NOTE ON THE JORDAN FORM OF AN IRREDUCIBLE EVENTUALLY NONNEGATIVE MATRIX*

LESLIE HOGBEN ${ }^{\dagger}$, BIT-SHUN TAM ${ }^{\ddagger}$, AND ULRICA WILSON§

Abstract

A square complex matrix A is eventually nonnegative if there exists a positive integer k_{0} such that for all $k \geq k_{0}, A^{k} \geq 0 ; A$ is strongly eventually nonnegative if it is eventually nonnegative and has an irreducible nonnegative power. It is proved that a collection of elementary Jordan blocks is a Frobenius Jordan multiset with cyclic index r if and only if it is the multiset of elementary Jordan blocks of a strongly eventually nonnegative matrix with cyclic index r. A positive answer to an open question and a counterexample to a conjecture raised by Zaslavsky and Tam are given. It is also shown that for a square complex matrix A with index at most one, A is irreducible and eventually nonnegative if and only if A is strongly eventually nonnegative.

Key words. Irreducible eventually nonnegative, Strongly eventually nonnegative, Eventually reducible, Eventually r-cyclic, Cyclic index, Frobenius collection, Frobenius Jordan multiset, Jordan multiset, Jordan form.

AMS subject classifications. 15B48, 15A21, 15A18.

1. Introduction. A square complex matrix A is eventually nonnegative (respectively, eventually positive) if there exists a positive integer k_{0} such that for all $k \geq k_{0}, A^{k} \geq 0$ (respectively, $A^{k}>0$); for an eventually nonnegative matrix, the least such k_{0} is the power index of A. Eventually nonnegative matrices and their subclasses have been studied extensively since their introduction in [7] by Friedland; see [3, 4, 6, 8, 11, 12, 13] and the references therein.

A matrix is strongly eventually nonnegative if it is eventually nonnegative and has an irreducible nonnegative power. Eventually positive matrices and strongly eventually nonnegative matrices retain much of the Perron-Frobenius structure of positive and irreducible nonnegative matrices, respectively. A matrix A is eventually reducible if there exists a positive integer k_{0} such that for all $k \geq k_{0}, A^{k}$ is reducible [9]. For an eventually nonnegative matrix A with power index k_{0}, if for some $k \geq k_{0}$, A^{k} is irreducible, then A is clearly strongly eventually nonnegative. Otherwise, A is

[^0]eventually reducible. So we have:
Observation 1.1. If $n \geq 2$ and $A \in \mathbb{C}^{n \times n}$ is eventually nonnegative, then A is eventually reducible or A is strongly eventually nonnegative.

In Section_ we show that a collection of elementary Jordan blocks is a Frobenius Jordan multiset with cyclic index r if and only if it is the multiset of elementary Jordan blocks of a strongly eventually nonnegative matrix with cyclic index r (see Theorem (2.10). We also establish a positive answer to a question of Zaslavsky and Tam [13] (see Theorem [2.6), present a counterexample to a conjecture in the same paper (see Example [2.8), and prove other results related to strongly eventually nonnegative matrices and their Jordan forms. The remainder of this introduction contains notation and definitions.

We adopt much of the terminology of [8, 9, and [13], introducing new terms as needed (we follow the convention in [8] the 1×1 zero matrix is reducible, rather than the usage in 9 and 13 that all 1×1 matrices are irreducible). Note that while the results in [8] are stated for real matrices, they are actually true for complex matrices (and with the same proofs). For $r \geq 2$, a square matrix $A \in \mathbb{C}^{n \times n}$ is called r-cyclic (or r-cyclic with partition Π) if there is an ordered partition $\Pi=\left(V_{1}, \ldots, V_{r}\right)$ of $\{1, \ldots, n\}$ into r nonempty sets such that $A\left[V_{i} \mid V_{j}\right]=0$ unless $j \equiv i+1 \bmod r$ (where $A[R \mid C]$ denotes the submatrix of A whose rows and columns are indexed by R and C, respectively). The largest r such that A is r-cyclic is the cyclic index of A; if A is not r-cyclic for any $r \geq 2$, then the cyclic index of A is 1 .

