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SINKOVIC† , AND LIHUA ZHANG†

Abstract. A sign pattern matrix is a matrix whose entries are from the set {+,−, 0}. The

minimum rank of a sign pattern matrix A is the minimum of the ranks of the real matrices whose

entries have signs equal to the corresponding entries of A. It is shown in this paper that for any m×n

sign pattern A with minimum rank n− 2, rational realization of the minimum rank is possible. This

is done using a new approach involving sign vectors and duality. It is shown that for each integer

n ≥ 9, there exists a nonnegative integer m such that there exists an m × n sign pattern matrix

with minimum rank n− 3 for which rational realization is not possible. A characterization of m× n

sign patterns A with minimum rank n− 1 is given (which solves an open problem in Brualdi et al.

[R. Brualdi, S. Fallat, L. Hogben, B. Shader, and P. van den Driessche. Final report: Workshop on

Theory and Applications of Matrices Described by Patterns. Banff International Research Station,

Jan. 31 – Feb. 5, 2010.]), along with a more general description of sign patterns with minimum rank

r, in terms of sign vectors of certain subspaces. Several related open problems are stated along the

way.

Key words. Sign pattern matrix, Sign vectors, Minimum rank, Maximum rank, Rational

realization, Oriented matroid duality.
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1. Introduction. An important part of combinatorial matrix theory is the study

of sign pattern matrices, which has been the focus of extensive research for the last

50 years ([8], [15]). A sign pattern matrix is a matrix whose entries are from the

set {+,−, 0}. For a real matrix B, sign(B) is the sign pattern matrix obtained by

replacing each positive (respectively, negative, zero) entry of B by + (respectively,

−, 0). For a sign pattern matrixA, the sign pattern class (also known as the qualitative

class) of A, denoted Q(A), is defined as

Q(A) = {B : B is a real matrix and sign(B) = A}.

The minimum rank of a sign pattern matrix A, denoted mr(A), is the minimum of

the ranks of the real matrices in Q(A). Determination of the minimum rank of a sign
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pattern matrix in general is a longstanding open problem (see [17]) in combinatorial

matrix theory. Recently, there has been a number of papers concerning this topic, for

example [1]–[12], [14]–[22]. In particular, matrices realizing the minimum rank of a

sign pattern have applications in the study of neural networks [10] and communication

complexity [22].

More specifically, in the study of communication complexity in computer science,

(+,−) sign pattern matrices arise naturally; the minimum rank (also known as the

sign-rank) of the sign patterns plays an important role, as the minimum rank of a

corresponding sign pattern matrix essentially determines the unbounded-error ran-

domized communication complexity of a function.

In mathematics, rational realization is an important theme. For example, the

study of the existence of rational (or integer) solutions of Diophantine equations

is well-known. Steinitz’s celebrated theorem stating that the combinatorial type of

every 3-polytope is rationally realizable is a far-reaching result [27]. In combinatorics,

rational realizability of certain point-line configurations is an important problem ([13,

25]); this is closely related to the realizability of the minimum rank of a sign pattern

with minimum rank 3 [18]. More generally, the rational realizability of the minimum

rank of a sign pattern matrix is equivalent to the rational realizability of a certain

point-hyperplane configuration.

In [1], several classes of sign patterns A for which rational realization of the

minimum rank is guaranteed are identified, such as when every entry of A is nonzero,

or the minimum rank of A is at most 2, or the minimum rank of A is at least n −

1, where A is m × n. It has been shown in [19], through the use of a result in

projective geometry, that rational realization of the minimum rank is not always

possible. Specifically, in [19], the authors showed that there exists a 12 × 12 sign

pattern matrix with minimum rank 3 but there is no rational realization of rank 3

within the qualitative class of the sign pattern. Independently, Berman et al. [5] also

provided an example of a sign pattern for which the rational minimum rank is strictly

greater than the minimum rank over the reals. Both of these papers use techniques

based on matroids. More recently, Jing et al. [18] found a 9× 9 sign pattern matrix

with minimum rank 3 whose rational minimum rank is 4.

We note that Li et al. [20] showed that for every n×m sign pattern with minimum

rank 2, there is an integer matrix in its sign pattern class each of whose entries has

absolute value at most 2n− 3 that achieves the minimum rank.

One goal of this paper is to show that for any m×n sign pattern A with minimum

rank n− 2, rational realization of the minimum rank is possible. This is done using

a new approach involving sign vectors and duality. Furthermore, it is shown that for

each integer n ≥ 9, there exists a nonnegative integer m such that there exists an
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n×m sign pattern matrix with minimum rank n− 3 for which rational realization is

not possible.

