
ELA

ON DERIVATIVES AND NORMS OF GENERALIZED MATRIX

FUNCTIONS AND RESPECTIVE SYMMETRIC POWERS∗
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Abstract. In recent papers, the authors obtained formulas for directional derivatives of all

orders, of the immanant and of the m-th ξ-symmetric tensor power of an operator and a matrix,

when ξ is a character of the full symmetric group. The operator norm of these derivatives was also

calculated. In this paper, similar results are established for generalized matrix functions and for

every symmetric tensor power.
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1. Introduction. Let ξ be an irreducible character of the symmetric group.

There are formulas for the higher order derivatives of the immanant and the ξ-

symmetric tensor power of an operator that were proved in [6]. In this paper, we

also defined the matrix Kξ(A), which generalized the already known concepts of

∨mA, m-th induced power of A and the m-th compound of A, represented by ∧mA.

There are also formulas for the norms of some of these derivatives, calculated in [7],

following the work done in [3] and [4].

This paper follows along the lines of our previous work, but instead of considering

an irreducible character of the full symmetric group we will consider a character of

any subgroup G of Sm. Some of the proofs for the derivatives carry through with

some adjustments, however, when considering the norm of the derivatives of these

generalized functions some new questions arise, because in this case there are no

relations between the character ξ and the partitions of m.

2. Definitions. We will write Mn(C) to represent the vector space of the square

matrices of order n with complex entries. Let G be a subgroup of the permutation

group of order n, Sn. Let A ∈ Mn(C) and ξ be a character of G. We define the
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generalized matrix function determined by ξ and G as:

dGξ (A) =
∑

σ∈G

ξ(σ)
n∏

i=1

aiσ(i).

This is a multilinear map in the columns of the matrix A and a polynomial map in

the matrix entries, hence differentiable.

It is our purpose to obtain formulas for higher order derivatives of this function.

Let V1, . . . , Vn be n vector spaces over C, and let φ : V1 × · · · × Vn −→ C be a

multilinear form. For A,X1, . . . , Xk ∈ V1 × · · · × Vn, the k-th derivative of φ at A in

the direction of (X1, . . . , Xk) is given by the expression

Dkφ(A)(X1, . . . , Xk) :=
∂k

∂t1 · · · ∂tk

∣∣∣
t1=···=tk=0

φ(A + t1X
1 + · · ·+ tkX

k).

This is a multilinear function defined on Mn(C)
k.

Given a matrix A ∈ Mn(C), we will represent by A[i] the i-th column of A,

i = 1, . . . , n.

Let Γm,n be the set of all maps from the set {1, . . . ,m} into the set {1, . . . , n}.

This set can also be identified with the collection of multiindices {(i1, . . . , im) : ij ≤

n}. If α ∈ Γm,n, this correspondence associates to α the m-tuple (α(1), . . . , α(m)).

We will consider the lexicographic order in the set Γm,n.

We denote by Qk,n the set of strictly increasing maps in Γm,n, and by Gk,n the

set of increasing maps.

3. Derivatives of dGξ . Let k be a natural number, 1 ≤ k ≤ n, A,X1, . . . , Xk ∈

Mn(C), and t1, . . . , tk k variables.

We will denote by A(α;X1, . . . , Xk) the matrix of order n obtained from A by

replacing the α(j) column of A by the α(j) column of Xj. There is a known formula

for the k-th directional derivative, which can be easily deduced by considering the

multilinearity (see [3] or [6]).

DkdGξ (A)(X
1, . . . , Xk) =

∑

σ∈Sk

∑

α∈Qk,n

dGξ A(α;X
σ(1), . . . , Xσ(k)).

In particular,

DkdGξ (A)(X, . . . , X) = k!
∑

α∈Qk,n

dGξ A(α;X, . . . , X).
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We can re-write the last expression using the concept of mixed generalized matrix

function. The mixed immanant, defined in [6], is a particular case of this definition.

Definition 3.1. Let X1, . . . , Xn be n matrices of order n. We define the mixed

generalized matrix function of X1, . . . , Xn as

∆G
ξ (X

1, . . . , Xn) :=
1

n!

∑

σ∈Sn

dGξ (X
σ(1)
[1] , . . . , X

σ(n)
[n] ).

