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NOTE ON THE JORDAN FORM OF AN IRREDUCIBLE

EVENTUALLY NONNEGATIVE MATRIX
∗

LESLIE HOGBEN† , BIT-SHUN TAM‡ , AND ULRICA WILSON§

Abstract. A square complex matrix A is eventually nonnegative if there exists a positive
integer k0 such that for all k ≥ k0, Ak ≥ 0; A is strongly eventually nonnegative if it is eventually
nonnegative and has an irreducible nonnegative power. It is proved that a collection of elementary
Jordan blocks is a Frobenius Jordan multiset with cyclic index r if and only if it is the multiset of
elementary Jordan blocks of a strongly eventually nonnegative matrix with cyclic index r. A positive
answer to an open question and a counterexample to a conjecture raised by Zaslavsky and Tam are
given. It is also shown that for a square complex matrix A with index at most one, A is irreducible
and eventually nonnegative if and only if A is strongly eventually nonnegative.
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1. Introduction. A square complex matrix A is eventually nonnegative (re-
spectively, eventually positive) if there exists a positive integer k0 such that for all
k ≥ k0, A

k ≥ 0 (respectively, Ak > 0); for an eventually nonnegative matrix, the
least such k0 is the power index of A. Eventually nonnegative matrices and their
subclasses have been studied extensively since their introduction in [7] by Friedland;
see [3, 4, 6, 8, 11, 12, 13] and the references therein.

A matrix is strongly eventually nonnegative if it is eventually nonnegative and
has an irreducible nonnegative power. Eventually positive matrices and strongly
eventually nonnegative matrices retain much of the Perron-Frobenius structure of
positive and irreducible nonnegative matrices, respectively. A matrix A is eventually
reducible if there exists a positive integer k0 such that for all k ≥ k0, A

k is reducible
[9]. For an eventually nonnegative matrix A with power index k0, if for some k ≥ k0,
Ak is irreducible, then A is clearly strongly eventually nonnegative. Otherwise, A is
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eventually reducible. So we have:

Observation 1.1. If n ≥ 2 and A ∈ Cn×n is eventually nonnegative, then A is
eventually reducible or A is strongly eventually nonnegative.

In Section 2, we show that a collection of elementary Jordan blocks is a Frobenius
Jordan multiset with cyclic index r if and only if it is the multiset of elementary
Jordan blocks of a strongly eventually nonnegative matrix with cyclic index r (see
Theorem 2.10). We also establish a positive answer to a question of Zaslavsky and Tam
[13] (see Theorem 2.6), present a counterexample to a conjecture in the same paper
(see Example 2.8), and prove other results related to strongly eventually nonnegative
matrices and their Jordan forms. The remainder of this introduction contains notation
and definitions.

We adopt much of the terminology of [8], [9], and [13], introducing new terms
as needed (we follow the convention in [8] that the 1 × 1 zero matrix is reducible,
rather than the usage in [9] and [13] that all 1×1 matrices are irreducible). Note that
while the results in [8] are stated for real matrices, they are actually true for complex
matrices (and with the same proofs). For r ≥ 2, a square matrix A ∈ Cn×n is called
r-cyclic (or r-cyclic with partition Π) if there is an ordered partition Π = (V1, . . . , Vr)
of {1, . . . , n} into r nonempty sets such that A[Vi|Vj ] = 0 unless j ≡ i + 1 mod r

(where A[R|C] denotes the submatrix of A whose rows and columns are indexed by
R and C, respectively). The largest r such that A is r-cyclic is the cyclic index of A;
if A is not r-cyclic for any r ≥ 2, then the cyclic index of A is 1.

We use the definition of eventually r-cyclic given in [9]: For a positive integer
r ≥ 2, a matrix M ∈ Cn×n is eventually r-cyclic if there exists a positive integer k0
such that k ≥ k0 and k ≡ 1 mod r implies Mk is r-cyclic. For an ordered partition
Π = (V1, . . . , Vr) of {1, . . . , n} into r nonempty sets, the cyclic characteristic matrix
CΠ = [cij ] of Π is the n×n matrix such that cij = 1 if there exists ℓ ∈ {1, . . . , r} such
that i ∈ Vℓ and j ∈ Vℓ+1 (where Vr+1 is interpreted as V1), and cij = 0 otherwise.
For matrices A = [aij ], B = [bij ] ∈ Cn×n, A conforms to B if for all i, j = 1, . . . , n,
bij = 0 implies aij = 0. A matrix A is eventually r-cyclic with partition Π if there is
an ordered partition Π of {1, . . . , n} into r ≥ 2 nonempty sets, and a positive integer
k0 such that for all k ≥ k0, A

k conforms to CΠ
k. Note that [8] defined eventually

r-cyclic to mean there exists a partition Π such that A is eventually r-cyclic with
partition Π. It was shown in [9] that the two definitions are equivalent, and now that
it is available we choose to use the more natural definition from [9].

