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Abstract. The properties of the exchange operator on some types of matrices are explored in

this paper. In particular, the properties of exc(A,p, q), where A is a given structured matrix of size

(p + q) × (p + q) and exc : M × N × N → M is the exchange operator are studied. This paper

is a generalization of one of the results in [N.J. Higham. J-orthogonal matrices: Properties and

generation. SIAM Review, 45:504–519, 2003.].
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1. Introduction. In Mackey, Mackey and Tisseur [1] a scalar product 〈x, y〉M
defined by a non-singular matrix M is given by

〈x, y〉M =

{

xTMy for bilinear forms,

x∗My for sesquilinear forms.

The adjoint of a matrix A with respect to the scalar product, denoted by A⋆M is

defined by the property 〈Ax, y〉M = 〈x,A⋆M y〉M . It can be shown that the matrix

adjoint is given explicitly by

A⋆M =

{

M−1ATM for bilinear forms,

M−1A∗M for sesquilinear forms.

For the above cases, * is used to denote the conjugate transpose. An automor-

phism group G, Lie algebra L and Jordan algebra J is associated with the scalar

product. They are namely defined by:

G : = {G ∈ K
n×n : 〈Gx,Gy〉M = 〈x, y〉M ∀x, y ∈ K

n}

= {G ∈ K
n×n : G⋆M = G−1},
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L : = {L ∈ K
n×n : 〈Lx, y〉M = −〈x, Ly〉M ∀x, y ∈ K

n}

= {L ∈ K
n×n : L⋆M = −L},

J : = {J ∈ K
n×n : 〈Jx, y〉M = 〈x, Jy〉M ∀x, y ∈ K

n}

= {J ∈ K
n×n : J⋆M = J},

where K = R or C.

For this work, the automorphism group, Jordan algebra, and Lie algebra with

respect to a scalar product defined by the nonsingular matrix M will be denoted as

GM , JM , and LM , respectively. Let n be a positive integer and let p, q be non-negative

integers such that p+ q = n. Let

Σp,q =

[

Ip O

O −Iq

]

.

A matrix Q ∈ Rn×n is said to be J-orthogonal if and only if Q = Σp,qQ
TΣp,q. A

matrix A ∈ Rn×n can be partitioned in the form

A =

[

A11 A12

A21 A22

]

,

where A11 ∈ Rp×p, A12 ∈ Rp×q, A21 ∈ Rq×p, and A22 ∈ Rq×q. If A11 is nonsingular,

then we define the exchange operator as

exc(A, p, q) =

[

A−1
11 −A−1

11 A12

A21A
−1
11 A22 −A21A

−1
11 A12

]

.

In some contexts, exc(A, p, q) is also known as the principal pivot transform of

A relative to A11. Let B = exc(A, p, q). In Tsatsomeros [3] the exchange operator

exc(A, p, q) is related to A such that for every x = (xT
1 , x

T
2 )

T and y = (yT1 , y
T
2 )

T in

Cn partitioned conformally to A,

A

[

x1

x2

]

=

[

y1

y2

]

if and only if

B

[

y1

x2

]

=

[

x1

y2

]

.

2. Results.

Theorem 2.1 (Higham [4]). Let A ∈ Rn×n. If A is J-orthogonal then

exc(A, p, q) is orthogonal. If A is orthogonal and A11 is nonsingular, then exc(A, p, q)

is J-orthogonal.
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First, we note that every J-orthogonal matrix is an element of the automorphism

group GΣp,q
and every orthogonal matrix is an element of the automorphism group

GIn . Thus, Higham’s theorem is equivalent to stating that: if A is an element of the

automorphism group GΣp,q
, then exc(A, p, q) ∈ GIn . Also, if A ∈ GIn , then it follows

that exc(A, p, q) ∈ GΣp,q
. We generalize the result above onto the automorphism

group GM and extend it to the Jordan algebra JM and the Lie algebra LM , where

M =

[

N1 O

O N2

]

is a matrix such that N1 ∈ Rp×p and N2 ∈ Rq×q are both non-singular. Let

M̂ =

[

N1 O

O −N2

]

.

Theorem 2.2. If A ∈ GM , then exc(A, p, q) ∈ G
M̂
. Also, if A ∈ G

M̂
then

exc(A, p, q) ∈ GM .