We use the definition of eventually r-cyclic given in (9]: For a positive integer $r \geq 2$, a matrix $M \in \mathbb{C}^{n \times n}$ is eventually r-cyclic if there exists a positive integer k_{0} such that $k \geq k_{0}$ and $k \equiv 1 \bmod r$ implies M^{k} is r-cyclic. For an ordered partition $\Pi=\left(V_{1}, \ldots, V_{r}\right)$ of $\{1, \ldots, n\}$ into r nonempty sets, the cyclic characteristic matrix $C_{\Pi}=\left[c_{i j}\right]$ of Π is the $n \times n$ matrix such that $c_{i j}=1$ if there exists $\ell \in\{1, \ldots, r\}$ such that $i \in V_{\ell}$ and $j \in V_{\ell+1}$ (where V_{r+1} is interpreted as V_{1}), and $c_{i j}=0$ otherwise. For matrices $A=\left[a_{i j}\right], B=\left[b_{i j}\right] \in \mathbb{C}^{n \times n}, A$ conforms to B if for all $i, j=1, \ldots, n$, $b_{i j}=0$ implies $a_{i j}=0$. A matrix A is eventually r-cyclic with partition Π if there is an ordered partition Π of $\{1, \ldots, n\}$ into $r \geq 2$ nonempty sets, and a positive integer k_{0} such that for all $k \geq k_{0}, A^{k}$ conforms to $C_{\Pi}{ }^{k}$. Note that defined eventually r-cyclic to mean there exists a partition Π such that A is eventually r-cyclic with partition Π. It was shown in $[9]$ that the two definitions are equivalent, and now that it is available we choose to use the more natural definition from 9 .

Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{t}\right\}$ be a multiset of complex numbers, $\omega \in \mathbb{C}$, and $m \in \mathbb{Z}^{+}$. Define $\omega \sigma:=\left\{\omega \lambda_{1}, \ldots, \omega \lambda_{t}\right\}$ and $\sigma^{m}:=\left\{\lambda_{1}{ }^{m}, \ldots, \lambda_{t}{ }^{m}\right\}$. If $\sigma=\omega \sigma$, then σ is ω invariant. The radius of σ is $\rho(\sigma):=\max \{|\lambda|: \lambda \in \sigma\}$ and the periphery or boundary of σ is $\partial(\sigma):=\sigma \cap\{z \in \mathbb{C}:|z|=\rho(\sigma)\}$. If $\rho(\sigma)>0$, the cyclic index of σ is the largest positive integer r such that σ is $e^{2 \pi i / r}$-invariant. The conjugate of σ is $\bar{\sigma}:=\left\{\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{t}\right\}$ and σ is self-conjugate if $\bar{\sigma}=\sigma$. We say σ is a Frobenius multiset if for $r=|\partial(\sigma)|, \omega=e^{2 \pi i / r}$, and $Z_{r}=\left\{1, \omega, \omega^{2}, \ldots, \omega^{r-1}\right\}$ we have

1. $\rho(\sigma)>0$,
2. $\partial(\sigma)=\rho(\sigma) Z_{r}$, and
3. σ is ω-invariant.

