; see [7, 36] for more

details. We would like to comment here that the CGLS method is also known as the

CGNR method; for more details see [32, Chapter 8].

As a matter of fact, the CGLS method is an oblique projection technique onto

Kn =
{

r0,
(

ATA
)

r0, . . . ,
(

ATA
)n−1

r0

}

,

and orthogonal to Ln = AKn where r0 = AT b − ATAx0 and x0 is a given initial

guess. It can be theoretically shown that in the absent of round-off errors, the CGLS

method converges to the exact solution of the normal equations ATAx = AT b within

finite number of steps [32].

The main objective of the present section is to exploit the idea of the CGLS

approach for constructing an iterative manner for resolving Problems 1.2 and 1.3 and

study its convergence properties. To this end, we mainly utilize the results obtained

in the previous section. In the rest of this section, first, an iterative algorithm is

offered for determining the solution set of Problem 1.2. Afterward an approach is

proposed to solve the second problem.

3.1. An iterative algorithm and its convergence properties. Developing

the idea of the CGLS method and using the linear operators introduced in the previous
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section, we may propose an iterative algorithm to determine the least–squares the η-

Hermitian and η-anti-Hermitian solution pair of the linear matrix equation AXB +

CY D = E. The proposed algorithm is given by Algorithm 3.1.

Algorithm 3.1. The developed CGLS method for Problem 1.2.

Data: Input A ∈ Qn×n, B ∈ Qn×n, C ∈ Qn×n, D ∈ Qn×n, E ∈ Qn×n, X(0) ∈

ηHQn×n, Y (0) ∈ ηAQn×n and choose tolerance ǫ.

Initialization:

• k = 0;

• R(0) = E −AX(0)B − CY (0)D;

• P0,x = Lη
1 (M

∗
1 (R(0)));

• P0,y = Lη
2 (M

∗
2 (R(0)));

• Q0,x = P0,x;

• Q0,y = P0,y;

While ‖R(0)‖ > ǫ or ‖P0,x‖
2
+ ‖P0,y‖

2
> ǫ Do:

• αk =
‖Pk,x‖

2+‖Pk,y‖
2

‖M(Qk,x,Qk,y)‖2 ;

• X(k + 1) = X(k) + αkQk,x;

• Y (k + 1) = Y (k) + αkQk,y;

• R(k + 1) = R(k)− αkM (Qk,x, Qk,y);

• Pk+1,x = Lη
1 (M

∗
1 (R(k + 1)));

• Pk+1,y = Lη
2 (M

∗
2 (R(k + 1)));

• βk =
‖Pk+1,x‖

2+‖Pk+1,y‖
2

‖Pk,x‖
2+‖Pk,y‖

2 ;

• Qk+1,x = Pk+1,x + βkQk,x;

• Qk+1,y = Pk+1,y + βkQk,y;

• k = k + 1;

EndDo

We will inspect the convergence behavior of Algorithm 3.1. First we need to recall

the next lemma which is called “Projection Theorem” and its proof can be found in

[37].

Lemma 3.2. Let X be a finite-dimensional inner product space, M be a subspace

of X, and M⊥ be the orthogonal complement of M. For a given x ∈ X, always,

there exists an m0 ∈ M such that ‖x−m0‖ ≤ ‖x−m‖ for all m ∈ M where ‖.‖ is

the norm associated with the inner product defined in X. Moreover, m0 ∈ M is the

unique minimization vector in M if and only if (x−m0) ⊥ M which is equivalent to

say that (x−m0) ∈ M⊥.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 372-401, July 2015



ELA

Iterative Algorithm for η-(Anti)-Hermitian Solutions of Quaternion Matrix Equations 381

Theorem 3.3. Suppose that R̃ = E −AX̃B − CỸ D where [X̃, Ỹ ] ∈ ηHQn×n ×

ηAQn×n. If Lη
i (M

∗
i (R̃)) = 0 for i = 1, 2, then [X̃, Ỹ ] is a solution pair of Problem

1.2.

Proof. Consider the following linear subspace

V =
{

V
∣

∣ V = AXB + CY D, X ∈ ηHQ
n×n and Y ∈ ηAQn×n

}

.

Presume that X̃ ∈ ηHQ
n×n and Ỹ ∈ ηAQn×n, then Ẽ = AX̃B+CỸ D ∈ V. Lemma

3.2 implies that [X̃, Ỹ ] is a least-squares solution of AXB +CY D = E if and only if

(3.1)
〈

E − Ẽ, AXB + CY D
〉

=
〈

R̃, AXB + CYD
〉

= 0,

for all X ∈ ηHQ
n×n and Y ∈ ηAQn×n. On the other hand, invoking (2.3), we have

〈

R̃, AXB + CY D
〉

=
〈

AHR̃BH , X
〉

+
〈

CHR̃DH , Y
〉

=
〈

Lη
1

(

AHR̃BH
)

, X
〉

+
〈

Lη
2

(

CHR̃DH
)

, Y
〉

=
〈

Lη
1(M

∗
1(R̃)), X

〉

+
〈

Lη
2(M

∗
2(R̃)), Y

〉

.

Consequently, from (3.1), the assumptions Lη
1(M

∗
1(R̃)) = 0 and Lη

2(M
∗
2(R̃)) = 0

ensure that [X̃, Ỹ ] is the least-squares solution pair of AXB + CY D = E which

completes the proof.

Lemma 3.4. [24] Let f(Z) be a continuous, differentiable and convex function on

subspace Y, then there exists Z∗ ∈ Y such that f(Z∗) = min
Z∈Y

f(Z) if and only if the

projection of the gradient ∇f(Z∗) onto Y equals to zero.

