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Abstract. In this paper, the inverse of a nonsingular, centroskewsymmetric Toeplitz-plus-

Hankel Bezoutian B of (even) order n are computed, and a representation of B−1 as a sum of a

Toeplitz and a Hankel matrix is found. Two possibilities are discussed. In the first one, the problem

is reduced to the inversion of two skewsymmetric Toeplitz Bezoutians of order n. In the second one,

the problem is tackled via the inversion of two Hankel Bezoutians of half the order n

2
. The inversion

of Toeplitz or Hankel Bezoutians is the subject of a previous paper [T. Ehrhardt and K. Rost.

Resultant matrices and inversion of Bezoutians. Linear Algebra Appl., 439:621–639, 2013.]. Both

approaches lead to fast O(n2) inversion algorithms.

Key words. Bezoutian matrix, Toeplitz matrix, Hankel matrix, Toeplitz-plus-Hankel matrix,

matrix inversion.
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1. Introduction. The present paper is devoted to the inversion of special types

of structured matrices, so-called Toeplitz-plus-Hankel Bezoutians (shortly, T + H-

Bezoutians). We assume that the matrix entries are taken from a field F with char-

acteristic not equal to 2. In a previous paper [5], we investigated centrosymmetric

T + H-Bezoutians. The focus of this paper are centroskewsymmetric (briefly, cen-

troskew) T +H-Bezoutians. Recall that an n× n matrix A is called centrosymmetric

or centroskew, if JnAJn = A or JnAJn = −A, respectively, where Jn denotes the flip

matrix of order n,

(1.1) Jn :=





0 1

. .
.

1 0



 .

Before we start to explain the content of the paper in more detail, let us give a very

short historical account on Bezoutians. Bezoutians were introduced in connection

with elimination theory (see [21]). Their importance for the inversion of Hankel and
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Toeplitz matrices was discovered by Lander [17] much later in 1974. In particular,

he observed that the inverse of a nonsingular Hankel (Toeplitz) matrix is a Hankel

(Toeplitz) Bezoutian and vice versa.

The inversion of Toeplitz and Hankel matrices has been the subject of a large

amount of literature. The starting point were the papers of Trench [20] and Go-

hberg/Semencul [7]. Later, in [10], it was discovered that the inverse of a nonsingular

matrix which is the sum of a Toeplitz and a Hankel matrix (T +H matrix) possesses a

generalized Bezoutian structure. These especially structured matrices B = [bij ]
n−1
i,j=0

were called Toeplitz-plus-Hankel Bezoutians and are characterized by the property

that there exists eight polynomials ui(t),vi(t) (i = 1, 2, 3, 4) with coefficients in F and

of degree at most n+ 1 such that

n−1
∑

i,j=0

bijs
itj =

4
∑

i=1

ui(t)vi(s)

(t− s)(1 − ts)
.

Again, there is a large number of papers dealing with the inversion of T +H matrices

(see e.g. [6], [11], [12], [15], [18], [19], and the references therein).

Up to now little attention has been devoted to the converse problem, the inversion

of Bezoutians (see [8], [9]). A general approach to the inversion problem for Hankel

and Toeplitz Bezoutians was given in [4]. As far as we know, the only paper dedicated

to the inversion of T+H-Bezoutians is our paper [5]. In that paper, using results of [15]

and [2], centrosymmetric T+H-Bezoutians were considered. Fast inversion algorithms

as well as matrix representations of their inverses (which are centrosymmetric T +H

matrices) were presented.

In the present paper, we discuss two possibilities for how to compute the inverse

of a centroskew T + H-Bezoutian B and how to represent the inverse as a T + H

matrix. Both possibilities are based on a splitting property, which was discovered in

Section 8 of [13] (see also [15]), and holds for both centrosymmetric and centroskew

T + H-Bezoutians. If B is a nonsingular, centroskew T + H-Bezoutian, necessarily

of even size n = 2ℓ, then B can be represented in the form B = B+− + B−+, where

B±∓ have additional symmetries and, more importantly, a particular and simpler

Bezoutian structure. These matrices are called split-Bezoutians.

In our first approach, it is proved that both splitting parts of B are directly

related to nonsingular skewsymmetric Toeplitz Bezoutians. It remains to use the

results of [4] to compute the inverses of these Toeplitz Bezoutians and to represent

them as Toeplitz matrices. From there, the representation of B−1 as a T +H matrix

is obtained.
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The second approach is analogous to the method of inversion used in [5] for in-

verting centrosymmetric T +H-Bezoutains. Starting again with the splitting, we use

now a result of [15] to transform B+− and B−+ into nonsingular Hankel Bezoutians

of half the order ℓ = n
2 . Then we take advantage of formulas and algorithms estab-

lished in [4] in order to compute the inverses of these Hankel Bezoutians, which are

Hankel matrices H1 and H2 the parameters of which are given by the solutions of

corresponding Bezout equations (as described in [4]). At this point the formula for

the inverse of the T +H-Bezoutian B is of the form

B−1 = W−T

[

0 H2

H1 0

]

W−1 ,

where W is a certain explicit transformation (involving triangular matrices). It re-

mains to discover the Toeplitz-plus-Hankel structure behind this representation, i.e.,

we want to find a Toeplitz matrix T and a Hankel matrix H such that

B−1 = T +H .

This goal can be achieved utilizing finite versions of results given in [2].

The paper is structured as follows. After some preliminaries in Section 2, we

recall, in Section 3, some basic facts on centroskew Toeplitz-plus-Hankel matrices. In

Section 4, the inversion of Toeplitz Bezoutians and of Hankel Bezoutians is discussed,

and the relevant results from [4] are recalled. Section 5 is dedicated to the splitting of

centroskew T +H-Bezoutians. Moreover, an algorithm is discussed to decide whether

a centroskew matrix B is a nonsingular T +H-Bezoutian. In Sections 6 and 7, the

two possibilities for the inversion of centroskew T + H-Bezoutians are deduced. At

the end of both sections, a corresponding fast algorithm is presented. Here fast means

O(n2) complexity, where n is the order of B. In Section 8, we discuss the connections,

the advantages, and disadvantages of both approaches.