If X1 = · · · = Xt = A, for some t ≤ n and A ∈ Mn(C), we denote it by

∆G
ξ (A;X

t+1, . . . , Xn).

We have that ∆G
ξ (A, . . . , A) = dGξ (A).

Proposition 3.2. Let A ∈ Mn(C). We have that

∆G
ξ (A;X

1, . . . , Xk) :=
(n− k)!

n!

∑

σ∈Sk

∑

α∈Qk,n

dGξ A(α;X
σ(1), . . . , Xσ(k)).

Proof. We simply have to observe that each summand in ∆G
ξ (A;X

1, . . . , Xk)

appears (n− k)! times: once we fix a permutation of the matrices X1, . . . , Xk, these

summands correspond to the possible permutations of the n − k matrices equal to

A.

As an immediate consequence of this result, we can re-write the formula we ob-

tained for the derivative of dGξ .

Theorem 3.3.

DkdGξ (A)(X
1, . . . , Xk) =

n!

(n− k)!
∆G

ξ (A;X
1, . . . , Xk).(3.1)

4. On ξ-symmetric tensor powers. We present some classic facts and nota-

tion about ξ-symmetric powers that can be found in [10, Chapter 6]. In this section, G

is a subgroup of Sm and ξ is an irreducible character of G. Define T (G, ξ) ∈ L(⊗mV )

as

T (G, ξ) =
ξ(id)

|G|

∑

σ∈G

ξ(σ)P (σ),

where id stands for the identity element of Sm and P (σ)(v1 ⊗ · · · ⊗ vm) = vσ−1(1) ⊗

· · ·⊗ vσ−1(m). The range of T (G, ξ) is called the symmetry class of tensors associated
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with the irreducible character ξ and it is represented by Vξ(G) = T (G, ξ)(⊗mV ). We

denote

v1 ∗ v2 ∗ · · · ∗ vm = T (G, ξ)(v1 ⊗ v2 ⊗ · · · ⊗ vm).

These vectors belong to Vξ(G) and are called decomposable symmetrized tensors.

Given T ∈ L(V ), it is known that Vξ(G) is an invariant subspace for ⊗mT . We

define the ξ-symmetric tensor power of T as the restriction of ⊗mT to Vξ(G), and

denote it by KG
ξ (T ).

The group G acts on Γm,n by the action (σ, α) −→ α ◦ σ−1 where σ ∈ Sm and

α ∈ Γm,n. The orbit of α ∈ Γm,n is {α.σ : σ ∈ G} ⊆ Γm,n and the stabilizer of α is

Gα = {σ ∈ Sm : α.σ = α}.

If V is a Hilbert space and E = {e1, . . . , en} is an orthonormal basis of V , then

the set

{e⊗α = eα(1) ⊗ eα(2) ⊗ · · · ⊗ eα(m) : α ∈ Γm,n}

is an orthonormal basis of the m-th tensor power of V . By the definition of Vξ(G),

we have

Vξ(G) =< {e∗α = T (G, ξ)(e⊗α ) : α ∈ Γm,n} > .

In general, this is not a basis of Vξ(G). Let

Ω = Ωξ = {α ∈ Γm,n : e∗α 6= 0}.

For a characterization of the nonzero decomposable symmetrized tensors, we have the

formula

(4.1) ‖e∗α‖
2 =

ξ(id)

|G|

∑

σ∈Gα

ξ(σ).

So the nonzero decomposable symmetrized tensors are {e∗α : α ∈ Ω}. Let ∆ be the

system of distinct representatives for the quotient set Γm,n/G, constructed by taking

the first element in each orbit, for the lexicographic order of indices. It is easy to

check that ∆ ⊆ Gm,n, where Gm,n is the set of all increasing sequences of Γm,n.

It can be proved that the set {e∗α : α ∈ ∆ ∩ Ω} is linearly independent. So there

is a set ∆̂, such that ∆ ∩ Ω ⊆ ∆̂ ⊆ Ω such that

E ′ := {e∗α : α ∈ ∆̂}

is a basis for Vξ(G). We will consider this basis fixed.
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5. Derivatives of the ξ-symmetric tensor power of an operator. In this

section, we present a formula for higher order derivatives that generalizes formulas in

[2] and [3]. It is known that, given X1, . . . , Xm ∈ L(V ), the space Vξ(G) is invariant

for the map defined as

X1⊗̃X2⊗̃ · · · ⊗̃Xm :=
1

m!