Another goal is to use sign vectors of subspaces to investigate the minimum ranks

of sign patterns further. In particular, a characterization of m × n sign patterns A

with minimum rank n− 1 is given, which solves an open problem posed in Brualdi et

al. [6]. We also obtain a characterization of L-matrices using sign vectors and a more

general description of sign patterns with minimum rank r, in terms of sign vectors of

certain subspaces. Several related open problems are also discussed.

2. Sign vectors and duality. For any vector x ∈ R
n, we define the sign vector

of x, sign(x) ∈ {+,−, 0}n, by

sign(x)i =















+ if xi > 0,

0 if xi = 0,

− if xi < 0.

For any subspace L ⊆ R
n, we define the set of sign vectors of L as

sign(L) = {sign(x) | x ∈ L}.

Observation 2.1. If K and L are subspaces of Rn with sign(K) = sign(L), then

dim(K) = dim(L).

Indeed, consider the sign vectors of the columns of the reduced column echelon

form of a matrix whose columns form a basis of K. Such sign vectors are in sign(K)

and hence also in sign(L). It follows that dim(L) ≥ dim(K). By reversing the roles

of K and L, we get the reverse inequality.

For a subspace L ⊆ R
n, as usual, L⊥ = {x ∈ R

n | xT y = 0 for all y ∈ L} denotes

the orthogonal complement of L.

Two sign vectors c, x ∈ {+,−, 0}n are said to be orthogonal, written as c ⊥ x, if

one of the following two conditions holds:

1. for each i, we have ci = 0 or xi = 0, or

2. there are indices i, j with ci = xi 6= 0 and cj = −xj 6= 0.

For a set of sign vectors S ⊆ {+,−, 0}n, the orthogonal complement of S is

S⊥ = {c ∈ {+,−, 0}n | c ⊥ x = 0 for all x ∈ S}.

Notice that if c, x ∈ R
n and cTx = 0, then sign(c) ⊥ sign(x) = 0.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 360-371, July 2015



ELA

Minimum Ranks of Sign Patterns via Sign Vectors and Duality 363

We will use the following theorem, a proof of which can be found in Ziegler [27].

Theorem 2.2. [Duality of oriented matroids] For any subspace L ⊆ R
n,

sign(L)⊥ = sign(L⊥).

A subspace L ⊆ R
n is called rational if L has a basis consisting of rational vectors.

Lemma 2.3. Let L be a rational subspace of Rn. For any sign vector s ∈ sign(L),

there exists a rational vector x ∈ L such that sign(x) = s.

Proof. Let s ∈ sign(L). Let B =
[

b1 b2 · · · bk
]

be a matrix whose columns

form a rational basis for L, let N = {i : si = 0} and let V = {z ∈ R
k : (Bz)i =

0 for all i ∈ N}. Since {b1, b2, . . . , bk} is a rational basis for L, V has a rational

basis {c1, c2, . . . , ct}. There exists a vector y ∈ V such that sign(By) = s. Let

a =
[

a1 a2 · · · at
]T

∈ R
t such that a1c1 + a2c2 + · · · + atct = y. There ex-

ists a sequence of rational vectors a(n) =
[

a1(n) a2(n) · · · at(n)
]T

, n ∈ N such

that limn→∞ a(n) = a. Define y(n) = a1(n)c1 + a2(n)c2 + · · · + at(n)ct. Then

limn→∞ y(n) = y and each y(n) is a rational vector. Since limn→∞ By(n) = By,

there exists an m such that sign(By(m)) = sign(By) = s. By letting x = By(m), the

statement of the lemma is proved.

Theorem 2.4. For all nonnegative integers m and r, the following are equivalent:

1. Rational realization of the minimum rank is possible for every m × n sign

pattern matrix with minimum rank r.

2. For every subspace L ⊆ R
m with dimension r, there exists a rational subspace

K ⊆ R
m with sign(K) = sign(L).

Proof. Suppose that rational realization of the minimum rank is possible for every

m × n sign pattern matrices with minimum rank r. Let L ⊆ R
m have dimension r.

Let s1, . . . , sk be all sign vectors in sign(L). Let A be the m× k sign pattern matrix

whose ith column is si. Then mr(A) ≤ r, as for each sign vector si we can choose a

vector xi ∈ L with sign(xi) = si, and the matrix B, whose ith column is xi, has rank

r. Thus, there exists a rational matrix C ∈ Q(A) with rank at most r. Let K be the

column space of C. Then sign(K) = sign(L) and K is rational.