Let σ = {λ1, . . . , λt} be a multiset of complex numbers, ω ∈ C, and m ∈ Z+.
Define ωσ := {ωλ1, . . . , ωλt} and σm := {λ1

m, . . . , λt
m}. If σ = ωσ, then σ is ω-

invariant. The radius of σ is ρ(σ) := max{|λ| : λ ∈ σ} and the periphery or boundary
of σ is ∂(σ) := σ ∩ {z ∈ C : |z| = ρ(σ)}. If ρ(σ) > 0, the cyclic index of σ is
the largest positive integer r such that σ is e2πi/r-invariant. The conjugate of σ is
σ := {λ1, . . . , λt} and σ is self-conjugate if σ = σ. We say σ is a Frobenius multiset if
for r = |∂(σ)|, ω = e2πi/r, and Zr = {1, ω, ω2, . . . , ωr−1} we have
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1. ρ(σ) > 0,
2. ∂(σ) = ρ(σ)Zr , and
3. σ is ω-invariant.

In this case, necessarily r is equal to the cyclic index of σ.

A Jordan multiset (called a Jordan collection in [13]) is a finite multiset J =
{Jk1

(λ1), . . . , Jkt
(λt)} of elementary Jordan blocks. Throughout this paper J will

denote a Jordan multiset. The nonsingular part of J is the multiset {Jk(λ) : Jk(λ) ∈
J and λ 6= 0}. Define the conjugate of J , denoted J , to be the multiset of elementary
Jordan blocks Jk(λ) where Jk(λ) ranges over the elements of J ; J is self-conjugate
if J = J . For ω ∈ C, ωJ is defined to be the multiset of Jordan blocks Jk(ωλ)
where Jk(λ) ranges over the elements of J ; J is ω-invariant if ωJ = J . For any
square complex matrix A, J (A) is the Jordan multiset of elementary Jordan blocks
in a Jordan form of A. If J is a Jordan multiset and m ∈ Z+, then Jm := J (Am)
whenever A is a square complex matrix with J = J (A). Note that the nonsingular
part of Jm is the multiset {Jk(λ

m) : Jk(λ) ∈ J and λ 6= 0}. The radius of a Jordan
multiset J is ρ(J ) := max{|λ| : Jk(λ) ∈ J } and the periphery or boundary of J is
∂(J ) := {Jk(λ) ∈ J : |λ| = ρ(J )}. Note also that for any square complex matrix
A, ρ(A) = ρ(J (A)). We say J is a Frobenius Jordan multiset if for r = |∂(J )| and
ω = e2πi/r we have

1. ρ(J ) > 0,
2. ∂(J ) is the set {J1(ρ(J )ωj) : j = 0, . . . , r − 1}, and
3. J is ω-invariant.

In [13], the cyclic index of a Jordan multiset J with ρ(J ) > 0 is defined to be
the maximum r such that J is e2πi/r-invariant, and it is observed there that if J is
Frobenius, then r = |∂(J )| is equal to the cyclic index of J. In this case, J is referred
to as a Frobenius multiset with cyclic index r.

2. Main results. In their study of eventually nonnegative matrices, Zaslavsky
and Tam ask the following question.

Question 2.1. [13, Question 6.3] Let A be an irreducible matrix with cyclic
index r and ρ(A) > 0, that is eventually nonnegative, and suppose that the singular
blocks in J (A), if any, are all 1 × 1. Does it follow that J (A) is a self-conjugate
Frobenius Jordan multiset with cyclic index r?

The hypothesis that the singular blocks in J (A), if any, are all 1× 1 is equivalent
to rankA2 = rankA, and also to the statement that the index of A is less than or equal
to one. Thus, this question is equivalent to the following: Let A be an irreducible
matrix with cyclic index r, ρ(A) > 0, and rankA2 = rankA, that is eventually
nonnegative. Does it follow that J (A) is a self-conjugate Frobenius Jordan multiset
with cyclic index r? This question is answered affirmatively by Theorem 2.6.