∑

σ∈Sm

Xσ(1) ⊗ · · · ⊗Xσ(m).

See for instance [10, p. 184]. We will denote the restriction of this map to Vξ(G) by

X1 ∗ · · ·∗Xm and call it the symmetrized ξ-symmetric tensor product of the operators

X1, . . . , Xm. We remark that this notation does not convey the fact that the product

depends on the character ξ and the subgroup G. In [3], the following formula is

deduced:

(5.1) Dk(⊗mT )(X1, . . . , Xk) =
m!

(m− k)!
T ⊗̃ · · · ⊗̃T︸ ︷︷ ︸
m−k copies

⊗̃X1⊗̃ · · · ⊗̃Xk.

If k > m all derivatives are zero. From this we can deduce a formula for the derivative

DkKG
ξ (T )(X1, . . . , Xk), using the same techniques. We need the following formulas,

also from [3]: for L linear and f a k times differentiable function, we have:

Dk(L ◦ f)(a)(x1, . . . , xk) = L ◦Dkf(a)(x1, . . . , xk).(5.2)

Dk(f ◦ L)(A)(x1, . . . , xk) = Dkf(L(A))(L(x1), . . . , L(xk)).(5.3)

Theorem 5.1. Using the notation we have established, we have

DkKG
ξ (T )(X1, . . . , Xk) =

m!

(m− k)!
T ∗ · · · ∗ T ∗X1 ∗ · · · ∗Xk.

If m = k this formula does not depend on T , and if k > m all derivatives are zero.

Proof. We follow the lines of the proof in [3]. Let Q be the inclusion map defined

as Q : Vξ(G) −→ ⊗mV , so its adjoint operator Q∗ is the projection of ⊗mV onto

Vξ(G). We have

T1 ∗ · · · ∗ Tm = Q∗(T1⊗̃ · · · ⊗̃Tm)Q.

Both maps L 7→ Q∗L and L 7→ LQ are linear, so we can apply formulas (5.1) and

(5.2) and get

DkKG
ξ (T )(X1, . . . , Xn) = Dk(Q∗(⊗mT )Q)(X1, . . . , Xk)

= Q∗Dk(⊗mT )(X1, . . . , Xk)Q

=
m!

(m− k)!
Q∗(T ⊗̃ · · · ⊗̃T︸ ︷︷ ︸

m−k times

⊗̃X1⊗̃ · · · ⊗̃Xk)Q

=
m!

(m− k)!
T ∗ · · · ∗ T ∗X1 ∗ · · · ∗Xk.
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6. Derivatives of the ξ-symmetric tensor power of a matrix. In this

section, we wish to establish a formula for the k-th derivative of the ξ-symmetric

tensor power of a matrix. Before we can do this, we need quite a bit of definitions,

including the very definition of this matrix.

Recall E ′, the induced basis of Vξ(G), and let E = {vα : α ∈ ∆̂} be an orthonormal

basis of Vξ(G).

The basis E can be obtained from E ′ via the Gram-Schmidt process, as was done

in [6] and [7], but it can be any other orthonormal basis. In [9], for instance, other

bases are presented, and these may eventually be more adequate.

Let B be the change of basis matrix from E ′ to E , B = M(idVξ(G); E
′, E). Since

E is obtained from E ′ via the Gram-Schmidt process, this matrix does not depend on

the choice of the orthonormal basis of V . The Gram-Schmidt process only depends

on the numbers 〈e∗α, e
∗
β〉, and, by [10, p. 163], these are given by formula

〈e∗α, e
∗
β〉 =

ξ(id)

|G|

∑

σ∈G

ξ(σ)

m∏

t=1

〈eα(t), eβσ(t)〉.

Hence, they only depend on the values of 〈ei, ej〉 = δij and are independent of

the vectors themselves.

We now present a technical result, from [10, p. 230] that will help us to relate the

operator KG
ξ (T ) to its matrix, with respect to the bases we have defined.

Theorem 6.1. Suppose ξ is an irreducible character of the group G. Let E =

{e1, . . . , en} be an orthonormal basis of the inner product space V . Let T ∈ L(V, V )

be the unique linear operator such that M(T,E) = A.