Remark 3.5. Using Lemma 3.4, we can present an alternative proof for Theorem

3.3. To this end, we define

f : Qn×n × Qn×n → R

[X,Y ] 7→ f (X,Y ) = ‖AXB + CY D − E‖
2
.(3.2)

It is not difficult to establish that f(X,Y ) is a continuous, differentiable and con-

vex function. With a similar approach used in [26], the gradient of f(X,Y ) can be

obtained. To do so, consider the next auxiliary function

g : R → R

t 7→ g(t) = f (X + tP1, Y + tP2)(3.3)

in which P1 and P2 are arbitrary quaternion matrices. It can be seen that

(3.4) g′(0) = 〈∇Xf(X,Y ), P1〉+ 〈∇Y f(X,Y ), P2〉 .
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From (3.2), (3.3) and some straightforward computations, we get

g′(0) = 2 〈AXB + CY D − E,AP1B〉

+2 〈AXB + CY D − E,CP2D〉

= 2
〈

AH (AXB + CY D − E)BH , P1

〉

(3.5)

+2
〈

CH (AXB + CY D − E)DH , P2

〉

.

In view of (3.4) and (3.5), it turns out that

∇Xf(X,Y ) = 2AH (AXB + CY D − E)BH = −2AHRBH ,

∇Y f(X,Y ) = 2CH (AXB + CY D − E)DH = −2CHRDH .

Now from the discussion of this remark, it is not difficult to conclude that if

Lη
1

(

AHRBH
)

= 0 and Lη
2

(

CHRDH
)

= 0,

where R = E − AXB − CY D, then [X,Y ] is the minimizer of (3.2) over the η-

Hermitian and η-anti-Hermitian matrices.

The next theorem can be proved by mathematical induction and its proof is

elaborated in Appendix A.

Theorem 3.6. Suppose that k steps of Algorithm 3.1 have been performed,

i.e., ‖Pl,x‖
2
+ ‖Pl,y‖

2
6= 0 and M(Ql,x, Ql,y) 6= 0 for l = 0, 1, . . . , k. The sequences

Pl,x, Pl,y, Ql,x and Ql,y (l = 0, 1, . . . , k) produced by Algorithm 3.1 satisfy the following

statements

〈Pi,x, Pj,x〉+ 〈Pi,y , Pj,y〉 = 0,(3.6)

〈M(Qi,x, Qi,y),M(Qj,x, Qj,y)〉 = 0,(3.7)

〈Pi,x, Qj,x〉+ 〈Pi,y, Qj,y〉 = 0,(3.8)

for i, j = 0, 1, 2, . . . , k (i 6= j).

Remark 3.7. Note that if in a specific step of Algorithm 3.1, say l-th step, we

face to the situation that ‖Pl,x‖
2
+ ‖Pl,y‖

2
= 0. Then,

Pl,x = Lη
1 (M

∗
1 (R(l))) = 0 and Pl,y = Lη

2 (M
∗
2 (R(l))) = 0,

which, in view of Theorem 3.3, implies that [X(l), Y (l)] is a solution pair of Problem

1.2. On the other hand, the subsequent computations reveal that ifM(Ql,x, Ql,y) = 0,

then ‖Pl,x‖
2
+ ‖Pl,y‖

2
= 0,

〈M (Ql,x, Ql,y) , R(l)〉 = 〈M1 (Ql,x) +M2 (Ql,y) , R(l)〉

= 〈Ql,x,L
η
1 (M

∗
1 (R(l)))〉+ 〈Ql,y,L

η
2 (M

∗
2 (R(l)))〉

= 〈Ql,x, Pl,x〉+ 〈Ql,y, Pl,y〉

= ‖Pl,x‖
2
+ ‖Pl,y‖

2
.
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The following theorem can be deduced from Theorem 3.6 immediately. The proof

of the theorem is straightforward and is omitted.

Theorem 3.8. For any initial matrix pair [X(0), Y (0)] ∈ ηHQn×n × ηAQn×n,

Algorithm 3.1 converges to the exact solution of Problem 1.2 within finite number of

steps in the absence of round-off errors.

In the sequent part of this subsection, our goal is to demonstrate that the least-

norm solution of Problem 1.2 can be obtained by choosing appropriate initial matrices.

To this end, let us define the next linear subspace over ηHQn×n × ηAQn×n,

(3.9) W =
{

[W1,W2]
∣

∣ W1 = Lη
1

(

AHZBH
)

and W2 = Lη
2

(

CHZDH
)}

.

where Z ∈ Qn×n is an arbitrary given matrix.

Lemma 3.9. Let [X̃, Ỹ ] be a solution pair of Problem 1.2. Suppose that [N1, N2] ∈

ηHQn×n× ηAQn×n. Then, [X̃ +N1, Ỹ +N2] is a solution pair of Problem 1.2 if and

only if AN1B + CN2D = 0.

Proof. If [X̃ +N1, Ỹ +N2] ∈ ηHQ
n×n × ηAQn×n and AN1B + CN2D = 0, then

∥

∥

∥
A
(

X̃ +N1

)

B + C
(

Ỹ +N2

)

D − E
∥

∥

∥

2

=
∥

∥

∥
AX̃B + CỸ D − E

∥

∥

∥

2

,

which ensures that [X̃ +N1, Ỹ +N2] is a solution pair of Problem 1.2. Conversely,

suppose that [X̃ +N1, Ỹ +N2] ∈ ηHQ
n×n × ηAQn×n is a solution pair of Problem

1.2. By the hypophysis, [X̃, Ỹ ] is a solution pair of Problem 1.2, therefore

(3.10)
∥

∥

∥AX̃B + CỸ D − E
∥

∥

∥

2

=
∥

∥

∥A
(

X̃ +N1

)

B + C
(

Ỹ +N2

)

D − E
∥

∥

∥

2

.