In Zaslavsky and Tam’s proof that a multiset σ is a union of Frobenius multisets
whenever all sufficiently large powers of σ are unions of Frobenius multisets [13,
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Theorem 3.1], it is implicit that one obtains the analogous result for a single Frobenius
multiset; this is explicitly established in [9, Theorem 4.8], where it is shown that for
a multiset of complex numbers σ with r = |∂(σ)| if there exists a positive integer
ℓ0 such that for all ℓ ≥ ℓ0, σℓr+1 is a Frobenius multiset, then σ is a Frobenius
multiset. Zaslavsky and Tam observe that their proof of Theorem 3.1 in [13] extends
to the analogous result for unions of Frobenius Jordan multisets [13, Theorem 3.3].
By similar reasoning, [9, Theorem 4.8] extends to a single Frobenius Jordan multiset.

Theorem 2.2. Let J be a Jordan multiset and let r = |∂(J )|. If there exists a
positive integer ℓ0 such that for all ℓ ≥ ℓ0, J

ℓr+1 is a Frobenius Jordan multiset, then
J is a Frobenius Jordan multiset.

Proposition 2.3. Let A be a strongly eventually nonnegative matrix with r ≥ 2
dominant eigenvalues and power index k0. Then Aℓr+1 is irreducible and nonnegative
whenever ℓr + 1 ≥ k0.

Proof. By [5, Proposition 2.1], the dominant eigenvalues of A are ρ(A), ρ(A)ω,
. . . , ρ(A)ωr−1, where ω := e2πi/r. From the definition of strongly eventually non-
negative, some power of A is both irreducible and nonnegative, and so has positive
left and right eigenvectors for its simple spectral radius. Thus, for all ℓ, ρ(Aℓr+1) is a
simple eigenvalue of Aℓr+1 with positive left and right eigenvectors. When ℓr+1 ≥ k0
Aℓr+1 ≥ 0. So by [1, Corollary 2.3.15] Aℓr+1 is an irreducible nonnegative matrix.

Proposition 2.4. Let A be a strongly eventually nonnegative matrix such that
rankA2 = rankA. Then the number of dominant eigenvalues of A is equal to the
cyclic index of A.

Proof. Let r be the number of dominant eigenvalues of A. If r = 1, then A

necessarily has cyclic index 1. Now assume r ≥ 2. By Proposition 2.3, for every
sufficiently large positive integer ℓ, Aℓr+1 is irreducible, nonnegative, and has r dom-
inant eigenvalues. So Aℓr+1 is r-cyclic by [1, Theorem 2.2.20]. Thus, A is eventually
r-cyclic. Then by [9, Theorem 4.1] A is eventually r-cyclic with partition Π for some
Π. Since rankA2 = rankA, A is r-cyclic by [8, Theorem 2.7]. Since r is the number
of dominant eigenvalues of A, A cannot be s-cyclic for s > r (see, e.g., [2, Theorem
3.4.7]). Thus, r is the cyclic index of A.

Theorem 2.5. Suppose A ∈ Cn×n is strongly eventually nonnegative with r

dominant eigenvalues. Then J (A) is a Frobenius Jordan multiset with cyclic index
r.

Proof. If M is an irreducible nonnegative matrix with r dominant eigenvalues,
then J (M) is a Frobenius Jordan multiset with cyclic index r [10, Corollary 8.4.6].
If r = 1, then A is eventually positive and J (A) is a Frobenius Jordan multiset with
cyclic index 1. Now assume r ≥ 2. By Proposition 2.3, for all ℓ sufficiently large Aℓr+1

is irreducible and nonnegative. So for all ℓ sufficiently large, J (A)ℓr+1 = J (Aℓr+1)
is a Frobenius Jordan multiset with cyclic index r. Thus, by Theorem 2.2, J (A) is a
Frobenius Jordan multiset with cyclic index r.
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The next theorem answers Question 2.1.

Theorem 2.6. If A is an irreducible eventually nonnegative matrix with cyclic
index r and rankA2 = rankA, then J (A) is a self-conjugate Frobenius Jordan mul-
tiset with cyclic index r.

Proof. Assume the hypotheses. Since A is eventually nonnegative, J (A) is self-
conjugate [13, Theorem 3.3]. Since A is irreducible and rankA2 = rankA, by [9,
Corollary 3.4] or [3, Theorem 3.4], A is not eventually reducible, so A is strongly
eventually nonnegative. So by Proposition 2.4, the number of dominant eigenvalues
of A is equal to its cyclic index r. Then by Theorem 2.5, J (A) is a Frobenius Jordan
multiset with cyclic index r.

Remark 2.7. Let A ∈ Cn×n with n ≥ 2. If A is strongly eventually nonnegative,
then clearly A is irreducible and eventually nonnegative. With the proof of Theorem
2.6 (from [9, Corollary 3.4]), we established that the converse holds if, in addition,
rankA2 = rankA.