If α, β ∈ Γm,n, then

〈KG
ξ (T )(e∗α), e

∗
β〉 =

ξ(id)

|G|
dGξ (A

T [α|β]).

We now define KG
ξ (A), the m-th ξ-symmetric tensor power of the matrix A. As

in [6], we fix an orthonormal basis E in V and consider the linear endomorphism T

such that A = M(T,E). Define

KG
ξ (A) := M(KG

ξ (T ), E).

The matrix KG
ξ (A) has order t = |∆̂|, with |Qm,n| ≤ t and it will depend on the or-

thonormal basis E — for different orthonormal bases, we may get different ξ-symmetric

powers. This is expressed by the presence of the matrix B in several formulas.
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We have that, for α, β ∈ ∆̂, the (α, β) entry of KG
ξ (A) is

〈
KG

ξ (T )(vβ), vα
〉
=

∑

γ,δ∈∆̂

〈
bγβK

G
ξ (T )(e∗γ), bδαe

∗
δ

〉

=
∑

γ,δ∈∆̂

bγβbδα
〈
KG

ξ (T )e∗γ , e
∗
δ

〉

=
ξ(id)

|G|

∑

γ,δ∈∆̂

bγβbδαd
G
ξ (A[δ|γ]

T )

=
ξ(id)

|G|

∑

γ,δ∈∆̂

bγβbδαd
G
ξ (A[δ|γ]).

Denote by gmmξ(A) the square matrix with rows and columns indexed by ∆̂,

whose (γ, δ) entry is dGξ (A[γ|δ]) (the letters “gmm” stand for “generalized matrix

(function)” and “minors”). With this definition, we can rewrite the previous equation

as

(6.1) KG
ξ (A) =

ξ(id)

|G|
B∗ gmmξ(A)B.

Finally, denote by mixgmmξ(X
1, . . . , Xn) the square matrix having rows and

columns indexed by ∆̂, whose (γ, δ) entry is ∆G
ξ (X

1[γ|δ], . . . , Xn[γ|δ]). With this

definition, mixgmmξ(A, . . . , A) = gmmξ(A). We use the same shorthand as with the

mixed generalized matrix function: for k ≤ n,

mixgmmξ(A;X
1, . . . , Xk) := mixgmmξ(A, . . . , A,X

1, . . .Xk).

Using all the notation we have so far, we have the following result.

Theorem 6.2.

DkKG
ξ (A)(X1, . . . , Xk) =

ξSm(id)

(m− k)!
B∗ mixgmmξ(A;X

1, . . . , Xk)B,

where ξSm is the induced character, and ξSm(id) = [Sm : G]ξ(id) = m!ξ(id)/|G|.

Proof. We adapt arguments from [6]. Since the map A 7→ A[δ|γ] is linear, we can

apply formula (5.3) to compute the derivatives of the entries of the matrix Kξ(A).

By formula (6.1), the (α, β) entry of the matrix DkKξ(A)(X
1, . . . , Xk) is

ξ(id)

|G|

∑

γ,δ∈∆̂

bγβbδαD
kdξ(A[δ|γ])(X

1[δ|γ], . . . , Xk[δ|γ]).
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To abbreviate notation, for fixed γ, δ ∈ ∆̂, we will write C := A[δ|γ], and Zi :=

X i[δ|γ], i = 1, . . . , k. Using formula (3.1), we get

Dkdξ(A[δ|γ])(X
1[δ|γ], . . . , Xk[δ|γ]) = Dkdξ(C)(Z1, . . . , Zk)

=
m!

(m− k)!
∆ξ(C;Z1, . . . , Zk).

So the (α, β) entry of DkKξ(A)(X
1, . . . , Xk) is

ξ(id)

|G|

∑

γ,δ∈∆̂

bγβbδα
m!

(m− k)!
∆ξ(C;Z1, . . . , Zk) =

ξ(id)m!

|G|(m− k)!

∑

γ,δ∈∆̂

bγβbδα∆ξ(A[δ|γ];X
1[δ|γ], . . . , Xk[δ|γ]).

According to the definition of mixgmmξ(A;X
1, . . . , Xk), we have

DkKξ(A)(X
1, . . . , Xk) =

ξ(id)m!

|G|(m− k)!
B∗ mixgmmξ(A;X

1, . . . , Xk)B.