In this case, necessarily r is equal to the cyclic index of σ.
A Jordan multiset (called a Jordan collection in [13) is a finite multiset $\mathcal{J}=$ $\left\{J_{k_{1}}\left(\lambda_{1}\right), \ldots, J_{k_{t}}\left(\lambda_{t}\right)\right\}$ of elementary Jordan blocks. Throughout this paper \mathcal{J} will denote a Jordan multiset. The nonsingular part of \mathcal{J} is the multiset $\left\{J_{k}(\lambda): J_{k}(\lambda) \in\right.$ \mathcal{J} and $\lambda \neq 0\}$. Define the conjugate of \mathcal{J}, denoted $\overline{\mathcal{J}}$, to be the multiset of elementary Jordan blocks $J_{k}(\bar{\lambda})$ where $J_{k}(\lambda)$ ranges over the elements of $\mathcal{J} ; \mathcal{J}$ is self-conjugate if $\overline{\mathcal{J}}=\mathcal{J}$. For $\omega \in \mathbb{C}, \omega \mathcal{J}$ is defined to be the multiset of Jordan blocks $J_{k}(\omega \lambda)$ where $J_{k}(\lambda)$ ranges over the elements of $\mathcal{J} ; \mathcal{J}$ is ω-invariant if $\omega \mathcal{J}=\mathcal{J}$. For any square complex matrix $A, \mathcal{J}(A)$ is the Jordan multiset of elementary Jordan blocks in a Jordan form of A. If \mathcal{J} is a Jordan multiset and $m \in \mathbb{Z}^{+}$, then $\mathcal{J}^{m}:=\mathcal{J}\left(A^{m}\right)$ whenever A is a square complex matrix with $\mathcal{J}=\mathcal{J}(A)$. Note that the nonsingular part of \mathcal{J}^{m} is the multiset $\left\{J_{k}\left(\lambda^{m}\right): J_{k}(\lambda) \in \mathcal{J}\right.$ and $\left.\lambda \neq 0\right\}$. The radius of a Jordan multiset \mathcal{J} is $\rho(\mathcal{J}):=\max \left\{|\lambda|: J_{k}(\lambda) \in \mathcal{J}\right\}$ and the periphery or boundary of \mathcal{J} is $\partial(\mathcal{J}):=\left\{J_{k}(\lambda) \in \mathcal{J}:|\lambda|=\rho(\mathcal{J})\right\}$. Note also that for any square complex matrix $A, \rho(A)=\rho(\mathcal{J}(A))$. We say \mathcal{J} is a Frobenius Jordan multiset if for $r=|\partial(\mathcal{J})|$ and $\omega=e^{2 \pi i / r}$ we have

1. $\rho(\mathcal{J})>0$,
2. $\partial(\mathcal{J})$ is the set $\left\{J_{1}\left(\rho(\mathcal{J}) \omega^{j}\right): j=0, \ldots, r-1\right\}$, and
3. \mathcal{J} is ω-invariant.

In 13, the cyclic index of a Jordan multiset \mathcal{J} with $\rho(\mathcal{J})>0$ is defined to be the maximum r such that \mathcal{J} is $e^{2 \pi i / r}$-invariant, and it is observed there that if \mathcal{J} is Frobenius, then $r=|\partial(\mathcal{J})|$ is equal to the cyclic index of \mathcal{J}. In this case, \mathcal{J} is referred to as a Frobenius multiset with cyclic index r.
2. Main results. In their study of eventually nonnegative matrices, Zaslavsky and Tam ask the following question.

Question 2.1. [13, Question 6.3] Let A be an irreducible matrix with cyclic index r and $\rho(A)>0$, that is eventually nonnegative, and suppose that the singular blocks in $\mathcal{J}(A)$, if any, are all 1×1. Does it follow that $\mathcal{J}(A)$ is a self-conjugate Frobenius Jordan multiset with cyclic index r ?

The hypothesis that the singular blocks in $\mathcal{J}(A)$, if any, are all 1×1 is equivalent to $\operatorname{rank} A^{2}=\operatorname{rank} A$, and also to the statement that the index of A is less than or equal to one. Thus, this question is equivalent to the following: Let A be an irreducible matrix with cyclic index $r, \rho(A)>0$, and $\operatorname{rank} A^{2}=\operatorname{rank} A$, that is eventually nonnegative. Does it follow that $\mathcal{J}(A)$ is a self-conjugate Frobenius Jordan multiset with cyclic index r ? This question is answered affirmatively by Theorem [2.6]

In Zaslavsky and Tam's proof that a multiset σ is a union of Frobenius multisets whenever all sufficiently large powers of σ are unions of Frobenius multisets [13,

Theorem 3.1], it is implicit that one obtains the analogous result for a single Frobenius multiset; this is explicitly established in [9, Theorem 4.8], where it is shown that for a multiset of complex numbers σ with $r=|\partial(\sigma)|$ if there exists a positive integer ℓ_{0} such that for all $\ell \geq \ell_{0}, \sigma^{\ell r+1}$ is a Frobenius multiset, then σ is a Frobenius multiset. Zaslavsky and Tam observe that their proof of Theorem 3.1 in 13 extends to the analogous result for unions of Frobenius Jordan multisets [13, Theorem 3.3]. By similar reasoning, [9, Theorem 4.8] extends to a single Frobenius Jordan multiset.