In [13, p. 328], Zaslavsky and Tam conjectured that if A is an irreducible eventu-
ally nonnegative matrix with ρ(A) > 0, then the elementary Jordan blocks in J (A)
corresponding to ρ(J (A)) = ρ(A) must all be 1 × 1. The next example shows that
the conjecture is not correct.

Example 2.8. Let A =









1 1 1 −1
1 1 −1 1
1 1 1 1
1 1 1 1









. As observed in [3, Example 3.1],

A = B +N where B =









1 1 0 0
1 1 0 0
1 1 1 1
1 1 1 1









and N =









0 0 1 −1
0 0 −1 1
0 0 0 0
0 0 0 0









, and BN =

NB = N2 = 0, so Ak = Bk ≥ 0 for all k ≥ 2. Thus, A is eventually nonnegative,
as well as irreducible; it is also noted in [3, Example 3.1] that the Jordan block for
eigenvalue zero is 2 × 2. Here we observe that the Jordan block for ρ(J (A)) = 2
is also 2 × 2, providing a counterexample to the conjecture of Zaslavsky and Tam.
Since ρ(A) is not a simple eigenvalue of A, A is not strongly eventually nonnegative.
This example also shows that even if A is irreducible, eventually nonnegative, and
ρ(A) > 0, A need not be strongly eventually nonnegative (cf. Remark 2.7).

Since [13, Question 6.5] was answered in the affirmative in [9], all of the open
questions of [13] have now been resolved.

The decomposition used in Example 2.8 plays a fundamental role in understanding
strongly eventually nonnegative matrices (and eventually reducible and eventually r-
cyclic matrices, e.g, [9, Theorems 3.5 and 4.6]). Here we summarize the role of this
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decomposition in regard to strong eventual nonnegativity.

Theorem 2.9. Let A be an n × n matrix with n ≥ 2. Let A = B + N be the
unique decomposition of A such that rankB2 = rankB,BN = NB = 0, and N is
nilpotent. The following conditions are equivalent:

(a) A is strongly eventually nonnegative.
(b) B is strongly eventually nonnegative.
(c) B is irreducible and eventually nonnegative.

Proof. The equivalence of (b) and (c) follows from Remark 2.7. Since Bk = Ak

for k ≥ n, B is eventually nonnegative if and only if A is eventually nonnegative.
Clearly A and B have the same number of dominant eigenvalues, say r. Let C be
one of A or B, let D be the other one of A or B, and suppose C is eventually
nonnegative. By Proposition 2.3, Dℓr+1 = Cℓr+1 is irreducible and nonnegative
whenever ℓr+1 ≥ max{k0, n}, where k0 is the power index of C. Thus, D is strongly
eventually nonnegative, establishing the equivalence of (a) and (b).

The next theorem extends [13, Theorem 5.1 and Remark 5.2].

Theorem 2.10. Let J be a multiset of elementary Jordan blocks. The following
conditions are equivalent:

(a) J is a self-conjugate Frobenius multiset with cyclic index r.
(b) J is a multiset with cyclic index r and J r = J1 ∪ · · · ∪ Jr, where J1, . . . ,Jr

are self-conjugate Frobenius multisets with cyclic index one that have the same
submultiset of non-singular elementary Jordan blocks.

(c) There exists an irreducible eventually nonnegative matrix A with cyclic index
r such that J (A) = J and Ar is permutationally similar to a direct sum of
r eventually positive matrices.

(d) There exists a strongly eventually nonnegative matrix A with r dominant
eigenvalues such that J (A) = J .

Proof. The equivalence of (a)–(c) was established in [13, Theorem 5.1 and Remark
5.2]. Suppose (d) is satisfied. Then by Theorem 2.5, J (A) is a Frobenius Jordan mul-
tiset with cyclic index r, and J (A) self-conjugate by [13, Theorem 3.3], so condition
(a) is satisfied.

Conversely, assume (a)–(c). Suppose that J = J (A) for some irreducible even-
tually nonnegative matrix A with cyclic index r as described in (c). By (a), ρ(A) =
ρ(J (A)) is simple, as is ρ(Aℓr+1) for any ℓ. By [13, Corollary 5.4], A has positive left
and right eigenvectors corresponding to ρ(A). By [1, Corollary 2.3.15], Aℓr+1 ≥ 0 is
irreducible when ℓr + 1 is at least the power index. Thus, A is strongly eventually
nonnegative, and r is the number of dominant eigenvalues of A by (a), so condition
(d) is satisfied.
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