Finally, following [10, p. 97], we can reinterpret the constant:

m!ξ(id)/|G| = [Sm : G]ξ(id) = ξSm(id).

The formula obtained for the higher order derivatives of KG
ξ (A)(X1, . . . , Xk)

generalizes the expression obtained in [6] for the case G = Sm (the only difference is

that the present formula has ξSm instead of ξ).

7. Norms. We now obtain upper bounds for the norm of these derivatives. We

will need some more results and definitions, which we present in this section.

A partition π of m is an m-tuple of positive integers π = (π1, . . . , πr), such that

• π1 ≥ · · · ≥ πr,

• π1 + · · ·+ πr = m.

The number of nonzero entries in the partition π is called the length of π and is

represented by l(π).

Given an n-tuple of real numbers x = (x1, . . . , xn) and α ∈ Γm,n, we define the

m-tuple

xα := (xα(1), xα(2), . . . , xα(m)).

For every partition π = (π1, π2, . . . , πl(π), 0, . . . , 0) of m we define ω(π) as

ω(π) := (1, . . . , 1︸ ︷︷ ︸
π1 times

, 2, . . . , 2︸ ︷︷ ︸
π2 times

, . . . , l(π), . . . , l(π)︸ ︷︷ ︸
πl(π) times

) ∈ Gm,n ⊆ Γm,n.
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For each α ∈ Γm,n let Imα = {i1, . . . , il}, suppose that |α−1(i1)| ≥ · · · ≥

|α−1(il)|. The partition of m

µ(α) := (|α−1(i1)|, . . . , |α
−1(il)|, 0, . . . , 0)

is called the multiplicity partition of α. The multiplicity partition of ω(π) is equal to

the partition π:

µ(ω(π)) = π.

We have that Imω(π) = {1, 2, . . . , l(π)} and that |α−1(i)| = πi, for every i =

1, 2, . . . l(π). So

µ(ω(π)) = (|α−1(1)|, |α−1(2)|, . . . , |α−1(l(π))|) = (π1, π2, . . . , πl(π)) = π.

We recall a well known order defined on the set of partitions of m. A partition

λ = (λ1, . . . , λm) majorizes π = (π1, . . . , πm), written π � λ, if, for all 1 ≤ s ≤ m,

s∑

j=1

πj ≤

s∑

j=1

λj .

When G = Sm there is a canonical relation between the irreducible characters of

Sm and the partitions of m. For a partition π, we denote by χπ the character of Sm

associated with it. This relation enables us to find an explicit formula for the norm

of the k-th derivative of Kχπ
(T ), this is formula (4.1) in [7]:

‖DkKχπ
(T )‖ = k! pm−k(νω(π)),

where ν1 ≥ · · · ≥ νn are the singular values of the operator T and pm−k is the

elementary symmetric polynomial of degree m− k in m variables.

There is also a classical result that characterizes the set Ωχπ
= {α ∈ Γm,n : e∗α 6=

0} and is [10, Theorem 6.37]: for π a partition of m and α ∈ Γm,n, we have e∗α 6= 0 if

and only if µ(α) � π.

When G is any subgroup of Sm this relation between partitions and irreducible

characters of G does not exist. In [8], J.A. Dias da Silva and A. Fonseca introduced

the notion of multilinearity partition which was used to generalize the previous result.

Definition 7.1. Suppose ξ is an irreducible character of G. The multilinearity

partition of the character ξ, MP(ξ), is the least upper bound of the partitions π of m

for which (ξ, χπ)G 6= 0.
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When G = Sm, the multilinearity partition is the partition usually associated

with ξ. In the same paper the authors also prove the next result, which we will use

later.

Theorem 7.2. Suppose ξ is an irreducible character of G and let α ∈ Γm,n. If

e∗α = T (G, ξ)(e⊗α ) 6= 0, then µ(α) � MP(ξ).

8. Norm of the k-th derivative of KG
ξ (T ). Let U and V be finite dimensional

Hilbert spaces. We recall that the norm of a multilinear operator Φ : (L(V ))k −→

L(U) is given by

‖Φ‖ = sup
‖X1‖=···=‖Xk‖=1

‖Φ(X1, . . . , Xk)‖.

