Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 30, pp. 279-285, June 2015

NOTE ON THE JORDAN FORM OF AN IRREDUCIBLE
EVENTUALLY NONNEGATIVE MATRIX*

LESLIE HOGBENT, BIT-SHUN TAM?!, AND ULRICA WILSONS$

Abstract. A square complex matrix A is eventually nonnegative if there exists a positive
integer ko such that for all k > ko, A¥ > 0; A is strongly eventually nonnegative if it is eventually
nonnegative and has an irreducible nonnegative power. It is proved that a collection of elementary
Jordan blocks is a Frobenius Jordan multiset with cyclic index r if and only if it is the multiset of
elementary Jordan blocks of a strongly eventually nonnegative matrix with cyclic index r. A positive
answer to an open question and a counterexample to a conjecture raised by Zaslavsky and Tam are
given. It is also shown that for a square complex matrix A with index at most one, A is irreducible
and eventually nonnegative if and only if A is strongly eventually nonnegative.
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1. Introduction. A square complex matrix A is eventually nonnegative (re-
spectively, eventually positive) if there exists a positive integer ko such that for all
k > ko, A¥ > 0 (respectively, A¥ > 0); for an eventually nonnegative matrix, the
least such kg is the power index of A. Eventually nonnegative matrices and their
subclasses have been studied extensively since their introduction in [7] by Friedland;

see [3 [ [6, 8 1], 12, [[3] and the references therein.

A matrix is strongly eventually nonnegative if it is eventually nonnegative and
has an irreducible nonnegative power. Eventually positive matrices and strongly
eventually nonnegative matrices retain much of the Perron-Frobenius structure of
positive and irreducible nonnegative matrices, respectively. A matrix A is eventually
reducible if there exists a positive integer ko such that for all k > ko, A* is reducible
[9). For an eventually nonnegative matrix A with power index ko, if for some k > ko,
AF is irreducible, then A is clearly strongly eventually nonnegative. Otherwise, A is
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eventually reducible. So we have:

OBSERVATION 1.1. If n > 2 and A € C"*™ is eventually nonnegative, then A is
eventually reducible or A is strongly eventually nonnegative.

In Section 2] we show that a collection of elementary Jordan blocks is a Frobenius
Jordan multiset with cyclic index r if and only if it is the multiset of elementary
Jordan blocks of a strongly eventually nonnegative matrix with cyclic index r (see
Theorem[ZT0). We also establish a positive answer to a question of Zaslavsky and Tam
[13] (see Theorem [Z6]), present a counterexample to a conjecture in the same paper
(see Example [Z8), and prove other results related to strongly eventually nonnegative
matrices and their Jordan forms. The remainder of this introduction contains notation
and definitions.

We adopt much of the terminology of [§], [9], and [13], introducing new terms
as needed (we follow the convention in [8] that the 1 x 1 zero matrix is reducible,
rather than the usage in [J] and [I3] that all 1 x 1 matrices are irreducible). Note that
while the results in [§] are stated for real matrices, they are actually true for complex
matrices (and with the same proofs). For r > 2, a square matrix A € C"*" is called
r-cyclic (or r-cyclic with partition II) if there is an ordered partition IT = (V4,..., V)
of {1,...,n} into r nonempty sets such that A[V;|V;] = 0 unless j = i+ 1 mod r
(where A[R|C] denotes the submatriz of A whose rows and columns are indexed by
R and C, respectively). The largest r such that A is r-cyclic is the cyclic index of A;
if A is not r-cyclic for any r > 2, then the cyclic index of A is 1.

We use the definition of eventually r-cyclic given in [9]: For a positive integer
r > 2, a matrix M € C"*" is eventually r-cyclic if there exists a positive integer kg
such that k > kg and £k =1 mod r implies M kg r-cyclic. For an ordered partition
IT=(W,...,V;) of {1,...,n} into r nonempty sets, the cyclic characteristic matriz
Cn = [c4j] of IT is the n x n matrix such that ¢;; = 1 if there exists £ € {1,...,r} such
that ¢ € Vp and j € Vp4q (where Vi is interpreted as Vi), and ¢;; = 0 otherwise.
For matrices A = [a;], B = [bi;] € C"*™, A conforms to B if for all 4,5 = 1,...,n,
bi; = 0 implies a;; = 0. A matrix A is eventually r-cyclic with partition II if there is
an ordered partition IT of {1,...,n} into r > 2 nonempty sets, and a positive integer
ko such that for all k& > ko, A* conforms to C’Hk. Note that []] defined eventually
r-cyclic to mean there exists a partition IT such that A is eventually r-cyclic with
partition IT. It was shown in [9] that the two definitions are equivalent, and now that
it is available we choose to use the more natural definition from [9].