Conversely, suppose that for each subspace L ⊆ R
m with dimension r there exists

a rational subspace K ⊆ R
m with sign(K) = sign(L). Let A be an m×n sign pattern

matrix with mr(A) = r and let Ai denote the ith column of A. Since mr(A) = r,

there exists a matrix F ∈ Q(A) with rank(F ) = r. Let L ⊆ R
m be the column

space of F . Note that dim(L) = r. By assumption, there exists a rational subspace

K of Rm such that sign(L) = sign(K). By Observation 2.1, dim(K) = r. Since

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 360-371, July 2015



ELA

364 M. Arav, F.J. Hall, Z. Li, H. van der Holst, J. Sinkovic, and L. Zhang

sign(L) = sign(K), there exist rational vectors xi ∈ K, i = 1, 2, . . . , n such that

sign(xi) = Ai, by Lemma 2.3. Let C =
[

x1 x2 · · · xn

]

. Then C ∈ Q(A), and C

is a rational matrix. Since dim(K) = r and mr(A) = r, rankC = r.

The next theorem can be found in [1] and [20].

Theorem 2.5. Rational realization of the minimum rank is possible for every

m× n sign pattern matrix A with minimum rank 2.

The following theorem follows from the two preceding theorems.

Theorem 2.6. For any subspace L ⊆ R
n with dim(L) = 2, there exists a rational

subspace K ⊆ R
n with dim(K) = 2 and sign(K) = sign(L).

Since the solution space of a system of homogeneous linear equations with rational

coefficients has a rational basis, it is clear that if L ⊆ R
n is a rational subspace, then

L⊥ is also a rational subspace.

Lemma 2.7. For any subspace L ⊆ R
n with dimL = n−2, there exists a rational

subspace K ⊆ R
n with dimK = n− 2 such that sign(K) = sign(L).

Proof. By Theorem 2.6, there exists a rational subspace M ⊆ R
n with dimM = 2

such that sign(L⊥) = sign(M). Let K = M⊥. Then K is a rational subspace of Rn

with dimK = n − 2 and, by Theorem 2.2, sign(K) = sign(M⊥) = sign(M)⊥ =

sign(L⊥)⊥ = sign(L).

By Theorem 2.4, and by considering the transpose if needed, we get the following

result.

Theorem 2.8. Rational realization of the minimum rank is possible for every

m× n sign pattern matrix with minimum rank m− 2 or n− 2.

From the 9× 9 example given in [18], the next theorem follows immediately.

Theorem 2.9. For each integer n ≥ 9, there exists an m×n sign pattern matrix

A with mr(A) = 3 for which no rational realization is possible.

From Theorem 2.4 we then obtain the following corollary.

Corollary 2.10. Let n ≥ 9 be an integer. Then there exists a subspace L ⊆ R
n

with dimL = 3 such that there is no rational subspace K ⊆ R
n with dimK = 3 and

sign(L) = sign(K).

The following result then follows from Theorem 2.2.

Lemma 2.11. Let n ≥ 9 be an integer. There exists a subspace M ⊆ R
n with

dimM = n − 3 such that there is no rational subspace K ⊆ R
n with sign(K) =
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sign(M).

Proof. By Corollary 2.10, there exists a subspace L ⊆ R
n with dimL = 3 such

that there is no rational subspace K ⊆ R
n with dimK = 3 and sign(L) = sign(K).

Let M = L⊥. Suppose for a contradiction that there exists a rational subspace

S ⊆ R
n with dim(S) = n− 3 and sign(S) = sign(M). Then S⊥ is a rational subspace

of Rn with dim(S⊥) = 3. By Theorem 2.2, sign(S⊥) = sign(S)⊥ = sign(M)⊥ =

sign(M⊥) = sign(L). This contradicts the assumption that there is no rational sub-

space K ⊆ R
n with sign(L) = sign(K).

Another application of Theorem 2.4 gives the following fact.

Theorem 2.12. For each integer n ≥ 9, there exists a nonnegative integer m

such that there exists an m × n sign pattern matrix with minimum rank n − 3 for

which rational realization is not possible.

However, this leaves open the following question.

Problem 2.13. Is it true that for each integer n ≥ 9, there exists an n × n

sign pattern matrix with minimum rank n − 3 for which rational realization is not

possible?

Another natural question is the following.