If the reader wants to invert centroskew T +H-Bezoutians or test our algorithms,

we refer him to the software on one of the authors’ website:

http://www.tu-chemnitz.de/mathematik/ang funktionalanalysis/rost/software/

2. Preliminaries. In what follows, we consider vectors or matrices whose entries

are taken from a field F with a characteristic not equal to 2. By Fn we denote the

linear space of all vectors of length n, by Fm×n the linear space of all m×n matrices,

and by In the identity matrix in Fn×n.

It will often be convenient to use polynomial language. Let Fn[t] denote the

linear space of all polynomials in t of degree less than n with coefficients in F. To

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 336-359, July 2015



ELA

Inversion of Centroskewsymmetric Toeplitz-Plus-Hankel Bezoutians 339

each x = (xj)
n−1
j=0 ∈ Fn, we associate the polynomial

(2.1) x(t) :=

n−1
∑

j=0

xjt
j ∈ F

n[t].

Occasionally, when using a different indexing, x = (xj)
n−1
j=−n+1 ∈ F2n−1, we associate

the polynomial

(2.2) x(t) := tn−1
n−1
∑

j=−n+1

xjt
j ∈ F

2n−1[t].

Moreover, we associate to a matrix A = [ aij ]
n−1
i,j=0 the bivariate polynomial

A(t, s) :=

n−1
∑

i,j=0

aij t
isj

and call it the generating polynomial of A.

Given a vector x ∈ Fn we denote

xJ := Jnx ,

where Jn was introduced in (1.1). In polynomial language, this means xJ(t) =

x(t−1)tn−1. With this abbreviation, a vector x ∈ Fn (or its corresponding polynomial)

is said to be symmetric if x = xJ and skewsymmetric if x = −xJ . The matrices

(2.3) P± := 1
2 (In ± Jn)

are the projections from Fn onto the subspaces Fn
± consisting of all symmetric, re-

spective skewsymmetric vectors, i.e.,

F
n
± :=

{

x ∈ F
n : xJ = ±x

}

.

The various spaces Fn
± for n even or odd are related to each other. This can be easily

expressed in polynomial language as follows,

F
2ℓ
+ [t] =

{

(t+ 1)x(t) : x(t) ∈ F
2ℓ−1
+ [t]

}

,

F
2ℓ
− [t] =

{

(t− 1)x(t) : x(t) ∈ F
2ℓ−1
+ [t]

}

,(2.4)

F
2ℓ+1
− [t] =

{

(t2 − 1)x(t) : x(t) ∈ F
2ℓ−1
+ [t]

}

.

Recall that a matrix A of order n is called centroskew if A = −JnAJn. Since

(detJn)
2 = 1, the order n of a nonsingular, centroskew matrix is even, n = 2ℓ.
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It is easy to see that a matrix A is centroskew if and only if

(2.5) P−AP− = P+AP+ = 0.

In particular, a centroskew matrix A maps Fn
± to F

n
∓, i.e., AP± = P∓AP±.

Let us recall the definition of Toeplitz and Hankel matrices. The n× n Toeplitz

matrix generated by the vector a = (ai)
n−1
i=−n+1 ∈ F2n−1 is the matrix

Tn(a) = [ ai−j ]
n−1
i,j=0 .

We will use (2.2) in order to assign its (polynomial) symbol, in slight deviation from

standard notation. An n×n Hankel matrix generated by s = (si)
2n−2
i=0 ∈ F2n−1 is the

matrix

Hn(s) = [ si+j ]
n−1
i,j=0 ,

where (2.1) is used to denote its symbol.

For Toeplitz matrices we have

(2.6) Tn(a)
T = JnTn(a)Jn = Tn(a

J ).

In particular, a Toeplitz matrix is skewsymmetric if and only if it is centroskew, or,

equivalently, if its symbol is a skewsymmetric vector.

3. Centroskew Toeplitz-plus-Hankel matrices. Toeplitz-plus-Hankel ma-

trices (shortly, T + H matrices) are matrices which are a sum of a Toeplitz and a

Hankel matrix. Since Tn(b)Jn is a Hankel matrix it is possible to represent any T +H

matrix by means of two Toeplitz matrices,

(3.1) Rn = Tn(a) + Tn(b)Jn (a,b ∈ F
2n−1).

Related to this representation there is another one, using the projections (2.3) and

the symbols c = a+ b and d = a− b,

(3.2) Rn = Tn(c)P+ + Tn(d)P− .

Restricting our attention to centroskew T + H matrices, we have the following

result regarding the underlying symbols (compare [15]).

Proposition 3.1. The T +H matrix Rn is centroskew if and only if the symbols

a,b as well as c,d of the Toeplitz matrices in (3.1) (respectively (3.2)) can be chosen

as skewsymmetric vectors. This choice is unique.
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Proof. Let Rn be given by (3.1). Using (2.6), the centroskewsymmetry of Rn is

equivalent to

Tn(a+ aJ ) + Tn(b+ bJ)Jn = 0 ,

which implies

a+ aJ = eα,β := (α, β, α, β, . . . , β, α)T ∈ F
2n−1
+

for some α, β ∈ F and

b+ bJ = fα,β :=

{

−eα,β if n is odd

−eβ,α if n is even.

If we define â = a− 1
2eα,β and b̂ = b− 1

2 fα,β , then â, b̂ ∈ F
2n−1
− and

Tn(a) + Tn(b)Jn = Tn(â) + Tn(b̂)Jn.

Hence, we can choose skewsymmetric vectors as symbols, and it is also easy to see

that these choices are unique. Obviously, the same is true for the symbols c and d of

the representation (3.2).

From now on we will assume that the symbols a,b (c,d) of a centroskew T +H

matrix Rn are chosen as skewsymmetric vectors. Moreover, in this case we can also

write

Rn = P−Tn(c)P+ + P+Tn(d)P−

instead of (3.2) (see (2.5)).

Proposition 3.2. The centroskew T +H matrix Rn is nonsingular if and only

if

R−
n := Tn(a)− Tn(b)Jn = Tn(c)P− + Tn(d)P+

is nonsingular.