Let 0 = {A\1,..., A} be a multiset of complex numbers, w € C, and m € Z*.
Define wo := {wA1,...,wA} and o™ = {\"",.... "}, If 0 = wo, then o is w-
invariant. The radius of o is p(o) := max{|\| : A € o} and the periphery or boundary
of o0 is (o) == oN{z € C: |z| = plo)}. If p(o) > 0, the cyclic index of o is
the largest positive integer r such that ¢ is e?™"/"-invariant. The conjugate of o is
7 :={\1,..., \} and o is self-conjugate if & = 0. We say o is a Frobenius multiset if
for r = |0(0)|, w = €™/, and Z, = {1,w,w?,...,w" "'} we have



Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 30, pp. 279-285, June 2015
Note on the Jordan Form of an Irreducible Eventually Nonnegative Matrix 281
1. p(o) >0,

2. (o) =p(0)Z,, and
3. o is w-tnvariant.

In this case, necessarily r is equal to the cyclic index of o.

A Jordan multiset (called a Jordan collection in [13]) is a finite multiset J =
{Jiy (A1), i, (M)} of elementary Jordan blocks. Throughout this paper J will
denote a Jordan multiset. The nonsingular part of J is the multiset {Ji(\) : Jp(N) €
J and X # 0}. Define the conjugate of 7, denoted 7, to be the multiset of elementary
Jordan blocks Ji,(\) where Ji(\) ranges over the elements of J; J is self-conjugate
if 7 =J. Forw € C, wJ is defined to be the multiset of Jordan blocks .Jj, (wA)
where Ji(\) ranges over the elements of J; J is w-invariant if w7 = J. For any
square complex matrix A, J(A) is the Jordan multiset of elementary Jordan blocks
in a Jordan form of A. If J is a Jordan multiset and m € Z*, then J™ := J(A™)
whenever A is a square complex matrix with J = J(A). Note that the nonsingular
part of J™ is the multiset {Ji(A"™) : Jp(A) € J and X # 0}. The radius of a Jordan
multiset J is p(J) := max{|A| : Jx(\) € J} and the periphery or boundary of J is
ANT) = {Jk(X) € T : |\ = p(J)}. Note also that for any square complex matrix
A, p(A) = p(T(A)). We say J is a Frobenius Jordan multiset if for r = |0(J)| and

w = 2™/ we have

L p(J) >0, ,
2. 9(J) is the set {J1(p(J)w?) :5=0,...,r—1}, and
3. J is w-invariant.

In [13], the cyclic index of a Jordan multiset J with p(J) > 0 is defined to be
the maximum r such that J is e2™/"-invariant, and it is observed there that if 7 is
Frobenius, then r = |9(J)| is equal to the cyclic index of J. In this case, J is referred
to as a Frobenius multiset with cyclic index 7.

2. Main results. In their study of eventually nonnegative matrices, Zaslavsky
and Tam ask the following question.

QUESTION 2.1. [I3| Question 6.3] Let A be an irreducible matrix with cyclic
index r and p(A) > 0, that is eventually nonnegative, and suppose that the singular
blocks in J(A), if any, are all 1 x 1. Does it follow that J(A) is a self-conjugate
Frobenius Jordan multiset with cyclic index r?

The hypothesis that the singular blocks in J(A), if any, are all 1 x 1 is equivalent
to rank A% = rank A, and also to the statement that the index of A is less than or equal
to one. Thus, this question is equivalent to the following: Let A be an irreducible
matrix with cyclic index r, p(4) > 0, and rank A2 = rank A, that is eventually
nonnegative. Does it follow that J(A) is a self-conjugate Frobenius Jordan multiset
with cyclic index r? This question is answered affirmatively by Theorem

In Zaslavsky and Tam’s proof that a multiset ¢ is a union of Frobenius multisets
whenever all sufficiently large powers of ¢ are unions of Frobenius multisets [13]
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Theorem 3.1], it is implicit that one obtains the analogous result for a single Frobenius
multiset; this is explicitly established in [0, Theorem 4.8], where it is shown that for
a multiset of complex numbers o with » = |0(o)| if there exists a positive integer
lo such that for all ¢ > /g, o1 is a Frobenius multiset, then o is a Frobenius
multiset. Zaslavsky and Tam observe that their proof of Theorem 3.1 in [I3] extends
to the analogous result for unions of Frobenius Jordan multisets [13, Theorem 3.3].
By similar reasoning, [9, Theorem 4.8] extends to a single Frobenius Jordan multiset.