Theorem 2.2. Let \mathcal{J} be a Jordan multiset and let $r=|\partial(\mathcal{J})|$. If there exists a positive integer ℓ_{0} such that for all $\ell \geq \ell_{0}, \mathcal{J}^{\ell r+1}$ is a Frobenius Jordan multiset, then \mathcal{J} is a Frobenius Jordan multiset.

Proposition 2.3. Let A be a strongly eventually nonnegative matrix with $r \geq 2$ dominant eigenvalues and power index k_{0}. Then $A^{\ell r+1}$ is irreducible and nonnegative whenever $\ell r+1 \geq k_{0}$.

Proof. By [5] Proposition 2.1], the dominant eigenvalues of A are $\rho(A), \rho(A) \omega$, $\ldots, \rho(A) \omega^{r-1}$, where $\omega:=e^{2 \pi i / r}$. From the definition of strongly eventually nonnegative, some power of A is both irreducible and nonnegative, and so has positive left and right eigenvectors for its simple spectral radius. Thus, for all $\ell, \rho\left(A^{\ell r+1}\right)$ is a simple eigenvalue of $A^{\ell r+1}$ with positive left and right eigenvectors. When $\ell r+1 \geq k_{0}$ $A^{\ell r+1} \geq 0$. So by [1, Corollary 2.3.15] $A^{\ell r+1}$ is an irreducible nonnegative matrix. \square

Proposition 2.4. Let A be a strongly eventually nonnegative matrix such that $\operatorname{rank} A^{2}=\operatorname{rank} A$. Then the number of dominant eigenvalues of A is equal to the cyclic index of A.

Proof. Let r be the number of dominant eigenvalues of A. If $r=1$, then A necessarily has cyclic index 1. Now assume $r \geq 2$. By Proposition 2.3, for every sufficiently large positive integer $\ell, A^{\ell r+1}$ is irreducible, nonnegative, and has r dominant eigenvalues. So $A^{\ell r+1}$ is r-cyclic by [1, Theorem 2.2.20]. Thus, A is eventually r-cyclic. Then by [9, Theorem 4.1] A is eventually r-cyclic with partition Π for some П. Since $\operatorname{rank} A^{2}=\operatorname{rank} A, A$ is r-cyclic by [8, Theorem 2.7]. Since r is the number of dominant eigenvalues of A, A cannot be s-cyclic for $s>r$ (see, e.g., [2, Theorem 3.4.7]). Thus, r is the cyclic index of A.

THEOREM 2.5. Suppose $A \in \mathbb{C}^{n \times n}$ is strongly eventually nonnegative with r dominant eigenvalues. Then $\mathcal{J}(A)$ is a Frobenius Jordan multiset with cyclic index r.

Proof. If M is an irreducible nonnegative matrix with r dominant eigenvalues, then $\mathcal{J}(M)$ is a Frobenius Jordan multiset with cyclic index r [10, Corollary 8.4.6]. If $r=1$, then A is eventually positive and $\mathcal{J}(A)$ is a Frobenius Jordan multiset with cyclic index 1 . Now assume $r \geq 2$. By Proposition 2.3, for all ℓ sufficiently large $A^{\ell r+1}$ is irreducible and nonnegative. So for all ℓ sufficiently large, $\mathcal{J}(A)^{\ell r+1}=\mathcal{J}\left(A^{\ell r+1}\right)$ is a Frobenius Jordan multiset with cyclic index r. Thus, by Theorem 2.2, $\mathcal{J}(A)$ is a Frobenius Jordan multiset with cyclic index r.

The next theorem answers Question 2.1.
Theorem 2.6. If A is an irreducible eventually nonnegative matrix with cyclic index r and $\operatorname{rank} A^{2}=\operatorname{rank} A$, then $\mathcal{J}(A)$ is a self-conjugate Frobenius Jordan multiset with cyclic index r.

Proof. Assume the hypotheses. Since A is eventually nonnegative, $\mathcal{J}(A)$ is selfconjugate [13, Theorem 3.3]. Since A is irreducible and $\operatorname{rank} A^{2}=\operatorname{rank} A$, by 9 , Corollary 3.4] or [3, Theorem 3.4], A is not eventually reducible, so A is strongly eventually nonnegative. So by Proposition 2.4 the number of dominant eigenvalues of A is equal to its cyclic index r. Then by Theorem 2.5, $\mathcal{J}(A)$ is a Frobenius Jordan multiset with cyclic index r.