Proof. Using (2.6) for both Tn(a) and Tn(b), it is immediately clear that the

transpose RT
n is equal to −Tn(a) + Tn(b)Jn.

The following two facts are also known from [15], Corollary 3.7, but we present a

simpler proof here.

Theorem 3.3. The centroskew T + H matrix Rn = Tn(c)P+ + Tn(d)P− is

nonsingular if and only if Tn(c) and Tn(d) are both nonsingular.
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Proof. Since the vector c and d are skewsymmetric, the Toeplitz matrices Tn(c)

and Tn(d) are skewsymmetric and centroskew. Now, using (2.5), it is easy to see that

(3.3)

[

Rn 0

0 R−
n

]

=

[

P+ P−

P− P+

] [

0 Tn(d)

Tn(c) 0

] [

P+ P−

P− P+

]

,

where
[

P+ P−

P− P+

] [

P+ P−

P− P+

]

=

[

In 0

0 In

]

.

The following theorem gives some information about the inverse of a centroskew

T +H matrix.

Theorem 3.4. Let the centroskew T +H matrix Rn = Tn(c)P+ + Tn(d)P− be

nonsingular. Then its inverse is given by

R−1
n = Tn(c)

−1P− + Tn(d)
−1P+.

Proof. We can use (3.3) and pass to the inverse,

[

R−1
n 0

0 (R−
n )

−1

]

=

[

P+ P−

P− P+

] [

0 Tn(c)
−1

Tn(d)
−1 0

] [

P+ P−

P− P+

]

.

Noting that Tn(c)
−1 and Tn(d)

−1 are centroskew, the proof is easy to complete by

using (2.5).

The inverses Tn(c)
−1 and Tn(d)

−1 of the Toeplitz matrices are so-called Toeplitz

Bezoutians, which together with their Hankel counterparts are analyzed next.

4. Toeplitz and Hankel Bezoutians. For later use, we are going to introduce

the notions of Toeplitz Bezoutians (shortly, T -Bezoutians) and Hankel Bezoutians

(shortly, H-Bezoutians).

A matrix B ∈ Fn×n is called a T -Bezoutian if there exists vectors u,v ∈ Fn+1

such that, in polynomial language,

B(t, s) =
u(t)vJ (s)− v(t)uJ (s)

1− ts
.

In this case, we write B = BezT (u,v). Analogously, a matrix B ∈ F
n×n is called an

H-Bezoutian if there exists vectors u,v ∈ Fn+1 such that

B(t, s) =
u(t)v(s) − v(t)u(s)

t− s
.
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Then we write B = BezH(u,v). It is also possible to define T - and H-Bezoutians via

suitable displacement transformations. However, we will not make use of it.

H-Bezoutians are always symmetric, while T -Bezoutians B are always persym-

metric, i.e., JnBJn = BT . The two kinds of Bezoutians are related to each other by

BezH(u,v) = −BezT (u,v)Jn.

It is well known (see, e.g., [9]) that BezH(u,v) (or BezT (u,v), respectively) is

nonsingular if and only if u(t) and v(t) are generalized coprime, which means that

the polynomials u(t) and v(t) are coprime in the usual sense and that degu(t) = n

or degv(t) = n.

The following connection between Toeplitz matrices (Hankel matrices) and T -

Bezoutians (H-Bezoutians) is a classical result discovered by Lander in 1974 [17].

Theorem 4.1. A nonsingular matrix is a T -Bezoutian (H-Bezoutian) if and

only if its inverse is a Toeplitz matrix (Hankel matrix).

Let us consider for a moment the Hankel case and discuss the question: Given

the H-Bezoutian B = BezH(u,v) with generalized coprime polynomials u(t),v(t),

how can we compute the symbol s of its inverse, a Hankel matrix Hn(s) = B−1? The

answer was given in [4].

Theorem 4.2. Assume u(t),v(t) ∈ F
n+1[t] to be generalized coprime polynomi-

als, and let B = BezH(u,v). Then B is nonsingular, the Bezout equations

u(t)α(t) + v(t)β(t) = 1 ,(4.1)

uJ(t)γJ(t) + vJ (t)δJ (t) = 1(4.2)

have unique solutions α(t),β(t),γ(t), δ(t) ∈ Fn[t], and s = (si)
2n−2
i=0 ∈ F2n−1 given by

sJ(t) = −α(t)δ(t) + β(t)γ(t)

is the symbol of the inverse of B, B−1 = Hn(s) = [ si+j ]
n−1
i,j=0.

For T -Bezoutians, the analogous result reads as follows [4].

Theorem 4.3. Assume u(t),v(t) ∈ Fn+1[t] to be generalized coprime polynomi-

als, and let B = BezT (u,v). Then B is nonsingular, the Bezout equations (4.1) and

(4.2) have unique solutions α(t),β(t),γ(t), δ(t) ∈ Fn[t], and c = (ci)
n−1
i=−n+1 ∈ F2n−1

given by

c(t) = tn−1
n−1
∑

i=−n+1

cit
i = α(t)δ(t)− β(t)γ(t)

is the symbol of the inverse of B, B−1 = Tn(c) = [ ci−j ]
n−1
i,j=0.
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For our purposes, it is important to specialize the previous result to the case of

centroskew T -Bezoutians. As shown in [14], Section 5, if the T -Bezoutian BezT (u,v)

is nonsingular and centroskew, then u,v are symmetric vectors, i.e., u,v ∈ F
n+1
+

(with n, of course, being even). Thus, we have α = γJ and β = δJ for the (unique)

solutions of (4.1) and (4.2). This implies that

(4.3) c(t) = tn−1
n−1
∑

i=−n+1

cit
i = α(t)βJ(t)− β(t)αJ (t).

Remark that c ∈ F
2n−1
− is a skewsymmetric vector and that Tn(c) = B−1 is a

skewsymmetric and centroskew matrix.