As [X̃, Ỹ ] is a least-squares solution of AXB + CY D = E, Lemma 3.2 implies that
〈

AX̃B + CỸ D − E,AXB + CY D
〉

= 0.

In view of the above relation and the next computations, we have

∥

∥

∥A
(

X̃ +N1

)

B + C
(

Ỹ +N2

)

D − E
∥

∥

∥

2

=
∥

∥

∥AX̃B + CỸ D − E
∥

∥

∥

2

+ ‖AN1B + CN2D‖2

− 2
〈

AX̃B + CỸ D − E,AN1B + CN2D
〉

=
∥

∥

∥AX̃B + CỸ D − E
∥

∥

∥

2

+ ‖AN1B + CN2D‖
2
.

Now the result follows from (3.10) immediately.

Theorem 3.10. If the initial matrix pair [X(0), Y (0)] belongs to W, then Algo-

rithm 3.1 converges to the least-norm solution pair of Problem 1.2.
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Proof. Suppose that the initial matrices are chosen such that [X(0), Y (0)] ∈ W.

Presume that ℓ steps of Algorithm 3.1 have been performed. In this case, for the

sequence of approximate solutions {X(j)}
ℓ

j=1 and {Y (j)}
ℓ

j=1 produced by Algorithm

3.1, we have [X(j), Y (j)] ∈ W for some Z ∈ Qn×n. Suppose that X(j) → X∗ and

Y (j) → Y ∗ as j → ∞. From Lemma 3.9, it reveals that any arbitrary solution pair

[X,Y ] of Problem 1.2 can be expressed as [X∗ + N1, Y
∗ + N2] such that [N1, N2] ∈

ηHQ
n×n × ηAQn×n and AN1B + CN2D = 0. On the other hand,

〈X∗, N1〉+ 〈Y ∗, N2〉 =
〈

Lη
1

(

AHZBH
)

, N1

〉

+
〈

Lη
2

(

CHZDH
)

, N2

〉

=
〈

AHZBH , N1

〉

+
〈

CTZDT , N2

〉

= 〈Z,AN1B〉+ 〈Z,CN2D〉

= 〈Z,AN1B + CN2D〉 .

= 0.

Hence, we get

‖X∗ +N1‖
2
+ ‖Y ∗ +N2‖

2
= ‖X∗‖

2
+ ‖Y ∗‖

2
+ ‖N1‖

2
+ ‖N2‖

2

≥ ‖X∗‖
2
+ ‖Y ∗‖

2
.

This implies that the solution pair [X∗, Y ∗] is the least-norm solution pair of Problem

1.2.

The next theorem illustrates that the sequence of approximate solutions generated

via Algorithm 3.1 satisfies a minimization property.

Theorem 3.11. Let [X(0), Y (0)] ∈ ηHQ
n×n × ηAQn×n be an arbitrary initial

matrix pair, then the generated matrix solution pair [X(k), Y (k)] at the k-th iteration

step is the minimizer of the following optimization problem

min
[X,Y ]∈Uk

‖AXB + CY D − E‖
2
,

where the affine subspace Uk is expounded as follows:

(3.11) Uk = [X(0), Y (0)] + span{[Q0,x, Q0,y], [Q1,x, Q1,y], . . . , [Qk−1,x, Qk−1,y]}.

Proof. Consider an arbitrary matrix pair [X,Y ] ∈ Uk. From (3.11), there exist

real numbers β0, β2, . . . , βk−1 such that

[X,Y ] = [X(0), Y (0)] +

k−1
∑

i=0

βi[Qi,x, Qi,y].
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We define the next function with respect to β0, β1, . . . , βk−1,

f(β0, β1, . . . , βk−1) = ‖AXB + CY D − E‖
2

=

∥

∥

∥

∥

∥

A

(

X(0) +
k−1
∑

i=0

βiQi,x

)

B + C

(

Y (0) +
k−1
∑

i=0

βiQi,y

)

D − E

∥

∥

∥

∥

∥

2

.(3.12)

It is well-known that the function (3.12) is continuous and differentiable with respect

to the variables β0, β1, . . . , βk−1. Straightforward computations reveal that

f(β0, β2, . . . , βk−1) =

∥

∥

∥

∥

∥

A

(

X(0) +
k−1
∑

i=0

βiQi,x

)

B + C

(

Y (0) +
k−1
∑

i=0

βiQi,y

)

D − E

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

AX(0)B + CY (0)D − E +
k−1
∑

i=0

βiAQi,xB +
k−1
∑

i=0

βiCQi,yD

∥

∥

∥

∥

∥

2

= ‖R(0)‖
2
+

k−1
∑

i=0

β2
i ‖AQi,xB + CQi,yD‖

2

−2

k−1
∑

i=0

βi 〈R(0), AQi,xB + CQi,yD〉,

where R(0) = E −AX(0)B − CY (0)D.

From Algorithm 3.1, it is seen that R(0) can be written as

R(0) = R (i) + γi−1 (AQi−1,xB + CQi−1,yD)

+ · · ·+ γ0 (AQ0,xB + CQ0,yD) ,(3.13)

for some γ0, γ1, . . . , γi−1. Note that Lemma 3.4 demonstrates that the necessary and

sufficient conditions for minimizing f(β0, β1, . . . , βk−1) are

∂f(β0, β1, . . . , βk−1)

∂βi

= 0, i = 0, 1, . . . , k − 1.