Problem 2.14. Is it true that for every 3-dimensional subspace L of R8, there

is a rational subspace K such that sign(L) = sign(K)?

There are connections between rational realization of the minimum ranks of sign

patterns and the existence of rational solutions of certain matrix equations, as indi-

cated in [3]. Using this connection and Theorem 2.8 for the case of mr(A) = n − 2,

we are able to prove the following result.

Theorem 2.15. Suppose that B, C and E are real matrices such that BC = E.

If E has either 2 rows or 2 columns, then there exist rational matrices B̃, C̃ and Ẽ

such that sign(B̃) = sign(B), sign(C̃) = sign(C), sign(Ẽ) = sign(E), and B̃C̃ = Ẽ.

Proof. Without loss of generality, assume that E has two columns. Consider the

2× 2 block matrix

M =

[

In C

B E

]

.

Observe that M has n+2 columns and the Schur complement of In in M is 0. Hence,

rank(M) = n. It follows that the minimum rank of the sign pattern sign(M) is n.

Hence, from Theorem 2.8, there is a rational matrix

M̃ =

[

D C1

B1 E1

]
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of rank n in Q(sign(M)).

It follows that the Schur complement of D in M̃ is E1 − B1D
−1C1 = 0. The

rational matrices B̃ = B1, C̃ = D−1C1 and Ẽ = E1 clearly satisfy the desired

properties.

Since the zero entries of the matrix E in a real matrix equation BC = E are the

major obstructions for the existence of rational solutions within the same correspond-

ing sign pattern classes, the preceding theorem suggests the following conjecture.

Conjecture 2.16. Let B, C and E be real matrices such that BC = E.

If all the zero entries of E are contained in a submatrix with either 2 rows or 2

columns, then there exist rational matrices B̃, C̃, and Ẽ, such that sign(B̃) = sign(B),

sign(C̃) = sign(C), sign(Ẽ) = sign(E), and B̃C̃ = Ẽ.

3. Further results on minimum ranks and sign vectors of subspaces.

We now investigate the minimum ranks of sign patterns further using sign vectors

and duality.

Similar to the concept of mr(A), the maximum rank of a sign pattern matrix A,

denoted MR(A), is the maximum of the ranks of the real matrices in Q(A). It is

well-known that MR(A) is the maximum number of nonzero entries of A with no two

of the nonzero entries in the same row or in the same column. By a theorem of König,

the minimal number of lines (namely, rows and columns) in A that cover all of the

nonzero entries of A is equal to the maximal number of nonzero entries in A, no two

of which are on the same line. This common number is also called the term rank

[7, 15]. In contrast to the rational realization problem of the minimum rank, we note

that through diagonal dominance, it can be easily seen that for every sign pattern

matrix A, MR(A) can always be achieved by a rational matrix.

Sign pattern matrices A that require a unique rank (namely, MR(A) = mr(A))

were characterized by Hershkowitz and Schneider in [16].

It is shown in [2] that rational realization of the minimum rank of A is always

possible if MR(A)−mr(A) = 1.

In [2], the study of sign patterns A with MR(A) −mr(A) = 1 is reduced to the

study of m × n sign patterns A such that MR(A) = n and mr(A) = n − 1. In this

connection, using sign vectors and duality, we obtain the following characterization

of the m × n sign patterns A such that MR(A) = n and mr(A) = n − 1 (which was

raised as an open problem in [6]). Since the condition MR(A) = n is easily checked,

it suffices to characterize m× n sign patterns A with mr(A) = n− 1.

For an m×n sign pattern or real matrix, we denote by row(A) the set of the row
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vectors of A.

Theorem 3.1. Let A be an m×n sign pattern. Then mr(A) = n− 1 if and only

if the following two conditions hold:

(a) There is a nonzero sign vector x ∈ {+,−, 0}n such that row(A) ⊆ x⊥.

(b) For every two-dimensional subspace L of Rn, row(A) 6⊆ sign(L)⊥.

Proof. Assume that mr(A) = n− 1. Then there is a real matrix A1 ∈ Q(A) such

that rank(A1) = n− 1. Let v0 be a nonzero vector in the null space Null(A1) and let

x = sign(v0). Then it is clear that row(A) ⊆ x⊥, namely, (a) holds. Further, consider

any two-dimensional subspace L of Rn. Suppose that row(A) ⊆ sign(L)⊥. Then by

Theorem 2.2, row(A) ⊆ sign(L⊥). Since L⊥ is a subspace of dimension n − 2 and

every row vector of A is contained in sign(L⊥), it is clear that the span of the real

vectors in L⊥ whose sign vectors agree with the rows of A is a subspace of dimension

at most n− 2, that is to say, there is a real matrix A2 ∈ Q(A) of rank at most n− 2,

which contradicts the assumption that mr(A) = n− 1.