5. Splitting of centroskew T + H-Bezoutians. In order to define Toeplitz-

plus-Hankel Bezoutians (T + H-Bezoutians), let us consider the following transfor-

mation

∇T+H : Fn×n → F
(n+2)×(n+2)

defined by

∇T+H(B) = [bi−1,j + bi−1,j−2 − bi,j−1 − bi−2,j−1]
n+1
i,j=0 ,

where B = [bij ]
n−1
i,j=0 stipulating bij = 0 whenever i or j is not in the set {0, . . . , n−1}.

Equivalently, in polynomial language,

(∇T+H(B)) (t, s) = (t− s)(1 − ts)B(t, s) .

A matrix B ∈ F
n×n is called a T +H-Bezoutian if

rank∇T+H(B) ≤ 4 .

This condition is equivalent to the existence of eight vectors ui,vi (i = 1, 2, 3, 4) in

Fn+2 such that

(t− s)(1− ts)B(t, s) =

4
∑

i=1

ui(t)vi(s) .

For the T +H case, we know from [10] the following important fact.

Theorem 5.1. A nonsingular matrix is a T + H-Bezoutian if and only if its

inverse is a T +H matrix.

The focus of this paper are centroskew T + H-Bezoutians B, i.e., those which

satisfy JnBJn = −B. As we will see in Theorem 5.3 below, nonsingular, centroskew
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T + H-Bezoutians admit a certain splitting. Let us start with the following trivial

facts concerning splitting properties of an arbitrary centroskew matrix A (see [15],

Section 5).

Lemma 5.2. Let A be a centroskew matrix of order n. Then A allows the splitting

A = A+− +A−+ ,

where A+− := AP− = P+A is a matrix the columns of which are symmetric vectors

and the rows are skewsymmetric, A−+ := AP+ = P−A is a matrix the columns of

which are skewsymmetric vectors and the rows are symmetric. Furthermore,

rankA = rankA+− + rankA−+.

In the case of a centroskew T+H-BezoutianB, Theorem 5.3 below will tell us that

the splitting parts B+− and B−+ can be represented as a product of three matrices.

The middle factor is a so-called split-Bezoutian of (+)type. This is a T +H-Bezoutian

involving two symmetric vectors u+,v+ the generating polynomial of which is given

by

(Bezsp(u+,v+)) (t, s) =
u+(t)v+(s)− v+(t)u+(s)

(t− s)(1 − ts)
.

The matrix Bezsp(u+,v+) is centrosymmetric and all rows and columns are symmetric

vectors. Moreover, introduce the following n× (n− 1) matrices

M±
n−1 :=





















±1 0 · · · 0

1 ±1
. . .

...

0 1
. . . 0

...
. . .

. . . ±1

0 · · · 0 1





















.

The splitting result, which was established in [15], now reads as follows.

Theorem 5.3. Let n be even. Then B ∈ Fn×n is a nonsingular, centroskew

T +H-Bezoutian if and only if it can be represented in the form

(5.1) B = M+
n−1Bezsp(f+,g+)(M

−
n−1)

T +M−
n−1Bezsp(y+, z+)(M

+
n−1)

T

with f+,g+,y+, z+ ∈ F
n+1
+ such that {f+(t),g+(t)} and {y+(t), z+(t)} are pairs of

coprime polynomials.
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Note that the terms in the sum (5.1) are equal to the splitting partsB+− and B−+.

The split-Bezoutians occurring therein are matrices of order n − 1. In polynomial

language, this formula reads as

B(t, s) = (t+ 1)
f+(t)g+(s)− g+(t)f+(s)

(t− s)(1 − ts)
(s− 1)

+ (t− 1)
y+(t)z+(s)− z+(t)y+(s)

(t− s)(1− ts)
(s+ 1).(5.2)

To see this notice that M±
n−1 is the matrix of the operator of multiplication by t± 1

in the corresponding polynomial spaces (with respect to the canonical bases).

Remark 5.4. Different pairs of linearly independent vectors (u+, v+) and

(û+, v̂+) produce the same split-Bezoutian of (+)type,

Bezsp(u+,v+) = Bezsp(û+, v̂+) ,

if and only if there is Φ ∈ F2×2 with detΦ = 1 such that

[ û+, v̂+ ] = [u+,v+ ] Φ.

Remark 5.5. Given a centroskew matrix B of even order n, one can ask how to

decide whether B is a nonsingular T +H-Bezoutian and how to determine the vectors

f+,g+,y+, z+ occurring in (5.1). This can be done by the following procedure:

1. Compute B+− := P+B and B−+ := P−B.

2. Verify whether rank∇T+H(B+−) = rank∇T+H(B−+) = 2.

(If this is not fulfilled, stop: B is singular or B is not a T +H-Bezoutian.)

3. Determine bases {u±,v±} in the image of ∇T+H(B±∓).

(Due to the properties of B±∓, we have u±,v± ∈ F
n+2
± .)

4. Compute

f+(t) = u+(t)/(t+ 1), g′
+(t) = v+(t)/(t+ 1)

and

y+(t) = u−(t)/(t− 1), z′+(t) = v−(t)/(t− 1).

(Recall (2.4) and note that f+,g
′
+,y+, z

′
+ ∈ F

n+1
+ .)

5. Determine whether {f+(t),g
′
+(t)} and {y+(t), z

′
+(t)} are pairs of coprime

polynomials.

(If this is not fulfilled, stop: B is singular.)
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6. Compute the unique vectors f ′+,g+,y
′
+, z+ ∈ F

n+1
+ such that

∇T+H(B+−)(t, s) = (t+ 1)
(

f+(t)g+(s)− g′
+(t)f

′
+(s)

)

(s− 1)

and

∇T+H(B−+)(t, s) = (t− 1)
(

y+(t)z+(s)− z′+(t)y
′
+(s)

)

(s+ 1).

Note: In fact, there exist λ, µ ∈ F \ {0} such that

f+(t) = λf ′+(t), g+(t) = λ−1g′
+(t), y+(t) = µy′

+(t), z+(t) = µ−1z′+(t).

Therefore,

∇T+H(B+−)(t, s) = (t+ 1) (f+(t)g+(s)− g+(t)f+(s)) (s− 1)

and

∇T+H(B−+)(t, s) = (t− 1) (y+(t)z+(s)− z+(t)y+(s)) (s+ 1).