Hence, the optimal solution is obtained as soon as

(3.14) βi =
〈R(0), AQi,xB + CQi,yD〉

‖AQi,xB + CQi,yD‖
2 , i = 0, 1, . . . , k − 1.

Using Eqs. (3.7), (3.8), (3.13) and some computations, we can simplify (3.14) as

follows:

βi =
〈R(0), AQi,xB + CQi,yD〉

‖AQi,xB + CQi,yD‖
2 =

〈R(i), AQi,xB + CQi,yD〉

‖AQi,xB + CQi,yD‖
2

=

〈

Lη
1

(

AHR(i)BH
)

, Qi,x

〉

+
〈

Lη
2

(

CHR(i)DH
)

, Qi,y

〉

‖AQi,xB + CQi,yD‖
2

=
〈Pi,x, Qi,x〉+ 〈Pi,y , Qi,y〉

‖AQi,xB + CQi,yD‖2
=

‖Pi,x‖
2
+ ‖Pi,y‖

2

‖AQi,xB + CQi,yD‖2
= αi, i = 0, 1, . . . , k − 1.
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Now the result follows from the following fact immediately,

min
βi

f (β0, β1, . . . , βk−1) = min
[X,Y ]∈Uk

‖AXB + CYD − E‖
2
.

Remark 3.12. Let us define the sets Uk−1 and Uk as follows:

Uk−1 = [X(0), Y (0)] + span{[Q0,x, Q0,y], [Q1,x, Q1,y], . . . , [Qk−1,x, Qk−1,y]},

Uk = [X(0), Y (0)] + span{[Q0,x, Q0,y], [Q1,x, Q1,y], . . . , [Qk,x, Qk,y].

It is obvious that Uk−1 ⊆ Uk which illustrates that

‖R(k)‖
2
= min

Uk

‖AXB + CY D − E‖
2
≤ min

Uk−1

‖AXB + CY D − E‖
2
= ‖R(k − 1)‖

2
.

Evidently, the above inequality demonstrates that the sequence of the norm of resid-

uals produced by Algorithm 3.1 is decreasing which shows that the algorithm is con-

vergent.

3.2. The solution of Problem 2. In this subsection, we briefly express how

the second problem can be solved using Algorithm 3.1. Suppose that a matrix pair

[X̂, Ŷ ] ∈ ηHQ
n×n × ηAQn×n is given. Evidently, we may find the solution pair of

Problem 1.3 by finding the least-norm solution pair [Z,W ] of the following least-

squares problem

(3.15) min ‖AZB + CWD − F‖ ,

where Z = X − X̂, W = Y − Ŷ and F = E −AX̂B − CŶ D.

To this end, we exploit Algorithm 3.1 with the initial matrices [Z(0),W (0)] ∈ W,

e.g. [Z(0),W (0)] = [0, 0], for determining the least-norm solution pair [Z∗,W ∗]. Then

the solution pair of Problem 1.3 can be obtained by setting [X∗, Y ∗] = [X̂ + Z∗, Ŷ +

W ∗].

4. Application of a preconditioner. In this section, we propose a precondi-

tioned form of Algorithm 3.1 for solving Problem 1.2 to accelerate the convergence

of the algorithm. Exploiting the offered preconditioner can be profitable when the

quaternion coefficient matrices are extremely ill-conditioned. First, we need to recall

some theorems and definitions.

Theorem 4.1. [38] Let A ∈ Qm×n with rank(A) = r. Then there exist unitary

quaternion matrices U ∈ Qm×n and V ∈ Qn×n such that

(4.1) UHAV =

(

Σr 0

0 0

)

,
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where Σr = diag (σ1, σ2, . . . , σr) , σ1 ≥ σ2 ≥ · · · ≥ σr > 0, and σ1, σ2, . . . , σr are the

nonzero singular values of quaternion matrix A.

Let A = A1 + iA2 + jA3 + kA4 ∈ Qm×n be an arbitrary quaternion matrix, then

the real representation of A is specified as follows:

(4.2) AR =









A1 −A2 −A3 −A4

A2 A1 −A4 A3

A3 A4 A1 −A2

A4 −A3 A2 A1









.

From (4.1) and using the properties of the real representation operator (4.2), we get

(

UR
)T

ARV R =

(

Σr 0

0 0

)R

,

which is the SVD decomposition of matrix AR. Consequently, the singular values of

the quaternion matrix A and its real representation form AR are the same.

Definition 4.2. The spectral condition number of a quaternion matrix A ∈

Qm×n is defined by

cond(A) = ‖A‖2
∥

∥A+
∥

∥

2
=

σ1

σr

,

where A+, stands for the Moore-Penrose pseudoinverse of the quaternion matrix A.

By straightforward computations, it can be proved that cond(A) = cond(AR).

Developing the idea utilized in [28], the preconditioned form of Algorithm 3.1 to solve

(1.2) can be presented. Consider the ensuing four nonsingular preconditioners

Q1 = diag (1/ ‖A(:, 1)‖ , 1/ ‖A(:, 2)‖ , . . . , 1/ ‖A(:, n)‖) ,

Q2 = diag (1/ ‖B(1, :)‖ , 1/ ‖B(2, :)‖ , . . . , 1/ ‖B(n, :)‖) ,

Q3 = diag (1/ ‖C(:, 1)‖ , 1/ ‖C(:, 2)‖ , . . . , 1/ ‖C(:, n)‖) ,

Q4 = diag (1/ ‖D(1, :)‖ , 1/ ‖D(2, :)‖ , . . . , 1/ ‖D(n, :)‖) ,

where for arbitrary given matrix Z, ‖Z(:, i)‖ and ‖Z(i, :)‖ signify the Frobenius norm

of i-th column and i-th row of matrix Z, respectively. As discussed in [28], the idea

behind these choices of preconditionres comes from an established theorem in [34,

Theorem 3.5]. As a matter of fact after applying the preconditioners of the above

forms, the condition numbers of the coefficient matrices of the obtained preconditioned

problem become smaller; for more details see [28, 34].
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Consider the equivalent form of (1.3) as follows:

(4.3) min
∥

∥AQ1Q
−1
1 XQ−1

2 Q2B + CQ3Q
−1
3 Y Q−1

4 Q4D − E
∥

∥ .