Theorem 2.3. If A ∈ JM , then exc(A, p, q) ∈ J
M̂
. Also, if A ∈ J

M̂
then

exc(A, p, q) ∈ JM .

Theorem 2.4. The following statements:

a. A ∈ LM =⇒ exc(A, p, q) ∈ L
M̂
,

b. A ∈ L
M̂

=⇒ exc(A, p, q) ∈ LM

are true if and only if A is of the form

[

A11 Op×q

Oq×p A22

]

.

We only prove Theorem 2.2 since the proof of Theorem 2.3 and Theorem 2.4 can

be done similarly.

Proof of Theorem 2.2. A ∈ GM → A⋆M = A−1orA⋆MA = I. Taking the

product, we get

N−1
1 A∗

11N1A11 +N−1
1 A∗

21N2A21 = I,(2.1)

N−1
2 A∗

12N1A11 +N−1
2 A∗

22N2A21 = O,(2.2)

N−1
1 A∗

11N1A12 +N−1
1 A∗

21N2A22 = O,(2.3)

N−1
2 A∗

12N1A12 +N−1
2 A∗

22N2A22 = I.(2.4)

We need to show that the product exc(A, p, q)⋆M̂ exc(A, p, q) = I.

The A11 block is given by

N−1
1 A−∗

11 N1A
−1
11 −N−1

1 A−∗

11 A
∗

21N2A21A
−1
11

= N−1
1 A−∗

11 N1A
−1
11 −N−1

1 A−∗

11 (N1A
−1
11 −A∗

11N1) by (2.1)

= I.
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The A12 block is given by

−N−1
1 A−∗

11 N1A
−1
11 A12 −N−1

1 A−∗

11 A
∗

21N2(A22 −A21A
−1
11 A12)

= −N−1
1 A−∗

11 N1A
−1
11 A12 −N−1

1 A−∗

11 (−A∗

11N1A12)

+N−1
1 A−∗

11 A
∗

21N2A21A
−1
11 A12 by (2.3)

= −N−1
1 A−∗

11 N1A
−1
11 A12 +A12

+N−1
1 A−∗

11 (N1 −A∗

11N1A11)A
−1
11 A12

= O.

The A21 block is given by

N−1
2 A∗

12A
−∗

11 N1A
−1
11 +N−1

2 A∗

22N2A21A
−1
11 −N−1

2 A∗

12A
−∗

11 A
∗

21N2A21A
−1
11

= N−1
2 A∗

12A
−∗

11 N1A
−1
11 + (−N−1

2 A∗

12N1A11)A
−1
11

−N−1
2 A∗

12A
−∗

11 A
∗

21N2A21A
−1
11 by (2.2)

= N−1
2 A∗

12A
−∗

11 N1A
−1
11 −N−1

2 A∗

12N1

−N−1
2 A∗

12A
−∗

11 (N1 −A∗

11N1A11)A
−1
11 by (2.1)

= O.

Finally, the A22 block is given by

−N−1
2 A∗

12A
−∗

11 N1A
−1
11 A12 +N−1

2 A∗

22N2A22 −N−1
2 A∗

12A
−∗

11 A
∗

21N2A22

−N−1
2 A∗

22N2A21A
−1
11 A12 +N−1

2 A∗

12A
−∗

11 A
∗

21N2A21A
−1
11 A12

= −N−1
2 A∗

12A
−∗

11 N1A
−1
11 A12 +N−1

2 A∗

22N2A22

−N−1
2 A∗

12A
−∗

11 A
∗

21N2A22 −N−1
2 A∗

22N2A21A
−1
11 A12

+N−1
2 A∗

12A
−∗

11 (N1 −A∗

11N1A11)A
−1
11 A12 by (2.1)

= N−1
2 A∗

22N2A22 −N−1
2 A∗

12A
−∗

11 (−A∗

11N1A12)

−N−1
2 (−A∗

12N1A11)A
−1
11 A12 −N−1

2 A∗

12N1A12

by (2.2) and (2.3)

= I by (2.4).

Thus, exc(A, p, q) ∈ G
M̂
. The converse can be proven in a similar manner.