Hence, to compute λ it suffices to compare a nonzero entry of ∇T+H(B+−)

with the corresponding entry in the polynomial

(t+ 1)
(

f+(t)g
′
+(s)− g′

+(t)f+(s)
)

(s− 1).

The same applies to µ.

7. Now, B = B+− +B−+ is a nonsingular T +H-Bezoutian with

B+− = M+
n−1Bezsp(f+,g+)(M

−
n−1)

T ,

B−+ = M−
n−1Bezsp(y+, z+)(M

+
n−1)

T ,

where the two pairs {f+(t),g+(t)} and {y+(t), z+(t)} are unique up to trans-

formations discussed in Remark 5.4.

This procedure has complexity O(n2). Indeed, all the steps require (at most)

O(n2) operations including Step 5 using the Euclidean algorithm. In case of the field

F being R or C, a stability issue occurs in Steps 2-3 and Step 5. While it might be of

interest to analyze this issue further, we refrain from discussing it in this paper.

6. Inversion of T + H-Bezoutians via skewsymmetric T -Bezoutians. In

this section, we present our first approach to invert centroskew T + H-Bezoutians.

It is done via reduction to certain T -Bezoutians, which can be inverted using the

result of Section 4. The following key result is based on the representation obtained

in Theorem 5.3.

Theorem 6.1. Let B ∈ Fn×n be a centroskew T + H-Bezoutian given in the

form (5.1) with symmetric f+,g+,y+, z+ ∈ F
n+1
+ . Then

(6.1) B = 2BezT (f+,g+)P− − 2BezT (y+, z+)P+ .

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 336-359, July 2015



ELA

348 T. Ehrhardt and K. Rost

Proof. Recall that (5.1) reads in polynomial language as (5.2). Obviously, the

generating polynomial of 2 BezT (f+,g+)P− is equal to

(f+(t)g+(s)− g+(t)f+(s))

(

1

1− ts
+

1

t− s

)

.

Since

1

1− ts
+

1

t− s
=

(1 + t)(1− s)

(1− ts)(t− s)

we obtain

2BezT (f+,g+)P− = M+
n−1Bezsp(f+,g+)(M

−
n−1)

T .

Analogously, using

1

1− ts
−

1

t− s
= −

(1 − t)(1 + s)

(1− ts)(t− s)
,

it follows that

−2BezT (y+, z+)P+ = M−
n−1Bezsp(y+, z+)(M

+
n−1)

T .

This concludes the proof.

It follows from the definition of T -Bezoutians that for symmetric vectors f+,g+,

y+, z+

B1 := BezT (f+,g+) and B2 := BezT (y+, z+)

are centroskew and skewsymmetric, i.e., BT
i = JnBiJn = −Bi.

Proposition 6.2. Let B ∈ Fn×n be a nonsingular, centroskew T + H-Bezou-

tian given by (5.1) or (6.1) with pairs {f+(t),g+(t)} and {y+(t), z+(t)} of symmetric

coprime polynomials in F
n+1
+ [t]. Then

B1 = BezT (f+,g+) and B2 = BezT (y+, z+)

are invertible, and

B−1 =
1

2
(B−1

1 P+ −B−1
2 P−).

Proof. Since the polynomials are symmetric, coprimeness implies generalized

coprimeness, and hence, the T -Bezoutians are invertible. We write (6.1) as

1
2B = B1P− −B2P+ ,
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and take its tranpose,

1
2B

T = −P−B1 + P+B2 .

Both equations can be written, in analogy to (3.3), in the following form:

1

2

[

B 0

0 −BT

]

=

[

P+ P−

P− P+

] [

0 B1

−B2 0

] [

P+ P−

P− P+

]

.

Here one has to use that B1 and B2 are centroskew (see (2.5)). Notice that also this

identity implies the invertibility of B1 and B2. Now one can pass to the inverse of

this equation and obtain the desired expression for B−1 in terms of B−1
1 and B−1

2 .

The inverses of the above T -Bezoutians are Toeplitz matrices

Tn(c) = B−1
1 and Tn(d) = B−1

2 .

From Theorem 4.3 and the remarks made afterwards, we know how to obtain the

symbols c,d of these (skewsymmetric) Toeplitz matrices (see also (4.1) and (4.3)).

Indeed, c,d ∈ F
2n−1
− are given by

c(t) = α(t)βJ (t)− β(t)αJ(t),(6.2)

d(t) = γ(t)δJ (t)− δ(t)γJ (t),(6.3)

where α,β,γ, δ ∈ Fn are the solutions of the Bezout equations

g+(t)α(t) + f+(t)β(t) = 1,(6.4)

z+(t)γ(t) + y+(t)δ(t) = 1.(6.5)

We can now summarize this as follows.

Theorem 6.3. Let B ∈ Fn×n be a centroskew T +H-Bezoutian given by (5.1) or

(6.1) with pairs {g+(t), f+(t)} and {y+(t), z+(t)} of symmetric coprime polynomials

in F
n+1
+ [t]. Then n is even, B is nonsingular and

(6.6) B−1 =
1

2
(Tn(c)P+ − Tn(d)P−),

where c,d ∈ F
2n−1
− are given by (6.2) and (6.3).

Note that (6.6) reads as

B−1 =
1

4
[cj−k + cj+k+1−n]

n−1
j,k=0 −

1

4
[dj−k − dj+k+1−n]

n−1
j,k=0 ,

which is a (centroskew) sum of a Toeplitz and a Hankel matrix.

Remark 6.4. Since c = (ci)
n−1
i=−n+1 and d = (di)

n−1
i=−n+1 are skewsymmetric

vectors, it suffices to compute only their last n− 1 components (ci)
n−1
i=1 and (di)

n−1
i=1 .
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To that aim, introduce for a given vector x = (xi)
n−1
i=0 the following upper triangular

Toeplitz matrix of order n,

Un(x) =



















x0 x1 · · · · · · xn−1

x0 x1

...
. . .

. . .
...

x0 x1

0 x0



















.