Assume that

Â = AQ1, B̂ = Q2B, Ĉ = CQ3, D̂ = Q4D, X̂ = Q−1
1 XQ−1

2 , and Ŷ = Q−1
3 Y Q−1

4 .

Then (4.3) can be rewritten in the next form

(4.4) min
∥

∥

∥
ÂX̂B̂ + ĈŶ D̂ − E

∥

∥

∥
.

By employing Algorithm 3.1 to solve (4.4), we can obtain X̂ and Ŷ . Afterward, the

solutions of (4.3) can be obtained by setting X = Q1X̂Q2 and Y = Q3Ŷ Q4.

5. Numerical experiments. In this section, we examine some test examples

to numerically confirm the validity of the results elaborated in the previous sections

and to demonstrate that Algorithm 3.1 is robust and effective for solving Problems

1.2 and 1.3. We comment here that all of the numerical experiments were performed

on a Pentium 4 PC with a 2.67 GHz CPU and 4.00GB of RAM using some Matlab

code in MATLAB 8.1.0.604.

Example 5.1. Consider Problem 1.2 where

A =

(

1 + 4i+ 7j + 2k 1 + 2i− 4j + 2k

3 + i+ 4j + 3k 1 + 2i+ 3j + 4k

)

,

B =

(

−6 + i+ 5j + 8k 3 + 2i+ j + 4k

7 + 9i+ 3j + 2k −2− 3i+ 4j − 5k

)

,

C =

(

−3 + 4i+ j + 5k 0

5 + i+ 3j + 8k 0

)

, D =

(

−7 + i+ 2j − k −1 + 2i+ 9j − k

−3− 3i+ 2j + k 1 + 2i+ 3j + k

)

,

and

E =

(

−95.33− 75.67i− 110j − 34.83k −75− 17.67i− 72.33j − 19.17k

−156.7− 92.33i− 90j − 64.67k −148.5− 0.666i− 30.17j + 47.17k

)

.

We aim to apply Algorithm 3.1 to solve Problem 1.2. In addition, for two given

matrices X̂ ∈ iHQ
2×2 and Ŷ ∈ iAQ2×2,

X̂ =

(

3 + 5j + k 2− i+ 2j + 2k

2 + i+ 2j + 2k 1 + 3j + 4k

)

,

and
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Ŷ =

(

4i −2− 0.5i− 2j − 0.5k

2− 0.5i+ 2j + 0.5k −2i

)

,

the solution pair of Problem 1.3 is determined.

It can be verified that the matrix equation AXB + CY D = E is consistent

over the i-Hermitian and i-anti-Hermitian matrices as the following i-Hermitian and

i-anti-Hermitian matrices satisfy AXB + CY D = E,

X =

(

1 + j + k 0.5 + 0.5j + 0.5k

0.5 + 0.5j + 0.5k 0.33 + 0.33j + 0.33k

)

,

and,

Y =

(

i 0.5i

0.5i 10i

)

.

In order to resolve Problem 1.2, we set [X(0), Y (0)] = [0, 0] as the initial guess and

exploit the subsequent stopping criterion,

‖R(k)‖ = ‖F −AX(k)B − CY (k)D‖ < 10−10.

Utilizing Algorithm 3.1, the approximate least-norm solution pair of mentioned prob-

lem can be derived respectively as follows:

X(21) =

(

1 + j + k 0.5 + 0.5j + 0.5k

0.5 + 0.5j + 0.5k 0.33 + 0.33j + 0.33k

)

,

and

Y (21) =

(

i 0.5i

0.5i 0

)

,

where the corresponding residual norm is ‖R(21)‖ = ‖F −AX(21)B − CY (21)D‖ =

4.1507× 10−10. It can be seen that

‖X‖+ ‖Y ‖ = 10.3118 and
∥

∥

∥
X(21)

∥

∥

∥
+
∥

∥

∥
Y (21)

∥

∥

∥
= 2.5166.

Therefore,

‖X‖+ ‖Y ‖ >
∥

∥

∥X(21)
∥

∥

∥+
∥

∥

∥Y (21)
∥

∥

∥ ,

which confirms the established fact that performing Algorithm 3.1 with the initial

approximate of the form (3.9) gives the least-norm solution pair of Problem 1.2. For
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more details, the required iteration numbers and CPU time (sec) for the convergence

and the Frobenius norm of residuals at different iterates are reported in Table 5.1.

Table 5.1

Numerical results for Example 5.1.

Iteration 15 20 25 30

CPU time 0.3327 0.4354 0.5618 0.6543

‖R(k)‖ 0.0019 1.0057e− 10 2.1703e− 12 3.4083e− 13

For solving Problem 1.3, Algorithm 3.1 is used to determine the solution pair of

(3.15) in which

F = E −AX̂B − CŶ D =

(

143.2 + 203.3i− 33.5j + 143.2k 147 + 35.83i+ 155.7j + 185.3k

374.8 + 278.7i+ 65.5j + 163.3k 146.5− 56.83i+ 176.8j − 158.3k

)

.