Let

K =

[

O N1

N2 O

]

, K̂ =

[

O N1

−N2 O

]

,

where N1 ∈ Rp×p and N2 ∈ Rq×q are both non-singular.

Theorem 2.5. If A ∈ GK, then exc(A, p, q) ∈ J
K̂
.

Theorem 2.6. If A ∈ JK, then exc(A, p, q) ∈ G
K̂
.
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We only prove Theorem 2.5 since the proof of Theorem 2.6 can be done similarly.

Proof of Theorem 2.5. A ∈ GK =⇒ A⋆K = A−1 or A⋆KA = I. Taking the

product, we get

N−1
2 A∗

22N2A11 +N−1
2 A∗

12N1A21 = I,(2.5)

N−1
1 A∗

21N2A11 +N−1
1 A∗

11N1A21 = O,(2.6)

N−1
2 A∗

22N2A12 +N−1
2 A∗

12N1A22 = O,(2.7)

N−1
1 A∗

21N2A12 +N−1
1 A∗

11N1A22 = I.(2.8)

We need to show that K̂−1exc(A, p, q)∗K̂ = exc(A, p, q). Consider
[

O −N−1
2

N−1
1 O

] [

A−∗

11 A−∗

11 A
∗

21

−A∗

12A
−∗

11 A∗

22 −A∗

12A
−∗

11 A
∗

21

] [

O N1

−N2 O

]

=

[

N−1
2 A∗

12A
−∗

11 −N−1
2 A∗

22 +N−1
2 A∗

12A
−∗

11 A
∗

21

N−1
1 A−∗

11 N−1
1 A−∗

11 A
∗

21

] [

O N1

−N2 O

]

=

[

N−1
2 A∗

22N2 −N−1
2 A∗

12A
−∗

11 A
∗

21N2 N−1
2 A∗

12A
−∗

11 N1

−N−1
1 A−∗

11 A
∗

21N2 N−1
1 A−∗

11 N1

]

.

Using equations (2.5)–(2.8), we have

N−1
2 A∗

22N2 −N−1
2 A∗

12A
−∗

11 A
∗

21N2

= A−1
11 −N−1

2 A∗

12N1A21A
−1
11 −N−1

2 A∗

12A
−∗

11 A
∗

21N2

= A11.

Also,

N−1
2 A∗

12A
−∗

11 N1 = N−1
2 A∗

12(A
−∗

11 A
∗

21N2A12 +N1A22)

= N−1
2 A∗

12A
−∗

11 A
∗

21N2A12 +N−1
2 A∗

12N1A22

= N−1
2 A∗

12(A
−∗

11 A
∗

21N2)A12 −N−1
2 A∗

22N2A12

= N−1
2 A∗

12(−N1A21A
−1
11 )A2 − (A−1

11 −N−1
2 A∗

12N1A21A
−1
11 )A12

= −A−1
11 A12

and

−N−1
1 A−∗

11 A
∗

21N2 = −N−1
1 (−N1A21A

−1
11 )

= A21A
−1
11 .

Finally,

N−1
1 A−∗

11 N1 = N−1
1 (N1A22 +A−∗

11 A
∗

21N2A12)

= A22 +N−1
1 (A−∗

11 A
∗

21N2)A12

= A22 +N−1
1 (−N1A21A

−1
11 )A12

= A22 −A21A
−1
11 A12.
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Thus,

[

N−1
2 A∗

22N2 −N−1
2 A∗

12A
−∗

11 A
∗

21N2 N−1
2 A∗

12A
−∗

11 N1

−N−1
1 A−∗

11 A
∗

21N2 N−1
1 A−∗

11 N1

]

=

[

A−1
11 −A−1

11 A12

A21A
−1
11 A22 −A21A

−1
11 A12

]

or equivalently, K̂−1exc(A, p, q)∗K̂ = exc(A, p, q).

3. Application (The Schur complement method). Matrices that can be

directly factored are limited in size due to large memory requirements. Thus, the

difficulty of solving large-scale linear systems of equations using standard techniques

arises. Preconditioned iterative solvers require less memory, but often suffer from slow

convergence. One of the ideas that have been developed to address these problems

is called the Schur complement method. Several parallel hybrid solvers have been

developed based on the above mentioned idea [2].