THEOREM 2.2. Let J be a Jordan multiset and let v = |0(J)|. If there exists a
positive integer £y such that for all € > by, Tt is a Frobenius Jordan multiset, then
J is a Frobenius Jordan multiset.

PROPOSITION 2.3. Let A be a strongly eventually nonnegative matriz with r > 2
dominant eigenvalues and power index ky. Then A+ is irreducible and nonnegative
whenever fr + 1 > k.

Proof. By [B Proposition 2.1], the dominant eigenvalues of A are p(A), p(4)w,

o p(A)w™ L where w = e2™/7 From the definition of strongly eventually non-
negative, some power of A is both irreducible and nonnegative, and so has positive
left and right eigenvectors for its simple spectral radius. Thus, for all £, p(A* 1) is a
simple eigenvalue of A" *+1 with positive left and right eigenvectors. When ¢r+1 > ko
Afr+1 > 0. So by [II Corollary 2.3.15] A"*! is an irreducible nonnegative matrix. 0

PROPOSITION 2.4. Let A be a strongly eventually nonnegative matriz such that
rank A2 = rank A. Then the number of dominant eigenvalues of A is equal to the
cyclic index of A.

Proof. Let r be the number of dominant eigenvalues of A. If r = 1, then A
necessarily has cyclic index 1. Now assume r > 2. By Proposition 2.3 for every
sufficiently large positive integer £, A" *1 is irreducible, nonnegative, and has r dom-
inant eigenvalues. So A" *! is r-cyclic by [I, Theorem 2.2.20]. Thus, A is eventually
r-cyclic. Then by [9, Theorem 4.1] A is eventually r-cyclic with partition II for some
II. Since rank A? = rank A, A is r-cyclic by [8, Theorem 2.7]. Since r is the number
of dominant eigenvalues of A, A cannot be s-cyclic for s > r (see, e.g., [2 Theorem
3.4.7]). Thus, r is the cyclic index of A. O

THEOREM 2.5. Suppose A € C"*™ is strongly eventually nonnegative with r
dominant eigenvalues. Then J(A) is a Frobenius Jordan multiset with cyclic index
r.

Proof. If M is an irreducible nonnegative matrix with » dominant eigenvalues,
then J (M) is a Frobenius Jordan multiset with cyclic index r [I0, Corollary 8.4.6].
If r = 1, then A is eventually positive and J(A) is a Frobenius Jordan multiset with
cyclic index 1. Now assume 7 > 2. By Proposition23] for all £ sufficiently large A +1
is irreducible and nonnegative. So for all £ sufficiently large, J(A)7*! = J(A+!)
is a Frobenius Jordan multiset with cyclic index r. Thus, by Theorem 22 J(A) is a
Frobenius Jordan multiset with cyclic index r. O
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The next theorem answers Question 211

THEOREM 2.6. If A is an irreducible eventually nonnegative matriz with cyclic
index v and rank A? = rank A, then J(A) is a self-conjugate Frobenius Jordan mul-
tiset with cyclic index r.

Proof. Assume the hypotheses. Since A is eventually nonnegative, J(A) is self-
conjugate [13, Theorem 3.3]. Since A is irreducible and rank A? = rank A, by [9,
Corollary 3.4] or [3, Theorem 3.4], A is not eventually reducible, so A is strongly
eventually nonnegative. So by Proposition 2.4] the number of dominant eigenvalues
of A is equal to its cyclic index . Then by Theorem 25 7(A) is a Frobenius Jordan
multiset with cyclic index r. O

REMARK 2.7. Let A € C"*" with n > 2. If A is strongly eventually nonnegative,
then clearly A is irreducible and eventually nonnegative. With the proof of Theorem
(from [9 Corollary 3.4]), we established that the converse holds if, in addition,
rank A% = rank A.