By the following choice of the initial guess [Z(0),W (0)] = [0, 0], we derive

‖R(21)‖ = ‖F −AZ(21)B − CW (21)D‖ = 5.0558× 10−11.

The computed approximate solution pair for [Z∗,W ∗] is given by

Z∗ ≃ Z(21) =

(

−2− 4j −1.5 + i− 1.5j − 1.5k

−1.5− i− 1.5j − 1.5k −0.6667− 2.667j − 3.667k

)

,

and

W ∗ ≃ W (21) =

(

−3i 2 + i+ 2j + 0.5k

−2 + i− 2j − 0.5k 0

)

.

Using the presented discussion in Subsection 3.2, the solution of Problem 1.3 is cal-

culated by

X∗ = X̂ + Z∗ ≃

(

1 + j + k 0.5 + 0.5j + 0.5k

0.5 + 0.5j + 0.5k 0.33 + 0.33j + 0.33k

)

,

and,

Y ∗ = Ŷ +W ∗ ≃

(

i 0.5i

0.5i −2i

)

.

For more clarification, we exhibit the convergence curves of the methods in Figures

5.1 where

(5.1) ε(k) = log10 ‖R(k)‖ .
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Fig. 5.1. Convergence history for Problem 1.2.

Example 5.2. In this instance, we focus on Problem 1.2 such that

A = A1 +A2i+A3j +A4k, B = B1 +B2i+B3j +B4k,

C = C1 + C2i+ C3j + C4k, D = D1 +D2i+D3j +D4k,

E = E1 + E2i+ E3j + E4k,

where

A1 = triu(hilb(n)), A2 = triu(ones(n, n)), A3 = eye(n), A4 = zeros(n, n),

B1 = tridiag(n,−1, 2,−1), B2 = eye(n), B3 = zeros(n, n),

B4 = tridiag(n, 0.5, 6,−0.5),

C1 = C2 = C3 = C4 = ones(n, n), D1 = D2 = D3 = D4 = ones(n, n),

E1 = hankel(1 : n), E2 = zeros(n, n), E3 = zeros(n, n), E4 = zeros(n, n).

Our goal is to find the least-norm solution pair of Problem 1.2.

It can be seen that the matrix equation AXB+CYD = E mentioned in Example

5.2 is not consistent over k-Hermitian and k-anti-Hermitian matrices. From Theorem

3.10, it is known that if the initial matrix group [X(0), Y (0)] are chosen so that

[X(0), Y (0)] ∈ W, then the least-norm solution pair can be obtained. We apply

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 372-401, July 2015



ELA

392 F.P.A. Beik and S. Ahmadi-Asl

Algorithm 3.1 to solve Problem 1.2 for different values of n with [X(0), Y (0)] = [0, 0].

The iterations are stopped as soon as

(5.2) η(k) = log10

√

‖Pk,x‖
2
+ ‖Pk,y‖

2

‖P0,x‖
2 + ‖P0,y‖

2 < 10−5.

The details of numerical results including the required iteration numbers and the

Frobenius norm of residuals are recorded in Table 5.2 where R(k) = F −AX(k)B −

CY (k)D. The convergence histories are depicted in Figure 5.2 where η(k) defined by

(5.2).

Table 5.2

Numerical results for Example 5.2.

n ‖X(k)‖+ ‖Y (k)‖ min ‖R(k)‖ Iteration

20 13.3815 27.9922 76

40 38.8499 65.7652 178

60 107.3637 71.9070 287
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Fig. 5.2. Convergence history for Example 5.2.

Remark 5.3. We would like to comment here that it is not possible to use

the presented scheme in [40] for n = 40, 60 during the programming process due to
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the required high computational costs. Whereas Algorithm 3.1 can be successfully

handled which reveals the superiority of the proposed algorithm.

Example 5.4. In this example, we examine the efficiency of Algorithm 3.1 for

solving sparse quaternion least-squares problems. The test matrices were chosen from

HB (Harwell-Boeing) group of Tim Davis’s collection [10]. The four test matrices

utilized in this experiment appear in structural problem (bcsstm01) and directed

weighted graph problems(gre−115, gre−185 and gre−343). The sparsity structure of

mentioned matrices are illustrated in Figure 5.3 where “nz” stands for the number

of nonzero entries of the matrix. In addition, the properties of the test matrices are

presented in Table 5.3 for more details.

Table 5.3

The sparsity structure of test matrices for Example 5.4.

Matrix number of number of structure condition number

rows columns

bcsstm01 48 48 symmetric Inf

gre−115 115 115 unsymmetric 49.6709

gre−185 185 185 unsymmetric 103.015

gre−343 343 343 unsymmetric 111.976

The main objective is to find the solution pair of Problem 1.2 associated with the

matrix equation AXB + CY D = E such that

A = A1 +A2i+A3j +A4k, B = B1 +B2i+B3j +B4k,

C = C1 + C2i+ C3j + C4k, D = D1 +D2i+D3j +D4k,

E = E1 + E2i+ E3j + E4k.

Presume that

A1 = B1 = C1 = D1, A2 = B2 = C2 = D2,

A3 = B3 = C3 = D3, A4 = B4 = C4 = D4.

The right hand side E is constructed such that X = Lj
1(C) and Y = Lj

2(D)

satisfy AXB + CY D = E. Hence, the problem is consistent over j-Hermitian and

j-anti-Hermitian matrices. The following four instances are examined:

Case 1:

A1 = tridiag(−1, 2,−1), A2 = bcsstm01, A3 = tridiag(1, 3, 1), A4 = bcsstm01.
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Fig. 5.3. The sparsity structure of test matrices.