Conversely, assume that (a) and (b) hold. Let x1 be the (1,−1, 0) vector in

Q(x). From (a), it is easily seen that there is a real matrix A1 ∈ Q(A) such that

A1x1 = 0. It follows that rank(A1) ≤ n − 1 and hence mr(A) ≤ n − 1. Suppose

that mr(A) ≤ n − 2. Then there is a matrix A2 ∈ Q(A) with rank(A2) ≤ n − 2. It

follows that Null(A2) has dimension at least 2. Hence, Null(A2) contains a subspace

L ∈ R
n of dimension 2. Since L ⊆ Null(A2), we have that row(A2) ⊆ L⊥, and hence

row(A) = sign(row(A2)) ⊆ sign(L⊥). By Theorem 2.2, sign(L⊥) = sign(L)⊥, and so

row(A) ⊆ sign(L)⊥, contradicting (b). Thus, mr(A) = n− 1.

We note that for an m × n sign pattern matrix A, the condition that each row

vector of A is in {u, v}⊥ for some two nonzero sign vectors u, v ∈ {+,−, 0}n with

u 6= ±v does not imply that mr(A) ≤ n− 2, as the following example shows.

Example 3.2. Let A =

[

+ + +

0 + +

]

, u =





+

+

−



, and v =





0

+

−



. It is obvious that

each row vector of A is in {u, v}⊥ for the two nonzero sign vectors u, v ∈ {+,−, 0}3

with u 6= ±v. But clearly, mr(A) = 2, so mr(A) 6≤ n− 2 = 1.

Using a similar argument as in the proof of Theorem 3.1, we can show the following

more general result that characterizes sign patterns with minimum rank r, for each

possible r ≥ 1.

Theorem 3.3. Let A be an m× n sign pattern and let row(A) denote the set of

the row vectors of A, and let r be a any integer such that 1 ≤ r ≤ min{m,n}. Then

mr(A) = r if and only if the following two conditions hold:
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(a) There is a subspace L ⊆ R
n with dim(L) = r such that row(A) ⊆ sign(L).

(b) For every subspace V of Rn with dim(V ) = r − 1, row(A) 6⊆ sign(V ).

In particular, the above theorem gives a characterization of L-matrices (namely,

m × n sign patterns A with mr(A) = n). Note that every subset of {+,−, 0}n is of

course contained in sign(Rn) and Theorem 2.2 gives us that for every subspace V of

R
n of dimension n− 1, sign(V ) = sign(x)⊥ for each nonzero vector x in V ⊥.

Corollary 3.4. Let A be an m × n sign pattern and let row(A) denote the

set of the rows of A. Then, mr(A) = n if and only if for every nonzero sign vector

x ∈ {+,−, 0}n, row(A) 6⊆ x⊥.

The last characterization of L-matrices can be seen to be equivalent to the char-

acterization of such matrices found in [8] (where a sign pattern is defined to be an

L-matrix if the minimum rank is equal to its number of rows).

Let Sk,n (respectively, sk,n) denote the maximum cardinality (respectively, min-

imum cardinality) of sign(L) as L runs over all k-dimensional subspaces of Rn. In

other words,

Sk,n = max
L⊆R

n

dim(L)=k

| sign(L)|, sk,n = min
L⊆R

n

dim(L)=k

| sign(L)|.

For every subspace L, as the nonzero vectors in sign(L) occur in disjoint pairs of

vectors that are negatives of each other, it is clear that | sign(L)| is odd. Thus, Sk,n and

sk,n are always odd. For each k (0 ≤ k ≤ n− 1), since every k-dimensional subspace

of Rn is contained in a subspace of dimension k+1, it is clear that Sk,n ≤ Sk+1,n and

sk,n ≤ sk+1,n.

Obviously, S0,n = s0,n = 1, S1,n = s1,n = 3, and Sn,n = sn,n = 3n. By con-

sidering the reduced row echelon form of a matrix A whose rows form a basis for a

k-dimensional subspace L of Rn and observing that the components of the vectors

in L in the pivot columns of A are independent and arbitrary, it can be seen that

sk,n ≥ 3k, for each k, 1 ≤ k ≤ n. For the k-dimensional subspace L spanned by the

standard vectors e1, e2, . . . , ek, it can be seen that equality in the last inequality can

be achieved. Thus, sk,n = 3k, for each k, 1 ≤ k ≤ n. We record this result below.