The main result of this section is an upper bound for the norm of the map T → KG
ξ (T ).

The proof of this result is inspired in the techniques used in [1]. We will now highlight

the most important features of the proof.

By the polar decomposition, we know that for every T ∈ L(V ) there are a positive

semidefinite operator P and a unitary operator W such that P = TW . Moreover,

the eigenvalues of P are the singular values of T .

Proposition 8.1. With the above notation, we have

‖DkKG
ξ (T )‖ = ‖DkKG

ξ (P )‖.

The proof follows the lines of the one in [7], where it was done for G = Sm. It is

based on the fact that this norm is unitarily invariant.

Now we need to estimate the norm of the operator DkKG
ξ (P ). For this, we use

a result from [3], a multilinear version of the Russo-Dye theorem, which we quote

here. A multilinear operator Φ is said to be positive if Φ(X1, . . . , Xk) is a positive

semidefinite operator whenever X1, . . . , Xk are so.

Theorem 8.2 (Russo-Dye multilinear version). Let Φ : L(V )k −→ L(U) be a

positive multilinear operator. Then

‖Φ‖ = ‖Φ(I, I, . . . , I)‖.

We have that DkKG
ξ (P ) is a positive multilinear operator, since if X1, . . . , Xk are

positive semidefinite, then by the formula in Theorem 5.1, DkKG
ξ (P )(X1, . . . , Xk) is

the restriction of a positive semidefinite operator to an invariant subspace, and thus

is positive semidefinite.

Therefore,

‖DkKG
ξ (T )‖ = ‖DkKG

ξ (P )‖ = ‖DkKG
ξ (P )(I, I, . . . , I)‖.
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Now, by the definition of the norm, we have to find the maximum eigenvalue of

DkKG
ξ (P )(I, I, . . . , I). First, we will find a basis of Vξ(G) formed by eigenvectors of

DkKξ(P )(I, I, . . . , I). If E = {e1, . . . , en} is an orthonormal basis of eigenvectors for

P , then {e∗α : α ∈ ∆̂} will be a basis of eigenvectors for DkKG
ξ (P )(I, I, . . . , I) (in

general, it will not be orthonormal).

The following proposition gives the expression for the eigenvalues of the derivative

DkKG
ξ (P )(I, I, . . . , I), the proof can be found in [7].

Proposition 8.3. Let α ∈ ∆̂ and define

λ(α) := k! pm−k(να).

Then λ(α) is the eigenvalue of DkKG
ξ (P )(I, I, . . . , I) associated with the eigenvector

e∗α.

We have obtained the expression for all the eigenvalues of DkKξ(P )(I, . . . , I). In

[7], it was possible to find the largest one, which then coincided with the norm of the

operator. In the present situation, it was only possible to find an upper bound for all

values λ(α), which will then be an upper bound for the norm.

Lemma 8.4. If α, β ∈ ∆̂ are in the same orbit, then λ(α) = λ(β).

Proof. If α and β are in the same orbit, then there is σ ∈ Sm such that ασ = β.

So by the definition of the elementary symmetric polynomials, we have

pm−k(νβ) = pm−k(νασ) = pm−k(να).

According to the results in Section 4, every orbit has a representative in Gm,n,

and this is the first element in each orbit (for the lexicographic order). Therefore, the

norm of the k-th derivative of KG
ξ (T ) is attained at some λ(α) with α ∈ ∆̂ ∩ Gm,n.

We now compare eigenvalues coming from different elements of ∆̂ ∩Gm,n.

Lemma 8.5. Let α, β be elements of ∆̂ ∩ Gm,n and π be a partition of m. We

have the following results.

1. λ(α) ≥ λ(β) if and only if α precedes β in the lexicographic order.

2. If µ(α) � π then ω(π) precedes α in the lexicographic order.

Proof. 1. The result follows directly from the expression of the eigenvalues of

DkKξ(P )(I, . . . , I) given in Proposition 8.3.

2. It is a matter of examining the definitions.

We are now ready to state and prove the main theorem.

Theorem 8.6. Let V be an n-dimensional Hilbert space. Let m and k be positive
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integers such that 1 ≤ k ≤ m ≤ n, and let ξ be an irreducible character of G. Consider

the map T → KG
ξ (T ). Then

‖DkKξ(T )‖ ≤ k! pm−k(νω(MP(ξ)))

where pm−k is the symmetric polynomial of degree m−k in m variables, ν1 ≥ · · · ≥ νn
are the singular values of T and MP(ξ) the multilinearity partition of ξ.