Now, as is easy to see and has already been stated in Section 6 of [4], equations (6.2)

and (6.3) become

(6.7) (ci)
n−1
i=0 = Un(β)α− Un(α)β, (di)

n−1
i=0 = Un(δ)γ − Un(γ)δ,

where c0 = d0 = 0.

Let us now present the steps of a corresponding inversion algorithm.

Algorithm 6.5. We are given a centroskew T +H-Bezoutian B of even order n

in the form (5.1) with pairs {f+(t),g+(t)} and {y+(t), z+(t)} of symmetric, coprime

polynomials in F
n+1
+ [t].

1. Solve the Bezout equations (6.4) and (6.5) by the extended Euclidean algo-

rithm.

2. Determine the (skewsymmetric) symbols c and d by either

(i) computing their last components according to (6.7), or,

(ii) computing them from (6.2) and (6.3).

3. Compute the matrices

Ac := Tn(c)P+ and Ad := Tn(d)P− .

4. Then the inverse of B is given by

B−1 =
1

2
(Ac −Ad).

The algorithm has complexity O(n2). In fact, the extended Euclidean algorithm

for the solution of the Bezout equations requires O(n2) operations. In case of F = C

or F = R, its complexity can be reduced to O(n log2 n) (see [1], [3], [16]).

The computation in Step 2, discrete convolution or polynomial multiplication,

can be done with O(n(log n) log logn) complexity (see [19], Section 2.4). In case of

R or C one can speed up to O(n log n) complexity using FFT (see [3] and references

therein).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 336-359, July 2015



ELA

Inversion of Centroskewsymmetric Toeplitz-Plus-Hankel Bezoutians 351

7. Inversion of T + H-Bezoutians via H-Bezoutians of half order. In

our second approach, we start again from the representation (5.1) of a centroskew

T +H-Bezoutian B of order n = 2ℓ, i.e.,

B = M+
n−1Bezsp(f+,g+)(M

−
n−1)

T +M−
n−1Bezsp(y+, z+)(M

+
n−1)

T .

Recall that both Bezsp(f+,g+) and Bezsp(y+, z+) are split-Bezoutians of odd order

n−1 and of (+)type since the vectors f+,g+,y+, z+ ∈ F
n+1
+ are symmetric. Introduce

a matrix Sℓ of size (2ℓ− 1)× ℓ as the isomorphism defined by

Sℓ : F
ℓ → F

2ℓ−1
+ , (Sℓx) (t) = x(t+ t−1)tℓ−1, x ∈ F

ℓ.

Notice that

(Sℓ)
T =





















0
(

0
0

)

0
(

1
0

)

0
(

1
1

)

(

2
0

)

0
(

2
1

)

0
(

2
2

)

. .
. . . .

(

ℓ−1
0

)

0
(

ℓ−1
1

)

0 · · · 0
(

ℓ−1
ℓ−2

)

0
(

ℓ−1
ℓ−1

)





















.

It was established in [15] that the just mentioned split-Bezoutians can be reduced to

H-Bezoutians of half the order ℓ.

Theorem 7.1. Let u+,v+ ∈ F
n+1
+ , n = 2ℓ, and let u,v ∈ F

ℓ+1 be such that

u+ = Sℓ+1u , v+ = Sℓ+1v. Then

Bezsp(u+,v+) = −SℓBezH(u,v)ST
ℓ .

Notice that the pair u(t) and v(t) is generalized coprime if and only if the pair

u+(t) and v+(t) is coprime.

Combining this theorem with Theorem 5.3, we conclude the following.

Theorem 7.2. Let n = 2ℓ. Then B ∈ Fn×n is a nonsingular, centroskew T +H-

Bezoutian if and only if it can be represented in the form

(7.1) B = M+
n−1SℓBezH(g, f)ST

ℓ (M
−
n−1)

T +M−
n−1SℓBezH(z,y)ST

ℓ (M
+
n−1)

T

with generalized coprime pairs {f(t),g(t)} and {z(t),y(t)}.

The vectors f ,g, z,y ∈ Fℓ+1 are given by

(7.2) f+ = Sℓ+1f , g+ = Sℓ+1g, y+ = Sℓ+1y, z+ = Sℓ+1z,
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or, equivalently, by

f+(t) = tℓf(t+ t−1), g+(t) = tℓg(t+ t−1), etc.

Let us introduce the shift matrix of order m,

Vm =

















0 1 0

0 1
. . .

. . .

0 1

0 0

















,

as well as the matrices

(7.3) T±
m = Im ± Vm , Tm = Im − V 2

m.

Moreover, we need the following matrices of order m,

Qm =

































(

0
0

)

0
(

2
1

)

0 · · ·

(

1
0

)

0
(

3
1

) ...

(

2
0

)

0
. . . 0

(

3
0

) . . .
(

m−1
1

)

. . . 0

0
(

m−1
0

)

































,

i.e.,

Qm := [ qij ]
m−1
i,j=0 with qij =

{
( j

j−i

2

)

if j ≥ i and j − i is even

0 otherwise,

as well as

Um := [uij ]
m−1
i,j=0 with uij =

{
(

−i−1
j−i

2

)

if j ≥ i and j − i even

0 otherwise.
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Noting that
(

−i−1
k

)

= (−1)k
(

i+k
k

)

, we see that

(7.4) Um =

































(

0
0

)

0 −
(

1
1

)

0 · · ·

(

1
0

)

0 −
(

2
1

) ...

(

2
0

)

0
. . . 0

(

3
0

) . . . −
(

m−2
1

)

. . . 0

0
(

m−1
0

)

































.

It can be proved straightforwardly (see also Lemma 5.1 in [5]) that

(7.5) Uℓ+1Tℓ+1Qℓ+1 = Iℓ+1.

Observe that Qℓ+1 is the lower part of Sℓ+1. The upper part, i.e., the first ℓ rows

of Sℓ+1, is the ℓ× (ℓ+ 1) matrix Jℓ+1Qℓ+1 after cancelling its last row.