Remark 2.7. Let $A \in \mathbb{C}^{n \times n}$ with $n \geq 2$. If A is strongly eventually nonnegative, then clearly A is irreducible and eventually nonnegative. With the proof of Theorem 2.6 (from [9, Corollary 3.4]), we established that the converse holds if, in addition, $\operatorname{rank} A^{2}=\operatorname{rank} A$.

In [13, p. 328], Zaslavsky and Tam conjectured that if A is an irreducible eventually nonnegative matrix with $\rho(A)>0$, then the elementary Jordan blocks in $\mathcal{J}(A)$ corresponding to $\rho(\mathcal{J}(A))=\rho(A)$ must all be 1×1. The next example shows that the conjecture is not correct.

Example 2.8. Let $A=\left[\begin{array}{rrrr}1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$. As observed in [3, Example 3.1],
$A=B+N$ where $B=\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$ and $N=\left[\begin{array}{cccc}0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, and $B N=$
$N B=N^{2}=0$, so $A^{k}=B^{k} \geq 0$ for all $k \geq 2$. Thus, A is eventually nonnegative, as well as irreducible; it is also noted in [3, Example 3.1] that the Jordan block for eigenvalue zero is 2×2. Here we observe that the Jordan block for $\rho(\mathcal{J}(A))=2$ is also 2×2, providing a counterexample to the conjecture of Zaslavsky and Tam. Since $\rho(A)$ is not a simple eigenvalue of A, A is not strongly eventually nonnegative. This example also shows that even if A is irreducible, eventually nonnegative, and $\rho(A)>0, A$ need not be strongly eventually nonnegative (cf. Remark 2.7).

Since [13, Question 6.5] was answered in the affirmative in [9, all of the open questions of 13 have now been resolved.

The decomposition used in Example 2.8 plays a fundamental role in understanding strongly eventually nonnegative matrices (and eventually reducible and eventually r cyclic matrices, e.g, 9, Theorems 3.5 and 4.6]). Here we summarize the role of this
decomposition in regard to strong eventual nonnegativity.
Theorem 2.9. Let A be an $n \times n$ matrix with $n \geq 2$. Let $A=B+N$ be the unique decomposition of A such that $\operatorname{rank} B^{2}=\operatorname{rank} B, B N=N B=0$, and N is nilpotent. The following conditions are equivalent:
(a) A is strongly eventually nonnegative.
(b) B is strongly eventually nonnegative.
(c) B is irreducible and eventually nonnegative.

Proof. The equivalence of (b) and (c) follows from Remark 2.7 Since $B^{k}=A^{k}$ for $k \geq n, B$ is eventually nonnegative if and only if A is eventually nonnegative. Clearly A and B have the same number of dominant eigenvalues, say r. Let C be one of A or B, let D be the other one of A or B, and suppose C is eventually nonnegative. By Proposition 2.3 $D^{\ell r+1}=C^{\ell r+1}$ is irreducible and nonnegative whenever $\ell r+1 \geq \max \left\{k_{0}, n\right\}$, where k_{0} is the power index of C. Thus, D is strongly eventually nonnegative, establishing the equivalence of (a) and (b). $\bar{\square}$

The next theorem extends [13, Theorem 5.1 and Remark 5.2].
Theorem 2.10. Let \mathcal{J} be a multiset of elementary Jordan blocks. The following conditions are equivalent:
(a) \mathcal{J} is a self-conjugate Frobenius multiset with cyclic index r.
(b) \mathcal{J} is a multiset with cyclic index r and $\mathcal{J}^{r}=\mathcal{J}_{1} \cup \cdots \cup \mathcal{J}_{r}$, where $\mathcal{J}_{1}, \ldots, \mathcal{J}_{r}$ are self-conjugate Frobenius multisets with cyclic index one that have the same submultiset of non-singular elementary Jordan blocks.
(c) There exists an irreducible eventually nonnegative matrix A with cyclic index r such that $\mathcal{J}(A)=\mathcal{J}$ and A^{r} is permutationally similar to a direct sum of r eventually positive matrices.
(d) There exists a strongly eventually nonnegative matrix A with r dominant eigenvalues such that $\mathcal{J}(A)=\mathcal{J}$.