Theorem 3.5. Let n ≥ 2. Then sk,n = 3k, for each k, 1 ≤ k ≤ n.

Let L be a k-dimensional linear subspace of Rn. Let B be a matrix whose columns

form a basis of L. For each 1 ≤ j ≤ n, let Hj be the orthogonal complement of the

jth row of B in R
k. The central hyperplane arrangement {H1, . . . , Hn} in R

k parti-

tions Rk into disjoint, relatively open cells of dimensions 0 through k, with each cell

corresponding to precisely one sign vector in sign(L), see [21, 24, 26, 27]. It can be

seen that Sk,n is equal to the total number of cells of a generic central hyperplane
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arrangement {H1, . . . , Hn} in R
k. For n ≥ k, adding a hyperplane Hn+1 to a generic

central hyperplane arrangement {H1, . . . , Hn} in generic position increases the total

number of cells by 2(Sk−1,n−1). This can been seen as follows. For m > 1, each rela-

tively open cell of dimension m of the central hyperplane arrangement {H1, . . . , Hn}

that is intersected by Hn+1 yields three relatively open cells in the hyperplane ar-

rangement {H1, . . . , Hn+1}, one of dimension m− 1, which is a relatively open cell of

{H1∩Hn+1, . . . , Hn∩Hn+1}, and two of dimensionm. Form ≤ 1, each relatively open

cell of dimension m of the central hyperplane arrangement {H1, . . . , Hn} is not cut

by Hn+1 and is a relatively open cell in the hyperplane arrangement {H1, . . . , Hn+1}.

(Here, we used that n ≥ k, so that there exists a cell of dimension 0 of the arrange-

ment {H1, . . . , Hn}.) Since the number of relatively open cells of the arrangement

{H1 ∩Hn+1, . . . , Hn ∩Hn+1} in Hn+1 is Sk−1,n, the increase of the total number of

cells is 2(Sk−1,n − 1). Therefore the following recursion formula holds for each n ≥ 2

and each 1 ≤ k < n:

Sk,n = Sk,n−1 + 2(Sk−1,n−1 − 1).

As pointed out by Richard Stanley, the total number of cells of a generic central

hyperplane arrangement {H1, . . . , Hn} of Rk can be computed using the intersection

lattice approach described in [24, 26]. The resulting formula is given below.

Theorem 3.6. For each n ≥ 2 and each 1 ≤ k ≤ n,

Sk,n = 1 +

k−1
∑

i=0

2i
(

n

i

)

+

k
∑

i=1

(

n

k − i

)(

n− k + i− 1

i− 1

)

.

Example 3.7.

1. S1,n = 3.

2. S2,n = 4n+ 1.

3. S3,n = 4n2 − 4n+ 3.

4. S4,n = 8
3n

3 − 8n2 + 28
3 n+ 1.

5. S5,n = 4
3n

4 − 8n3 + 56
3 n

2 − 12n+ 3.

6. S6,n = 8
15n

5 − 16
3 n

4 + 64
3 n3 − 104

3 n2 + 332
15 n+ 1.

Consequently, we have the following results on sign pattern matrices.

Theorem 3.8. Let A be an m× n sign pattern matrix.

1. If mr(A) = 1, then |row(A)| ≤ 3.

2. If mr(A) = 2, then |row(A)| ≤ 4n+ 1.

3. If mr(A) = 3, then |row(A)| ≤ 4n2 − 4n+ 3.

4. If mr(A) = 4, then |row(A)| ≤ 8
3n

3 − 8n2 + 28
3 n+ 1.
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5. If mr(A) = 5, then |row(A)| ≤ 4
3n

4 − 8n3 + 56
3 n2 − 12n+ 3.

6. If mr(A) = 6, then |row(A)| ≤ 8
15n

5 − 16
3 n4 + 64

3 n
3 − 104

3 n2 + 332
15 n+ 1.

Final remarks. The main results of this paper were contained in a preliminary

version of the paper, and were presented at the 2013 ILAS conferences by one of the

coauthors. In 2014, we noticed the related paper by Shitov [23] that has some overlap.

Unfortunately, the proof of a key lemma (Lemma 3.5) in Shitov’s paper has a logical

gap.
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us with the explicit formula for Sk,n in Theorem 3.6.
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