Case 2:

A1 = tridiag(−1, 2,−1), A2 = gre−115, A3 = tridiag(1, 3, 1), A4 = gre−115.

Case 3:

A1 = tridiag(−1, 2,−1), A2 = gre−185, A3 = tridiag(1, 3, 1), A4 = gre−185.

Case 4:

A1 = tridiag(−1, 2,−1), A2 = gre−343, A3 = tridiag(1, 3, 1), A4 = gre−343.

We employed Algorithm 3.1 and its preconditioned version for Example 5.4, the

obtained results are presented in the following figures. For Case 1, Algorithm 3.1 has

slow convergence rate than preconditioned version since the matrix bcsstm01 is an ill-

conditioned matrix. The convergence histories of Algorithm 3.1 and its preconditioned

version for this case are depicted in Figure 5.4 where ε(k) specified by (5.1). However,
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for Cases 2–4, the convergence rate of Algorithm 3.1 and its preconditioned version

is almost equal as the coefficients are well conditioned. The convergence history of

Algorithm 3.1 for Cases 2–4 is plotted in Figure 5.5.
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Fig. 5.4. Convergence history for Case 1 of Example 5.4.

0 5 10 15 20 25 30 35 40 45 50
−14

−12

−10

−8

−6

−4

−2

0

2

4

Number of iterations (k)

ε(
k)

 

 

Case 2

Case 3

Case 4

Fig. 5.5. Convergence history for Cases 2, 3, 4 of Example 5.4.
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6. Conclusion and further works. The paper has been concerned with solving

two main problems referred Problem 1.2 and Problem 1.3. More precisely, Problem

1.2 deals with solving the least-squares problem

‖AXB + CY D − E‖ = min,

over X ∈ ηHQ
n×n and Y ∈ ηAQn×n matrices. The main aim of the second problem

was to obtain the optimal approximate solution pair of Problem 1.2 with respect to

an arbitrary given matrix pair. After establishing some properties of the η-Hermitian

and η-anti-Hermitian matrices, the well-known CGLS iterative algorithm has been

developed to construct an efficient and robust algorithm for solving Problems 1.2

and 1.3. The convergence properties of the algorithm have been analyzed and a

preconditioned version of the algorithm has been suggested. Numerical results have

illustrated the efficiency and feasibility of the presented algorithm. The proposed

iterative scheme can be generalized for solving the following generalized quaternion

least-squares problem over η-Hermitian and η-anti-Hermitian matrices,

min

∥

∥

∥

∥

∥

∥

n
∑

j=1

n
∑

i=1

(

AiXiBi + CiX
H
i Di − Ei

)

∥

∥

∥

∥

∥

∥

.

Future work can investigate applying suitable preconditioners to speed up the con-

vergence of the CGLS algorithm for solving the least-squares problems corresponding

to coupled matrix equations.
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Appendix A. Proof of Theorem 3.6. Because of commutative property of

the inner product 〈., .〉, we only need to prove the validity of Eqs. (3.6), (3.7) and

(3.8) for 1 ≤ i < j ≤ k. For k = 1, we have

〈P0,x, P1,x〉+ 〈P0,y, P1,y〉

=
〈

P0,x, P0,x − α0L
η
1

(

AH (M(Q0,x, Q0,y))B
H
)〉

+
〈

P0,y, P0,y − α0L
η
2

(

CH (M(Q0,x, Q0,y))D
H
)〉

= ‖P0,x‖
2
+‖P0,y‖

2
−α0 〈AP0,xB,M(Q0,x, Q0,y)〉−α0 〈CP0,yD,M(Q0,x, Q0,y)〉

= ‖P0,x‖
2
+ ‖P0,y‖

2
− α0 〈M(Q0,x, Q0,y),M(Q0,x, Q0,y)〉

= 0.
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〈M (Q0,x, Q0,y) ,M (Q1,x, Q1,y)〉

= 〈M (Q0,x, Q0,y) ,M (P1,x + β0Q0,x, P1,y + β0Q0,y)〉

= β0‖M (Q0,x, Q0,y)‖
2 + 〈M (Q0,x, Q0,y) ,M (P1,x, P1,y)〉

= β0‖M (Q0,x, Q0,y)‖
2

+
1

α0
(〈M∗

1 (R0 −R1) , P1,x〉+ 〈M∗
2 (R0 −R1) , P1,y〉)

= β0‖M (Q0,x, Q0,y)‖
2

+
1

α0
(〈Lη

1 (M
∗
1 (R0 −R1)) , P1,x〉 + 〈Lη

2 (M
∗
2 (R0 −R1)) , P1,y〉)

= β0‖M (Q0,x, Q0,y)‖
2

+
1

α0
(〈P0,x − P1,x, P1,x〉+ 〈P0,y − P1,y, P1,y〉)

= 0.

Evidently, it can be seen that

〈P1,x, Q0,x〉+ 〈P1,y, Q0,y〉 = 〈P1,x, P0,x〉+ 〈P1,y, P0,y〉 = 0.