Proof. The equivalence of (a)-(c) was established in [13, Theorem 5.1 and Remark 5.2]. Suppose (d) is satisfied. Then by Theorem[2.5] $\mathcal{J}(A)$ is a Frobenius Jordan multiset with cyclic index r, and $\mathcal{J}(A)$ self-conjugate by [13, Theorem 3.3], so condition (a) is satisfied.

Conversely, assume (a)-(c). Suppose that $\mathcal{J}=\mathcal{J}(A)$ for some irreducible eventually nonnegative matrix A with cyclic index r as described in (c). By (a), $\rho(A)=$ $\rho(\mathcal{J}(A))$ is simple, as is $\rho\left(A^{\ell r+1}\right)$ for any ℓ. By [13, Corollary 5.4], A has positive left and right eigenvectors corresponding to $\rho(A)$. By [1, Corollary 2.3.15], $A^{\ell r+1} \geq 0$ is irreducible when $\ell r+1$ is at least the power index. Thus, A is strongly eventually nonnegative, and r is the number of dominant eigenvalues of A by (a), so condition (d) is satisfied.

REFERENCES

[1] A. Berman and B. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia, 1994.
[2] R.A. Brualdi and H.J. Ryser. Combinatorial Matrix Theory. Cambridge University Press, New York, 1991.
[3] S. Carnochan Naqvi and J.J. McDonald. The combinatorial structure of eventually nonnegative matrices. Electronic Journal of Linear Algebra, 9:255-269, 2002.
[4] S. Carnochan Naqvi and J.J. McDonald. Eventually nonnegative matrices are similar to seminonnegative matrices. Linear Algebra and its Applications, 281:245-258, 2004.
[5] M. Catral, C. Erickson, L. Hogben, D.D. Olesky, and P. van den Driessche. Sign patterns that allow strong eventual nonnegativity. Electronic Journal of Linear Algebra, 23:1-10, 2012.
[6] A. Elhashhash and D. Szyld. On general matrices having the Perron-Frobenius property. Electronic Journal of Linear Algebra, 18:389-413, 2008.
[7] S. Friedland. On an inverse problem for nonnegative and eventually nonnegative matrices. Israel Journal of Mathematics, 29:43-60, 1978.
[8] L. Hogben. Eventually cyclic matrices and a test for strong eventual nonnegativity. Electronic Journal of Linear Algebra, 19:129-140, 2010.
[9] L. Hogben and U. Wilson. Eventual properties of matrices. Electronic Journal of Linear Algebra, 23:953-965, 2012.
[10] R.A. Horn and C.R. Johnson. Matrix Analysis, second edition. Cambridge University Press, New York, 2012.
[11] D. Noutsos and M. Tsatsomeros. Reachability and holdability of nonnegative states. SIAM Journal on Matrix Analysis and Applications, 30:700-712, 2008.
[12] B.G. Zaslavsky and J.J. McDonald. A characterization of Jordan canonical forms which are similar to eventually nonnegative matrices with the properties of nonnegative matrices. Linear Algebra and its Applications, 372:253-285, 2003.
[13] B.G. Zaslavsky and B.-S. Tam. On the Jordan form of an irreducible matrix with eventually non-negative powers. Linear Algebra and its Applications, 302/303:303-330, 1999.

[^0]: *Received by the editors on December 29, 2012. Accepted for publication on June 8, 2015. Handling Editor: Bryan L. Shader.
 ${ }^{\dagger}$ Department of Mathematics, Iowa State University, Ames, IA 50011, USA (LHogben @iastate.edu), and American Institute of Mathematics, 600 E. Brokaw Road, San Jose, CA 95112, USA (hogben@aimath.org).
 ${ }^{\ddagger}$ Department of Mathematics, Tamkang University, Tamsui 25137, Taiwan, ROC (bsm01 @mail.tku.edu.tw). Research partially supported by Ministry of Science and Technology of the Republic of China under grant no. MOST 103-2115-M-032 -005-MY2.
 ${ }^{\S}$ Department of Mathematics, Morehouse College, Atlanta, GA 30314, USA (ulrica.wilson@morehouse.edu). Research supported in part by NSF 1237938.