In the Schur complement method, instead of solving the system

(3.1)

[

A11 A12

A21 A22

] [

x1

x2

]

=

[

y1

y2

]

directly, we consider

[

A−1
11 −A−1

11 A12

A21A
−1
11 A22 −A21A

−1
11 A12

] [

y1

x2

]

=

[

x1

y2

]

and solve the system of equations

A−1
11 y1 −A−1

11 A12x2 = x1,

A21A
−1
11 y1 + (A22 −A21A

−1
11 A12)x2 = y2.

In solving the above system, we need to compute (A22 −A21A
−1
11 A12)

−1.

Suppose that p and q are integers such that q ≤ p and

M =

[

N1 O

O N2

]

is a matrix such that N1 ∈ Rp×p and N2 ∈ Rq×q are both non-singular. Let

M̂ =

[

N1 O

O −N2

]

.

Suppose A ∈ GM . Since exc(A, p, q) ∈ G
M̂

by Theorem 2.2, we know that (A22 −

A21A
−1
11 A12)N

−∗

2 (−A−1
11 A12) = A21A

−1
11 N

−∗

1 A−∗

11 . Suppose further that rank(A21) =
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q. Then we may compute

(A22 −A21A
−1
11 A12)

−1

= N−∗

2 (−A−1
11 A12)

∗(A−1
11 )

−∗N∗

1 (A21A
−1
11 )

∗((A21A
−1
11 )(A21A

−1
11 )

∗)−1

= −N−∗

2 A∗

12N
∗

1A
−∗

11 A
∗

21(A21A
−1
11 A

−∗

11 A
∗

21)
−1

explicitly.

To compute (A21A
−1
11 A

−∗

11 A
∗

21)
−1, we perform singular value decomposition on

both A11 and A21. Write A11 = UΣV ∗ and A21 = Û Σ̂V̂ ∗, where U, V, Û , and V̂ are

unitary and

Σ =











σ1 0 . . . 0

0 σ2 . . . 0

0 0
. . . 0

0 0 0 σp











, Σ̂ =











σ̂1 0 0 . . . 0 0

0 σ̂2 0 . . . 0 0

0 0
. . . . . . 0 0

0 0 0 σ̂q . . . 0











such that {σ1, σ2, . . . , σp} and {σ̂1, σ̂2, . . . , σ̂q} are the singular values of A11 and A21,

respectively . Then,

A21A
−1
11 A

−∗

11 A
∗

21 = Û Σ̂V̂ ∗V Σ−1U∗UΣ−∗V ∗V̂ Σ̂∗Û∗

= Û Σ̂V̂ ∗V Σ−1Σ−∗V ∗V̂ Σ̂∗Û∗.

Finally,

(A21A
−1
11 A

−∗

11 A
∗

21)
−1 = Û(Σ̂+)∗V̂ ∗V Σ∗ΣV ∗V̂ Σ̂+Û∗

= (ΣV ∗V̂ Σ̂+Û∗)∗(ΣV ∗V̂ Σ̂+Û∗),

where

Σ̂+ =



































1

σ̂1

0 . . . 0

0
1

σ̂2

. . . 0

0 0
. . . 0

0 0 0
1

σ̂q

0 0 0 0
...

...
...

...

0 0 0 0



































.

Thus, given A ∈ GM , the solution of (3.1) is given explicitly by

x2 = (ΣV ∗V̂ Σ̂+Û∗)∗(ΣV ∗V̂ Σ̂+Û∗)(y2 −A21A
−1
11 y1),

x1 = A−1
11 y1 −A−1

11 A12x2.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 304-311, July 2015



ELA

Some Properties of the Exchange Operator With Respect to Structured Matrices 311

REFERENCES

[1] D.S. Mackey, N. Mackey, and F. Tisseur. On the definition of two natural classes of scalar

product. MIMS EPrints 2007.64, Manchester Institute for Mathematical Sciences, The

University of Manchester, 2007.

[2] I. Yamazaki and X.S. Li. On techniques to improve robustness and scalability of the Schur

complement method. In: J.M. Laginha, M. Palma, M. Daydé, O. Marques, and J. Correia
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