Proof. For α ∈ ∆̂ ∩ Gm,n we have e∗α 6= 0. By definition, MP(ξ) majorizes

µ(α), where ξ is the irreducible character of G such that T (ξ,G)(e⊗α ) = e∗α. On the

other hand µ(α) � MP(ξ), so, by the previous lemma, ω(MP(ξ)) precedes α in the

lexicographic order. Again by the lemma, we can conclude that λ(ω(MP(ξ))) ≥ λ(α)

for every α ∈ ∆̂ ∩Gm,n.

By the definition of ‖DkKG
ξ (T )‖, we have

‖DkKG
ξ (T )‖ ≤ k! pm−k(νω(MP(ξ))).

It can be shown that if A = M(T,E), and, for each 1 ≤ i ≤ k, Si = M(X i, E),

then DkKG
ξ (A)(S1, . . . , Sk) is the matrix of DkKG

ξ (T )(X1, . . . , Xk) with respect to

the orthonormal basis E . The proof is computational and a bit intricate, but straight-

forward. It follows along the lines of what is done at the end of Chapter 2 of [5]. This

means that the upper bound we got for the norm of DkKG
ξ (T ) applies to DkKG

ξ (A):

‖DkKξ(A)‖ ≤ k! pm−k(νω(MP(ξ))).

9. Norm of the k-th derivative of dGξ . We now wish to establish an upper

bound for the k-th derivative of the generalized matrix function dGξ . Let G be a

subgroup of Sn, here we take m = n.

Theorem 9.1. Keeping with the notation established, we have that, for k ≤ n,

‖DkdGξ (A)‖ ≤ k! pn−k(νω(MP(ξ))).

Proof. We will adjust the arguments in [7] to our situation (even though the

formula is similar, some constants are changed).

Denote γ := (1, 2, . . . , n) ∈ Qn,n ⊆ ∆̂ (the only element in Qn,n). By definition,

dGξ (A) is the (γ, γ) entry of gmmξ(A), and, according to formula (6.1), we have

gmmξ(A) =
|G|

ξ(id)
(B∗)−1KG

ξ (A)B−1.

Since multiplication by a constant matrix is a linear map, we have

Dk((B∗)−1KG
ξ (A)B−1)(X1, . . . , Xk) = (B∗)−1DkKG

ξ (A)(X1, . . . , Xk)B−1.
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We denote by C the column γ of the matrix B−1:

C = (B−1)[γ] = (b′αγ), α ∈ ∆̂.

Then

DkdGξ (A)(X
1, . . . , Xk) =

|G|

ξ(id)
C∗DkKG

ξ (A)(X1, . . . , Xk)C.

By formula (4.1), we have that

‖e∗γ‖
2 =

ξ(id)

|G|
.

By definition of the matrix B, we have

e∗γ =
∑

β∈∆̂

b′βγvβ

with C = [b′βγ : β ∈ ∆̂]. Since the basis (vα : α ∈ ∆̂) is orthonormal, we have

‖C‖2 = ‖C‖22 = ‖e∗γ‖
2 =

ξ(id)

|G|
,

where ‖C‖2 is the Euclidean norm of C. Therefore,

‖DkdGξ (A)‖ =
|G|

ξ(id)
‖CDkKG

ξ (A)C∗‖

≤
|G|

ξ(id)
‖C‖2‖DkKG

ξ (A)‖

≤ k! pn−k(νω(MP(ξ))).

We finish by applying these results to perturbations, using Taylor’s formula:

‖f(a+ x)− f(a)‖ ≤

p∑

k=1

1

k!
‖Dkf(a)‖‖x‖k.

Corollary 9.2. According to our notation, we have, for T,X ∈ L(V ) and

A, Y ∈ Mn(C):

‖KG
ξ (T )−KG

ξ (T +X)‖ ≤
m∑

k=1

pm−k(νω(MP(ξ)))‖X‖k,

|dGξ (A)− dGξ (A+ Y )| ≤
n∑

k=1

pn−k(νω(MP(ξ)))‖Y ‖k.
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