In [I3] p. 328], Zaslavsky and Tam conjectured that if A is an irreducible eventu-
ally nonnegative matrix with p(A) > 0, then the elementary Jordan blocks in J(A)
corresponding to p(J(A)) = p(A) must all be 1 x 1. The next example shows that
the conjecture is not correct.

1 1 1 -1
1 1 -1 1 .
ExaMPLE 2.8. Let A = 111 1| As observed in [3, Example 3.1],
11 1 1
1100 00 1 -1
1 1.0 0 0 0 -1 1
A = B+ N where B = 111 1 and N = 00 0 0 ,and BN =
1 1 11 0 0 O 0

NB = N? =0, so A¥* = B*¥ > 0 for all k > 2. Thus, A is eventually nonnegative,
as well as irreducible; it is also noted in [3] Example 3.1] that the Jordan block for
eigenvalue zero is 2 x 2. Here we observe that the Jordan block for p(J(A4)) = 2
is also 2 x 2, providing a counterexample to the conjecture of Zaslavsky and Tam.
Since p(A) is not a simple eigenvalue of A, A is not strongly eventually nonnegative.
This example also shows that even if A is irreducible, eventually nonnegative, and
p(A) > 0, A need not be strongly eventually nonnegative (cf. Remark 2.7).

Since [I3] Question 6.5] was answered in the affirmative in [9], all of the open
questions of [13] have now been resolved.

The decomposition used in Example[2.8 plays a fundamental role in understanding
strongly eventually nonnegative matrices (and eventually reducible and eventually r-
cyclic matrices, e.g, [9 Theorems 3.5 and 4.6]). Here we summarize the role of this
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decomposition in regard to strong eventual nonnegativity.

THEOREM 2.9. Let A be an n x n matriz with n > 2. Let A = B+ N be the
unique decomposition of A such that rank B> = rank B, BN = NB = 0, and N is
nilpotent. The following conditions are equivalent:

(a) A is strongly eventually nonnegative.
(b) B is strongly eventually nonnegative.
(¢) B is irreducible and eventually nonnegative.

Proof. The equivalence of (b) and (c) follows from Remark 27l Since B* = A*
for k > n, B is eventually nonnegative if and only if A is eventually nonnegative.
Clearly A and B have the same number of dominant eigenvalues, say r. Let C be
one of A or B, let D be the other one of A or B, and suppose C is eventually
nonnegative. By Proposition B3] D +! = C®*! is irreducible and nonnegative
whenever ¢r + 1 > max{ko, n}, where kg is the power index of C. Thus, D is strongly
eventually nonnegative, establishing the equivalence of (a) and (b). O

The next theorem extends [I3, Theorem 5.1 and Remark 5.2].

THEOREM 2.10. Let J be a multiset of elementary Jordan blocks. The following
conditions are equivalent:

(a) T is a self-conjugate Frobenius multiset with cyclic index r.

(b) T is a multiset with cyclic index r and J" = J1 U---U T, where J1,...,Tr
are self-conjugate Frobenius multisets with cyclic index one that have the same
submultiset of non-singular elementary Jordan blocks.

(c) There exists an irreducible eventually nonnegative matriz A with cyclic index
r such that J(A) = J and A" is permutationally similar to a direct sum of
r eventually positive matrices.

(d) There exists a strongly eventually nonnegative matriz A with r dominant
eigenvalues such that J(A) = J.

Proof. The equivalence of (a)—(c) was established in [I3} Theorem 5.1 and Remark
5.2]. Suppose (d) is satisfied. Then by Theorem 25, 7 (A) is a Frobenius Jordan mul-
tiset with cyclic index r, and J(A) self-conjugate by [I3, Theorem 3.3], so condition
(a) is satisfied.

Conversely, assume (a)—(c). Suppose that J = J(A) for some irreducible even-
tually nonnegative matrix A with cyclic index r as described in (c¢). By (a), p(4) =
p(J(A)) is simple, as is p(A“+1) for any ¢. By [I3, Corollary 5.4], A has positive left
and right eigenvectors corresponding to p(A). By [I, Corollary 2.3.15], A+ > 0 is
irreducible when #r 4+ 1 is at least the power index. Thus, A is strongly eventually
nonnegative, and r is the number of dominant eigenvalues of A by (a), so condition
(d) is satisfied. O
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