Denoting the last ℓ+ 1 components of f+,g+, . . . by f l+,g
l
+, . . . , respectively, the

relation (7.2) can be written as

(7.6) f = Q−1
ℓ+1f

l
+, g = Q−1

ℓ+1g
l
+ , etc.,

where Q−1
ℓ+1 = Uℓ+1Tℓ+1.

Let us continue with discussing what follows from Theorem 7.2. The representa-

tion (7.1) can be written in the form

B = Wn

[

0 BezH(g, f)

BezH(z,y) 0

]

WT
n ,

where Wn := [M+
n−1Sℓ | M

−
n−1Sℓ] ∈ Fn×n. We are going to rewrite Wn in a suitable

way. A straightforward computation yields

M±
n−1Sℓ =

[

±JℓT
±
ℓ Qℓ

T±
ℓ Qℓ

]

.

Thus

Wn =

[

Jℓ −Jℓ
Iℓ Iℓ

] [

T+
ℓ Qℓ 0

0 T−
ℓ Qℓ

]

.

This matrix is invertible, and

W−1
n =

1

2

[

(T+
ℓ Qℓ)

−1 0

0 (T−
ℓ Qℓ)

−1

] [

Jℓ Iℓ
−Jℓ Iℓ

]

.
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From Theorem 4.2, we obtain an inversion formula of the form

(7.7) B−1 = W−T
n

[

0 Hℓ(s2)

Hℓ(s1) 0

]

W−1
n .

Here s1, s2 ∈ F2ℓ−1 are obtained by solving the Bezout equations

(7.8)
g(t)α1(t) + f(t)β1(t) = 1,

gJ (t)γJ
1 (t) + fJ(t)δJ

1 (t) = 1,

and

(7.9)
z(t)α2(t) + y(t)β2(t) = 1,

zJ (t)γJ
2 (t) + yJ (t)δJ

2 (t) = 1.

Computing for i = 1, 2,

(7.10) sJi (t) = −αi(t)δi(t) + βi(t)γi(t)

the inversion formula (7.7) can now be written as stated in the following result.

Proposition 7.3. Let B ∈ F
n×n, n = 2ℓ, be a nonsingular, centroskew T +H-

Bezoutian given in the from (7.1). Then

(7.11) B−1 =
1

4

[

−Jℓ
Iℓ

]

A
(1)
ℓ

[

Jℓ, Iℓ

]

+
1

4

[

Jℓ
Iℓ

]

A
(2)
ℓ

[

− Jℓ, Iℓ

]

with

A
(1)
ℓ := (T−

ℓ Qℓ)
−THℓ(s1)(T

+
ℓ Qℓ)

−1, A
(2)
ℓ := (T+

ℓ Qℓ)
−THℓ(s2)(T

−
ℓ Qℓ)

−1.

Here s1 and s2 are obtained from (7.8)–(7.10).

It now remains to identify A
(i)
ℓ as centroskew T +H matrices, for which we need

further results. We will make use of the following three kinds of T + H matrices

of order ℓ, which we introduce for a skewsymmetric vector c = (ck)
2ℓ−1
k=−2ℓ+1 and a

symmetric vector a# = (a#k )
2ℓ−2
k=−2ℓ+2,

TH±
ℓ (c) =

(

ci−j ± ci+j+1

)ℓ−1

i,j=0

and

TH#
ℓ (a

#) =
(

a#i−j + a#i+j

)ℓ−1

i,j=0
.

The proof of the following lemma is straightforward.

Lemma 7.4. Let a skewsymmetric vector c = (ck)
2ℓ−1
k=−2ℓ+1 ∈ F

4ℓ−1
− , and a sym-

metric vector a# = (a#k )
2ℓ−2
k=−2ℓ+2 ∈ F

4ℓ−3
+ be related via

a#k = ck+1 − ck−1.
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Then

DℓTH
#
ℓ (a

#)Dℓ = −(T+
ℓ )TTH−

ℓ (c)T
−
ℓ = (T−

ℓ )TTH+
ℓ (c)T

+
ℓ

with Dℓ := diag(12 , 1, 1, . . . , 1) and T±
ℓ given by (7.3).

Notice that the relationship between a# and c can be expressed by
















2 0

0 1

−1 0 1
. . .

. . .
. . .

0 −1 0 1



























c1
c2
...

c2ℓ−1











=













a#0
a#1
...

a#2ℓ−2













.

Theorem 7.5. Given a skewsymmetric vector c = (ck)
2ℓ−1
k=−2ℓ+1 ∈ F

4ℓ−1
− , define

(7.12) s = QT
2ℓ−1T

T
2ℓ−1(ck)

2ℓ−1
k=1 ∈ F

2ℓ−2

with T2ℓ−1 introduced by (7.3). Then

Hℓ(s) = −QT
ℓ (T

+
ℓ )TTH−

ℓ (c)T
−
ℓ Qℓ = QT

ℓ (T
−
ℓ )TTH+

ℓ (c)T
+
ℓ Qℓ.

Proof. Introduce a# = (a#k )
2ℓ−2
k=−2ℓ+2 ∈ F

4ℓ−3
+ as in the previous lemma, i.e.,

D−1
2ℓ−1T

T
2ℓ−1(ck)

2ℓ−1
k=1 = (a#k )

2ℓ−2
k=0 .

In [2], Theorem 5, it was shown that

Hℓ(s) = QT
ℓ DℓTH

#
ℓ (a

#)DℓQℓ

if a# is symmetric and s = QT
2ℓ−1D2ℓ−1(a

#
k )

2ℓ−2
k=0 . Combining this with the lemma,

we arrive at the stated formula.

Notice that using (7.5), equation (7.12) can be written as

(ck)
2ℓ−1
k=1 = UT

2ℓ−1s

with Um given in (7.4).