Hence, the equations (3.6)–(3.8) are valid for k = 1. Suppose that assertions (3.6)–

(3.8) are true for i ≤ s. To complete the proof, in the sequel, we demonstrate the

validity of the conclusions for k = s+ 1. For i < s, it can be deuced that

〈Pi,x, Ps+1,x〉+ 〈Pi,y, Ps+1,y〉

=
〈

Pi,x, Ps,x − αsL
η
1

(

AH (M(Qs,x, Qs,y))B
H
)〉

+
〈

Pi,y , Ps,y − αsL
η
2

(

CH (M(Qs,x, Qs,y))D
H
)〉

= −αs 〈M1(Pi,x),M(Qs,x, Qs,y)〉

− αs 〈M2(Pi,y),M(Qs,x, Qs,y)〉

= −αs 〈M1(Qi,x − βi−1Qi−1,x),M(Qs,x, Qs,y)〉

− αs 〈M2(Qi,y − βi−1Qi−1,y),M(Qs,x, Qs,y)〉

= 0,
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〈M (Qi,x, Qi,y) ,M (Qs+1,x, Qs+1,y)〉

= 〈M (Qi,x, Qi,y) , M (Ps+1,x + βsQs,x, Ps+1,y + βsQs,y)〉

= 〈M (Qi,x, Qi,y) ,M (Ps+1,x, Ps+1,y)〉

=
1

αi

〈R(i)−R(i+ 1),M (Ps+1,x, Ps+1,y)〉

=
1

αi

〈M∗
1 (R(i)−R(i+ 1)) , Ps+1,x〉+

1

αi

〈M∗
2 (R(i)−R(i+ 1)) , Ps+1,y〉

=
1

αi

〈M∗
1 (R(i))−M∗

1(R(i + 1)), Ps+1,x〉

+
1

αi

〈M∗
2 (R(i))−M∗

2 (R(i+ 1)) , Ps+1,y〉

=
1

αi

〈Lη
1 (M

∗
1 (R(i))−M∗

1 (R(i+ 1))) , Ps+1,x〉

+
1

αi

〈Lη
2 (M

∗
2 (R(i))−M∗

2 (R(i+ 1))) , Ps+1,y〉

= −
1

αi

(〈Pi+1,x, Ps+1,x〉+ 〈Pi+1,y , Ps+1,y〉) = 0,

and,

〈Qi,x, Ps+1,x〉+ 〈Qi,y, Ps+1,y〉

=
〈

Qi,x, Ps,x − αsL
η
1

(

AH (M(Qs,x, Qs,y))B
H
)〉

+
〈

Qi,x, Ps,x − αsL
η
2

(

CH (M(Qs,x, Qs,y))D
H
)〉

= −αs 〈M1 (Qi,x) ,M (Qs,x, Qs,y)〉 − αs 〈M2 (Qi,y) ,M (Qs,x, Qs,y)〉

= −αs 〈M (Qi,x, Qi,y) ,M (Qs,x, Qs,y)〉 = 0.

For i = s, we have

〈Ps,x, Ps+1,x〉+ 〈Ps,y , Ps+1,y〉

=
〈

Ps,x, Ps,x − αsL
η
1

(

AH (M(Qs,x, Qs,y))B
H
)〉

+
〈

Ps,y, Ps,y − αsL
η
2

(

CH (M(Qs,x, Qs,y))D
H
)〉

= ‖Ps,x‖
2
+ ‖Ps,y‖

2
− αs 〈M1 (Ps,x) ,M(Qs,x, Qs,y)〉

− αs 〈M2 (Ps,y) ,M(Qs,x, Qs,y)〉

= ‖Ps,x‖
2
+ ‖Ps,y‖

2
− αs 〈M (Ps,x, Ps,y) ,M(Qs,x, Qs,y)〉

= ‖Ps,x‖
2 + ‖Ps,y‖

2 − αs 〈M(Qs,x, Qs,y),M(Qs,x, Qs,y)〉 = 0,
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〈M (Qs,x, Qs,y) ,M (Qs+1,x, Qs+1,y)〉

= 〈M (Qs,x, Qs,y) ,M (Ps+1,x + βsQs,x, Ps+1,y + βsQs,y)〉

= βs‖M (Qs,x, Qs,y)‖
2 + 〈M (Qs,x, Qs,y) ,M (Ps+1,x, Ps+1,y)〉

= βs‖M (Qs,x, Qs,y)‖
2
+

1

αs

〈R(s)−R(s+ 1),M (Ps+1,x, Ps+1,y)〉

= βs‖M (Qs,x, Qs,y)‖
2 +

1

αs

〈R(s)−R(s+ 1),M (Ps+1,x, Ps+1,y)〉

= βs‖M (Qs,x, Qs,y)‖
2
+

1

αs

〈M∗
1 (R(s)−R(s+ 1)) , Ps+1,x〉

+
1

αs

〈M∗
2 (R(s)−R(s+ 1)) , Ps+1,y〉

= βs‖M (Qs,x, Qs,y)‖
2
+

1

αs

〈Lη
1 (M

∗
1 (R(s)−R(s+ 1))) , Ps+1,x〉

+
1

αs

〈Lη
2 (M

∗
2 (R(s)−R(s+ 1))) , Ps+1,y〉

= βs‖M (Qs,x, Qs,y)‖
2
+

1

αs

〈Ps,x − Ps+1,x, Ps+1,x〉

+
1

αs

〈Ps,y − Ps+1,y , Ps+1,y〉 = 0,

and,

〈Qs,x, Ps+1,x〉+ 〈Qs,y, Ps+1,y〉

=
〈

Qs,x, Ps,x − αsL
η
1

(

AHM (Qs,x, Qs,y)B
H
)〉

+
〈

Qs,y, Ps,y − αsL
η
2

(

CHM (Qs,x, Qs,y)D
H
)〉

= ‖Ps,x‖
2
+ ‖Ps,y‖

2
− αs

〈

Qs,x, A
HM (Qs,x, Qs,y)B

H
〉

− αs

〈

Qs,y, C
HM (Qs,x, Qs,y)D

H
〉

= ‖Ps,x‖
2 + ‖Ps,y‖

2 − αs‖M (Qs,x, Qs,y)‖
2 = 0.

Now the result can be concluded from the principle of mathematical induction.
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