Applying Theorem 7.5 to Hℓ(si) with si given in (7.10), we see that

A
(1)
ℓ = TH+

ℓ (c
(1)), A

(2)
ℓ = −TH−

ℓ (c
(2)),

where

(7.13) c(i) =





−J2ℓ−1U
T
2ℓ−1si

0

UT
2ℓ−1si



 .
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Combining this with the above formula (7.11), it follows that

B−1 =
1

4

[

−Jℓ
Iℓ

]

TH+
ℓ (c

(1)) [ Jℓ Iℓ ]−
1

4

[

Jℓ
Iℓ

]

TH−
ℓ (c

(2)) [−Jℓ Iℓ ] ,

which equals

1

4

[

c
(1)
j−k + c

(1)
j+k+1

]ℓ−1

j,k=−ℓ
−

1

4

[

c
(2)
j−k − c

(2)
j+k+1

]ℓ−1

j,k=−ℓ
,

i.e.,

1

4

[

c
(1)
j−k + c

(1)
j+k+1−n

]n−1

j,k=0
−

1

4

[

c
(2)
j−k − c

(2)
j+k+1−n

]n−1

j,k=0
.

Summarizing we arrive at the following result.

Theorem 7.6. The inverse of a nonsingular, centroskew T +H-Bezoutian B of

order n = 2ℓ given by (7.1) admits the representation

(7.14) B−1 =
1

2
(Tn(c

(1))P+ − Tn(c
(2))P−),

where c(i) is given in (7.13) and (7.8)–(7.10).

Finally, let us present the steps of a corresponding algorithm for the inversion of

a centroskew T +H-Bezoutian.

Algorithm 7.7. We are given a centroskew T +H-Bezoutian of order n = 2ℓ

in the form (5.1) with pairs {f+(t),g+(t)} and {y+(t), z+(t)} of symmetric coprime

polynomials in F
n+1
+ [t].

1. Compute the vectors f ,g,y, z ∈ Fℓ+1 according to (7.6), where Q−1
ℓ+1 =

Uℓ+1Tℓ+1 with Uℓ+1 and Tℓ+1 defined in (7.4) and (7.3).

2. Solve the Bezout equations (7.8) and (7.9) by the extended Euclidean algo-

rithm.

3. Compute the vectors si by polynomial multiplication according to (7.10).

4. Compute the symbols c(i) as in (7.13).

5. Compute the matrices

A1 := Tn(c
(1))P+ and A2 := Tn(c

(2))P− .

6. Then the inverse of B is given by

B−1 =
1

2
(A1 −A2).
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Also this algorithm requires O(n2) complexity. In comparison to Algorithm 6.5,

it has additional matrix-vector multiplications in Steps 1 and 4. The matrices con-

tain binomial coefficients, which can be generated recursively with O(n2) operations.

Matrix-vector multiplication can also be carried out with O(n2) complexity.

Notice also that there is a stability problem in case of fields R or C because the

binomial coefficients in the matrices Uℓ become exponentially large.

8. Final remarks. Comparing the inversion formulas (6.6) and (7.14) we obtain

for the symbols of the Toeplitz matrices the following equalities

c(1) = c and c(2) = d .

This is a consequence of the uniqueness of the representation (see Proposition 3.1).

To compute these symbols, we have discussed two different possibilities, based on

representations of the splitting parts of B,

B+− = M+
n−1Bezsp(f+,g+)(M

−
n−1)

T , B−+ = M−
n−1Bezsp(y+, z+)(M

+
n−1)

T .

Indeed, the representations

B+− = 2BezT (f+,g+)P− and B−+ = −2BezT (y+, z+)P+

led to the first algorithm, whereas

B+− = M+
n−1SℓBezH(g, f)ST

ℓ (M
−
n−1)

T

and

B−+ = M−
n−1SℓBezH(z,y)ST

ℓ (M
+
n−1)

T

were the basis of the second algorithm.

The advantage of the first approach is that it is simpler and straightforward. One

has to invert two T -Bezoutians of order n, but the symbols c,d of the corresponding

two skewsymmetric Toeplitz matrices are obtained directly after solving corresponding

Bezout equations.

The second approach has the benefit that one has to invert two H-Bezoutians of

half the order ℓ = n
2 , which involves solving corresponding Bezout equations of half the

size. On the other hand, one has to perform additional matrix-vector multiplication

before and after this step, where the matrices are

Q−1
ℓ+1 = Uℓ+1Tℓ+1 and UT

2ℓ−1 .

The second approach is the analogue of the method for inverting centrosymmetric

T +H-Bezoutians, which we discussed in a previous paper [5]. Thus, we have shown

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 336-359, July 2015



ELA

358 T. Ehrhardt and K. Rost

here that the method of [5] also works in the case of centroskew T+H-Bezoutians. The

problem of how our first approach can be modified to be applicable to centrosymmetric

T + H-Bezoutians is under investigation and will be the subject of a forthcoming

paper. (Note that in this case, Rn given in (3.2) nonsingular has not the consequence

that Tn(c) and Tn(d) are nonsingular.) It seems, somewhat surprisingly, as if the

centroskewsymmetric case is easier to deal with than the centrosymmetric case.

Finally, let us comment on what our algorithms can accomplish regarding solving

of linear systems, Bx = y, with a nonsingular, centroskew T + H-Bezoutian B of

order n. As x = B−1y and B−1 is a T + H matrix, using the inverse becomes

advantageous even if one has to solve such a system for very few linear right hand

sides. Note that one does not have to compute (and store) the entire inverse B−1 but

only the symbols of the Toeplitz and Hankel matrix. Multiplication of a Toeplitz or a

Hankel matrix with a vector can be carried out with O(n(log n) log logn) complexity

as already mentioned in the remark made after Algorithm 6.5. In case F = C, one can

speed it up to O(n log n) complexity using FFT. If F = R then the most efficient way is

to use representations of the T +H matrix B−1 involving only four real trigonometric

transformations of length n and diagonal matrices (see [12] and references therein).

Clearly, the complexity is again O(n logn).

Furthermore, notice that the symbols can be obtained from the knowledge of

the first row and the first column of B−1. This can be easily seen from Proposition

3.1. Thus, in view of the above, the computational cost of computing the symbol

of the inverse and solving a linear system are of the same order of magnitude. The

complexity of standard methods for computing the solution of a linear system (not

using any structure) are worse than quadratic in n, while ourO(n2) algorithms provide

explicit formulas and display the connection to the extended Euclidean algorithm.
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